1
|
Yan G, Zhang M, Guan W, Zhang F, Dai W, Yuan L, Gao G, Xu K, Chen B, Li L, Wu X. Genome-Wide Identification and Functional Characterization of Stress Related Glyoxalase Genes in Brassica napus L. Int J Mol Sci 2023; 24:ijms24032130. [PMID: 36768459 PMCID: PMC9916435 DOI: 10.3390/ijms24032130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Rapeseed (Brassica napus L.) is not only one of the most important oil crops in the world, but it is also an important vegetable crop with a high value nutrients and metabolites. However, rapeseed is often severely damaged by adverse stresses, such as low temperature, pathogen infection and so on. Glyoxalase I (GLYI) and glyoxalase II (GLYII) are two enzymes responsible for the detoxification of a cytotoxic metabolite methylglyoxal (MG) into the nontoxic S-D-lactoylglutathione, which plays crucial roles in stress tolerance in plants. Considering the important roles of glyoxalases, the GLY gene families have been analyzed in higher plans, such as rice, soybean and Chinese cabbage; however, little is known about the presence, distribution, localizations and expression of glyoxalase genes in rapeseed, a young allotetraploid. In this study, a total of 35 BnaGLYI and 30 BnaGLYII genes were identified in the B. napus genome and were clustered into six and eight subfamilies, respectively. The classification, chromosomal distribution, gene structure and conserved motif were identified or predicted. BnaGLYI and BnaGLYII proteins were mainly localized in chloroplast and cytoplasm. By using publicly available RNA-seq data and a quantitative real-time PCR analysis (qRT-PCR), the expression profiling of these genes of different tissues was demonstrated in different developmental stages as well as under stresses. The results indicated that their expression profiles varied among different tissues. Some members are highly expressed in specific tissues, BnaGLYI11 and BnaGLYI27 expressed in flowers and germinating seed. At the same time, the two genes were significantly up-regulated under heat, cold and freezing stresses. Notably, a number of BnaGLY genes showed responses to Plasmodiophora brassicae infection. Overexpression of BnGLYI11 gene in Arabidopsis thaliana seedlings confirmed that this gene conferred freezing tolerance. This study provides insight of the BnaGLYI and BnaGLYII gene families in allotetraploid B. napus and their roles in stress resistance, and important information and gene resources for developing stress resistant vegetable and rapeseed oil.
Collapse
|
2
|
Scirè A, Cianfruglia L, Minnelli C, Romaldi B, Laudadio E, Galeazzi R, Antognelli C, Armeni T. Glyoxalase 2: Towards a Broader View of the Second Player of the Glyoxalase System. Antioxidants (Basel) 2022; 11:2131. [PMID: 36358501 PMCID: PMC9686547 DOI: 10.3390/antiox11112131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Glyoxalase 2 is a mitochondrial and cytoplasmic protein belonging to the metallo-β-lactamase family encoded by the hydroxyacylglutathione hydrolase (HAGH) gene. This enzyme is the second enzyme of the glyoxalase system that is responsible for detoxification of the α-ketothaldehyde methylglyoxal in cells. The two enzymes glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) form the complete glyoxalase pathway, which utilizes glutathione as cofactor in eukaryotic cells. The importance of Glo2 is highlighted by its ubiquitous distribution in prokaryotic and eukaryotic organisms. Its function in the system has been well defined, but in recent years, additional roles are emerging, especially those related to oxidative stress. This review focuses on Glo2 by considering its genetics, molecular and structural properties, its involvement in post-translational modifications and its interaction with specific metabolic pathways. The purpose of this review is to focus attention on an enzyme that, from the most recent studies, appears to play a role in multiple regulatory pathways that may be important in certain diseases such as cancer or oxidative stress-related diseases.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Brenda Romaldi
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Emiliano Laudadio
- Department of Science and Engineering of Materials, Environment and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| |
Collapse
|
3
|
Przybyla-Toscano J, Boussardon C, Law SR, Rouhier N, Keech O. Gene atlas of iron-containing proteins in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:258-274. [PMID: 33423341 DOI: 10.1111/tpj.15154] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 05/27/2023]
Abstract
Iron (Fe) is an essential element for the development and physiology of plants, owing to its presence in numerous proteins involved in central biological processes. Here, we established an exhaustive, manually curated inventory of genes encoding Fe-containing proteins in Arabidopsis thaliana, and summarized their subcellular localization, spatiotemporal expression and evolutionary age. We have currently identified 1068 genes encoding potential Fe-containing proteins, including 204 iron-sulfur (Fe-S) proteins, 446 haem proteins and 330 non-Fe-S/non-haem Fe proteins (updates of this atlas are available at https://conf.arabidopsis.org/display/COM/Atlas+of+Fe+containing+proteins). A fourth class, containing 88 genes for which iron binding is uncertain, is indexed as 'unclear'. The proteins are distributed in diverse subcellular compartments with strong differences per category. Interestingly, analysis of the gene age index showed that most genes were acquired early in plant evolutionary history and have progressively gained regulatory elements, to support the complex organ-specific and development-specific functions necessitated by the emergence of terrestrial plants. With this gene atlas, we provide a valuable and updateable tool for the research community that supports the characterization of the molecular actors and mechanisms important for Fe metabolism in plants. This will also help in selecting relevant targets for breeding or biotechnological approaches aiming at Fe biofortification in crops.
Collapse
Affiliation(s)
| | - Clément Boussardon
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | | | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| |
Collapse
|
4
|
Li T, Cheng X, Wang Y, Yin X, Li Z, Liu R, Liu G, Wang Y, Xu Y. Genome-wide analysis of glyoxalase-like gene families in grape (Vitis vinifera L.) and their expression profiling in response to downy mildew infection. BMC Genomics 2019; 20:362. [PMID: 31072302 PMCID: PMC6509763 DOI: 10.1186/s12864-019-5733-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/24/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The glyoxalase system usually comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII). This system converts cytotoxic methylglyoxal (MG) into non-toxic D-lactate in the presence of reduced glutathione (GSH) in two enzymatic steps. Recently, a novel type of glyoxalase III (GLYIII) activity has observed in Escherichia coli that can detoxify MG into D-lactate directly, in one step, without a cofactor. Investigation of the glyoxalase enzymes of a number of plant species shows the importance of their roles in response both to abiotic and to biotic stresses. Until now, glyoxalase gene families have been identified in the genomes of four plants, Arabidopsis, Oryza sativa, Glycine max and Medicago truncatula but no similar study has been done with the grapevine Vitis vinifera L. RESULTS In this study, four GLYI-like, two GLYII-like and three GLYIII-like genes are identified from the genome database of grape. All these genes were analysed in detail, including their chromosomal locations, phylogenetic relationships, exon-intron distributions, protein domain organisations and the presence of conserved binding sites. Using quantitative real-time PCR analysis (qRT-PCR), the expression profiles of these genes were analysed in different tissues of grape, and also when under infection stress from downy mildew (Plasmopara viticola). The study reveals that most VvGLY-like genes had higher expressions in stem, leaf, tendril and ovule but lower expressions in the flower. In addition, most of the VvGLY-like gene members were P. viticola responsive with high expressions 6-12 h and 96-120 h after inoculation. However, VvGLYI-like1 was highly expressed 48 h after inoculation, similar to VvPR1 and VvNPR1 which are involved in the defence response. CONCLUSIONS This study identified the GLYI-like, GLYII-like and GLYIII-like full gene families of the grapevine. Based on a phylogenetic analysis and the presence of conserved binding sites, we speculate that these glyoxalase-like genes in grape encode active glyoxalases. Moreover, our study provides a basis for discussing the roles of VvGLYI-like, VvGLYII-like and VvGLYIII-like genes in grape's response to downy mildew infection. Our results shed light on the selection of candidate genes for downy mildew tolerance in grape and lay the foundation for further functional investigations of these glyoxalase genes.
Collapse
Affiliation(s)
- Tiemei Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Yuting Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Xiao Yin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Zhiqian Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Ruiqi Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Guotian Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| |
Collapse
|
5
|
Mustafiz A, Ghosh A, Tripathi AK, Kaur C, Ganguly AK, Bhavesh NS, Tripathi JK, Pareek A, Sopory SK, Singla-Pareek SL. A unique Ni2+ -dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:951-63. [PMID: 24661284 DOI: 10.1111/tpj.12521] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 05/06/2023]
Abstract
The glyoxalase system constitutes the major pathway for the detoxification of metabolically produced cytotoxin methylglyoxal (MG) into a non-toxic metabolite D-lactate. Glyoxalase I (GLY I) is an evolutionarily conserved metalloenzyme requiring divalent metal ions for its activity: Zn(2+) in the case of eukaryotes or Ni(2+) for enzymes of prokaryotic origin. Plant GLY I proteins are part of a multimember family; however, not much is known about their physiological function, structure and metal dependency. In this study, we report a unique GLY I (OsGLYI-11.2) from Oryza sativa (rice) that requires Ni(2+) for its activity. Its biochemical, structural and functional characterization revealed it to be a monomeric enzyme, possessing a single Ni(2+) coordination site despite containing two GLY I domains. The requirement of Ni(2+) as a cofactor by an enzyme involved in cellular detoxification suggests an essential role for this otherwise toxic heavy metal in the stress response. Intriguingly, the expression of OsGLYI-11.2 was found to be highly substrate inducible, suggesting an important mode of regulation for its cellular levels. Heterologous expression of OsGLYI-11.2 in Escherichia coli and model plant Nicotiana tabacum (tobacco) resulted in improved adaptation to various abiotic stresses caused by increased scavenging of MG, lower Na(+) /K(+) ratio and maintenance of reduced glutathione levels. Together, our results suggest interesting links between MG cellular levels, its detoxification by GLY I, and Ni(2+) - the heavy metal cofactor of OsGLYI-11.2, in relation to stress response and adaptation in plants.
Collapse
Affiliation(s)
- Ananda Mustafiz
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Devanathan S, Erban A, Perez-Torres R, Kopka J, Makaroff CA. Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth. PLoS One 2014; 9:e95971. [PMID: 24760003 PMCID: PMC3997514 DOI: 10.1371/journal.pone.0095971] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022] Open
Abstract
The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1) (E.C.: 4.4.1.5) and 2 (E.C.3.1.2.6), has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s) in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions.
Collapse
Affiliation(s)
- Sriram Devanathan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rodolfo Perez-Torres
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Christopher A. Makaroff
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| |
Collapse
|
7
|
Feldmann EA, Ni S, Sahu ID, Mishler CH, Risser DD, Murakami JL, Tom SK, McCarrick RM, Lorigan GA, Tolbert BS, Callahan SM, Kennedy MA. Evidence for Direct Binding between HetR from Anabaena sp. PCC 7120 and PatS-5. Biochemistry 2011; 50:9212-24. [DOI: 10.1021/bi201226e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erik A. Feldmann
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Shuisong Ni
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Indra D. Sahu
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Clay H. Mishler
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Douglas D. Risser
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii 96822, United
States
| | - Jodi L. Murakami
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii 96822, United
States
| | - Sasa K. Tom
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii 96822, United
States
| | - Robert M. McCarrick
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Gary A. Lorigan
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Blanton S. Tolbert
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Sean M. Callahan
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii 96822, United
States
| | - Michael A. Kennedy
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| |
Collapse
|
8
|
Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH. Glutathione. THE ARABIDOPSIS BOOK 2011; 9:e0142. [PMID: 22303267 PMCID: PMC3267239 DOI: 10.1199/tab.0142] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Guillaume Queval
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
- Present address: Department of Plant Systems Biology, Flanders Institute for Biotechnology and Department of Plant Biotechnologyand Genetics, Gent University, 9052 Gent, Belgium
| | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Sejir Chaouch
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Christine H. Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH. Glutathione. THE ARABIDOPSIS BOOK 2011. [PMID: 22303267 DOI: 10.1199/tab0142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.
Collapse
|
10
|
Limphong P, Adams NE, Rouhier MF, McKinney RM, Naylor M, Bennett B, Makaroff CA, Crowder MW. Converting GLX2-1 into an active glyoxalase II. Biochemistry 2010; 49:8228-36. [PMID: 20715794 PMCID: PMC2939260 DOI: 10.1021/bi1010865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Arabidopsis thaliana glyoxalase 2-1 (GLX2-1) exhibits extensive sequence similarity with GLX2 enzymes but is catalytically inactive with SLG, the GLX2 substrate. In an effort to identify residues essential for GLX2 activity, amino acid residues were altered at positions 219, 246, 248, 325, and 328 in GLX2-1 to be the same as those in catalytically active human GLX2. The resulting enzymes were overexpressed, purified, and characterized using metal analyses, fluorescence spectroscopy, and steady-state kinetics to evaluate how these residues affect metal binding, structure, and catalysis. The R246H/N248Y double mutant exhibited low level S-lactoylglutathione hydrolase activity, while the R246H/N248Y/Q325R/R328K mutant exhibited a 1.5-2-fold increase in k(cat) and a decrease in K(m) as compared to the values exhibited by the double mutant. In contrast, the R246H mutant of GLX2-1 did not exhibit glyoxalase 2 activity. Zn(II)-loaded R246H GLX2-1 enzyme bound 2 equiv of Zn(II), and (1)H NMR spectra of the Co(II)-substituted analogue of this enzyme strongly suggest that the introduced histidine binds to Co(II). EPR studies indicate the presence of significant amounts a dinuclear metal ion-containing center. Therefore, an active GLX2 enzyme requires both the presence of a properly positioned metal center and significant nonmetal, enzyme-substrate contacts, with tyrosine 255 being particularly important.
Collapse
Affiliation(s)
- Pattraranee Limphong
- 160 Hughes Hall, Department of Chemistry and Biochemistry, Miami University, Oxford OH 45056
| | - Nicole E. Adams
- 160 Hughes Hall, Department of Chemistry and Biochemistry, Miami University, Oxford OH 45056
| | - Matthew F. Rouhier
- 160 Hughes Hall, Department of Chemistry and Biochemistry, Miami University, Oxford OH 45056
| | - Ross M. McKinney
- 160 Hughes Hall, Department of Chemistry and Biochemistry, Miami University, Oxford OH 45056
| | - Melissa Naylor
- 160 Hughes Hall, Department of Chemistry and Biochemistry, Miami University, Oxford OH 45056
| | - Brian Bennett
- National Biomedical EPR center, Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Christopher A. Makaroff
- 160 Hughes Hall, Department of Chemistry and Biochemistry, Miami University, Oxford OH 45056
| | - Michael W. Crowder
- 160 Hughes Hall, Department of Chemistry and Biochemistry, Miami University, Oxford OH 45056
| |
Collapse
|
11
|
Limphong P, McKinney RM, Adams NE, Makaroff CA, Bennett B, Crowder MW. The metal ion requirements of Arabidopsis thaliana Glx2-2 for catalytic activity. J Biol Inorg Chem 2009; 15:249-58. [DOI: 10.1007/s00775-009-0593-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 09/24/2009] [Indexed: 12/28/2022]
|
12
|
Limphong P, Nimako G, Thomas PW, Fast W, Makaroff CA, Crowder MW. Arabidopsis thaliana mitochondrial glyoxalase 2-1 exhibits beta-lactamase activity. Biochemistry 2009; 48:8491-3. [PMID: 19735113 DOI: 10.1021/bi9010539] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an effort to determine the physiological role of Arabidopsis thaliana Glx2-1, we attempted to uncover a substrate for the enzyme. Glx2-1 did not effectively process 192 diverse substrates found in a commercial screen used for microorganism identification or exhibit arylsulfatase, lactonase, or phosphotriesterase activities. However, Glx2-1 does exhibit beta-lactamase activity with k(cat)/KM values from 10(3) to 10(5) M(-1) s(-1). Glx2-1 can hydrolyze cephalosporins and carbapenems, albeit with rate constants slower than those of most metallo-beta-lactamases. The potential role of a beta-lactamase in the mitochondria of plant cells is briefly discussed.
Collapse
Affiliation(s)
- Pattraranee Limphong
- Department of Chemistry and Biochemistry, 160 Hughes Hall, 701 East High Street, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | | | |
Collapse
|