1
|
Frost OG, Ramkilawan P, Rebbaa A, Stolzing A. A systematic review of lifespan studies in rodents using stem cell transplantations. Ageing Res Rev 2024; 97:102295. [PMID: 38588866 DOI: 10.1016/j.arr.2024.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Organismal aging involves the progressive decline in organ function and increased susceptibility to age-associated diseases. Regardless of its origin, cellular aging is consequently reflected at the level of organ and associated systems dysfunction. Aging of stem cell populations within the body and their decreased ability to self-renew, differentiate, and regenerate damaged tissues, is a key contributor to organismal decline. Based on this, supplementing young stem cells may delay tissue aging, improve frailty and extend health and lifespan. This review investigates studies in rodents using stem cell transplantation from either mice or human donors. The aim is to consolidate available information on the efficacy of stem cell therapies in rodent models and provide insights to guide further research efforts. Out of the 21 studies included in this review, the methodology varied significantly including the lifespan measurement. To enable comparison the median lifespan was calculated using WebPlotDigitizer 4.6 if not provided by the literature. A total of 18 out of 21 studies evidenced significant lifespan extension post stem cell transplant, with 7 studies demonstrating benefits in reduced frailty and other aging complications.
Collapse
Affiliation(s)
- Oliver G Frost
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK; SENS Research Foundation, Mountain View, CA 94041, USA
| | | | | | - Alexandra Stolzing
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK.
| |
Collapse
|
2
|
Iribarren PA, Di Marzio LA, Berazategui MA, Saura A, Coria L, Cassataro J, Rojas F, Navarro M, Alvarez VE. Depolymerization of SUMO chains induces slender to stumpy differentiation in T. brucei bloodstream parasites. PLoS Pathog 2024; 20:e1012166. [PMID: 38635823 PMCID: PMC11060531 DOI: 10.1371/journal.ppat.1012166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Trypanosoma brucei are protozoan parasites that cause sleeping sickness in humans and nagana in cattle. Inside the mammalian host, a quorum sensing-like mechanism coordinates its differentiation from a slender replicative form into a quiescent stumpy form, limiting growth and activating metabolic pathways that are beneficial to the parasite in the insect host. The post-translational modification of proteins with the Small Ubiquitin-like MOdifier (SUMO) enables dynamic regulation of cellular metabolism. SUMO can be conjugated to its targets as a monomer but can also form oligomeric chains. Here, we have investigated the role of SUMO chains in T. brucei by abolishing the ability of SUMO to polymerize. We have found that parasites able to conjugate only SUMO monomers are primed for differentiation. This was demonstrated for monomorphic lines that are normally unable to produce stumpy forms in response to quorum sensing signaling in mice, and also for pleomorphic cell lines in which stumpy cells were observed at unusually low parasitemia levels. SUMO chain mutants showed a stumpy compatible transcriptional profile and better competence to differentiate into procyclics. Our study indicates that SUMO depolymerization may represent a coordinated signal triggered during stumpy activation program.
Collapse
Affiliation(s)
- Paula Ana Iribarren
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Lucía Ayelén Di Marzio
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - María Agustina Berazategui
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Andreu Saura
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC (IPBLN-CSIC), Granada, Spain
| | - Lorena Coria
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Federico Rojas
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC (IPBLN-CSIC), Granada, Spain
| | - Vanina Eder Alvarez
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| |
Collapse
|
3
|
Kaplun DS, Kaluzhny DN, Prokhortchouk EB, Zhenilo SV. DNA Methylation: Genomewide Distribution, Regulatory Mechanism and Therapy Target. Acta Naturae 2022; 14:4-19. [PMID: 36694897 PMCID: PMC9844086 DOI: 10.32607/actanaturae.11822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 01/22/2023] Open
Abstract
DNA methylation is the most important epigenetic modification involved in the regulation of transcription, imprinting, establishment of X-inactivation, and the formation of a chromatin structure. DNA methylation in the genome is often associated with transcriptional repression and the formation of closed heterochromatin. However, the results of genome-wide studies of the DNA methylation pattern and transcriptional activity of genes have nudged us toward reconsidering this paradigm, since the promoters of many genes remain active despite their methylation. The differences in the DNA methylation distribution in normal and pathological conditions allow us to consider methylation as a diagnostic marker or a therapy target. In this regard, the need to investigate the factors affecting DNA methylation and those involved in its interpretation becomes pressing. Recently, a large number of protein factors have been uncovered, whose ability to bind to DNA depends on their methylation. Many of these proteins act not only as transcriptional activators or repressors, but also affect the level of DNA methylation. These factors are considered potential therapeutic targets for the treatment of diseases resulting from either a change in DNA methylation or a change in the interpretation of its methylation level. In addition to protein factors, a secondary DNA structure can also affect its methylation and can be considered as a therapy target. In this review, the latest research into the DNA methylation landscape in the genome has been summarized to discuss why some DNA regions avoid methylation and what factors can affect its level or interpretation and, therefore, can be considered a therapy target.
Collapse
Affiliation(s)
- D. S. Kaplun
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071 Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119071 Russia
| | - D. N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| | - E. B. Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071 Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119071 Russia
| | - S. V. Zhenilo
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071 Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119071 Russia
| |
Collapse
|
4
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
5
|
Kukkula A, Ojala VK, Mendez LM, Sistonen L, Elenius K, Sundvall M. Therapeutic Potential of Targeting the SUMO Pathway in Cancer. Cancers (Basel) 2021; 13:4402. [PMID: 34503213 PMCID: PMC8431684 DOI: 10.3390/cancers13174402] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
SUMOylation is a dynamic and reversible post-translational modification, characterized more than 20 years ago, that regulates protein function at multiple levels. Key oncoproteins and tumor suppressors are SUMO substrates. In addition to alterations in SUMO pathway activity due to conditions typically present in cancer, such as hypoxia, the SUMO machinery components are deregulated at the genomic level in cancer. The delicate balance between SUMOylation and deSUMOylation is regulated by SENP enzymes possessing SUMO-deconjugation activity. Dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to the tumorigenesis and drug resistance of various cancers in a context-dependent manner. Many molecular mechanisms relevant to the pathogenesis of specific cancers involve SUMO, highlighting the potential relevance of SUMO machinery components as therapeutic targets. Recent advances in the development of inhibitors targeting SUMOylation and deSUMOylation permit evaluation of the therapeutic potential of targeting the SUMO pathway in cancer. Finally, the first drug inhibiting SUMO pathway, TAK-981, is currently also being evaluated in clinical trials in cancer patients. Intriguingly, the inhibition of SUMOylation may also have the potential to activate the anti-tumor immune response. Here, we comprehensively and systematically review the recent developments in understanding the role of SUMOylation in cancer and specifically focus on elaborating the scientific rationale of targeting the SUMO pathway in different cancers.
Collapse
Affiliation(s)
- Antti Kukkula
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
| | - Veera K. Ojala
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Turku Doctoral Programme of Molecular Medicine, University of Turku, FI-20520 Turku, Finland
- Medicity Research Laboratories, University of Turku, FI-20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
| | - Lourdes M. Mendez
- Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Department of Medicine and Pathology, Cancer Research Institute, Harvard Medical School, Boston, MA 02115, USA;
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland
| | - Klaus Elenius
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Medicity Research Laboratories, University of Turku, FI-20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
- Department of Oncology, Turku University Hospital, FI-20521 Turku, Finland
| | - Maria Sundvall
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Department of Oncology, Turku University Hospital, FI-20521 Turku, Finland
| |
Collapse
|
6
|
Qin W, Scicluna BP, van der Poll T. The Role of Host Cell DNA Methylation in the Immune Response to Bacterial Infection. Front Immunol 2021; 12:696280. [PMID: 34394088 PMCID: PMC8358789 DOI: 10.3389/fimmu.2021.696280] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Host cells undergo complex transcriptional reprogramming upon infection. Epigenetic changes play a key role in the immune response to bacteria, among which DNA modifications that include methylation have received much attention in recent years. The extent of DNA methylation is well known to regulate gene expression. Whilst historically DNA methylation was considered to be a stable epigenetic modification, accumulating evidence indicates that DNA methylation patterns can be altered rapidly upon exposure of cells to changing environments and pathogens. Furthermore, the action of proteins regulating DNA methylation, particularly DNA methyltransferases and ten-eleven translocation methylcytosine dioxygenases, may be modulated, at least in part, by bacteria. This review discusses the principles of DNA methylation, and recent insights about the regulation of host DNA methylation during bacterial infection.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Wang H, Shen YJ, Li XJ, Xia J, Sun L, Xu Y, Ma Y, Li D, Xiong YC. DNMT3b SUMOylation Mediated MMP-2 Upregulation Contribute to Paclitaxel Induced Neuropathic Pain. Neurochem Res 2021; 46:1214-1223. [PMID: 33550530 DOI: 10.1007/s11064-021-03260-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Paclitaxel is a common chemotherapeutic agent in cancer treatment, while it often causes chemotherapy-induced peripheral neuropathy (CIPN), which manifested as hyperalgesia and allodynia, and its mechanism remains largely unknown. The previous study has shown that matrix metalloproteinase-2 (MMP-2) plays a pivotal role in spinal nerve ligation (SNL) induced neuropathic pain, but its function in CIPN and exact molecular mechanisms underlying upregulation is not explored. Our present study revealed that MMP-2 is also upregulated in paclitaxel induced neuropathic pain (NP), and knockdown it by siRNA can ameliorate mechanical allodynia. Since DNA methylation is closely related to gene transcription, we explored the methylation status of the MMP-2 gene and demonstrated that MMP-2 upregulation is related to the reduced methylation level of its promoter. DNA methylation is mediated by DNA methyltransferases (DNMTs), and previous studies suggested that three main types of DNMTs can undergo SUMOylation. Our next study revealed that SUMO1 modification of DNMT3b is significantly enhanced. Intrathecal administration of SUMOylation inhibitor, ginkgolic acid (GA), could reverse enhanced SUMO1 modification of DNMT3b and upregulation of MMP-2 in the model rats. Further investigation suggested that DNMT3b binding activity to the promoter region of the MMP-2 gene is significantly decreased in paclitaxel treated rats, and the administration of GA can reverse these effects, which is also accompanied by changes in the promoter methylation status of the MMP-2 gene. Our study demonstrates that MMP-2 up-regulation mediated by DNMT3b SUMOylation is essential for paclitaxel induced NP development, which brings us new therapeutic options for CIPN.
Collapse
Affiliation(s)
- Han Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Yi-Jia Shen
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Xiu-Juan Li
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Jun Xia
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Li Sun
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Yehao Xu
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Yu Ma
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Dai Li
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China.
| | - Yuan-Chang Xiong
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China.
| |
Collapse
|
8
|
Hegde M, Joshi MB. Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors. J Cancer Res Clin Oncol 2021; 147:937-971. [PMID: 33604794 PMCID: PMC7954751 DOI: 10.1007/s00432-021-03519-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Significant reprogramming of epigenome is widely described during pathogenesis of breast cancer. Transformation of normal cell to hyperplastic cell and to neoplastic phenotype is associated with aberrant DNA (de)methylation, which, through promoter and enhancer methylation changes, activates oncogenes and silence tumor suppressor genes in variety of tumors including breast. DNA methylation, one of the major epigenetic mechanisms is catalyzed by evolutionarily conserved isoforms namely, DNMT1, DNMT3A and DNMT3B in humans. Over the years, studies have demonstrated intricate and complex regulation of DNMT isoforms at transcriptional, translational and post-translational levels. The recent findings of allosteric regulation of DNMT isoforms and regulation by other interacting chromatin modifying proteins emphasizes functional integrity and their contribution for the development of breast cancer and progression. DNMT isoforms are regulated by several intrinsic and extrinsic parameters. In the present review, we have extensively performed bioinformatics analysis of expression of DNMT isoforms along with their transcriptional and post-transcriptional regulators such as transcription factors, interacting proteins, hormones, cytokines and dietary elements along with their significance during pathogenesis of breast tumors. Our review manuscript provides a comprehensive understanding of key factors regulating DNMT isoforms in breast tumor pathology and documents unsolved issues.
Collapse
Affiliation(s)
- Mangala Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
9
|
Gupta R, Kumar P. Computational Analysis Indicates That PARP1 Acts as a Histone Deacetylases Interactor Sharing Common Lysine Residues for Acetylation, Ubiquitination, and SUMOylation in Alzheimer's and Parkinson's Disease. ACS OMEGA 2021; 6:5739-5753. [PMID: 33681613 PMCID: PMC7931403 DOI: 10.1021/acsomega.0c06168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/12/2021] [Indexed: 05/28/2023]
Abstract
Aim/Hypothesis : Lysine residues are known for the post-translational modifications (PTMs) such as acetylation, ubiquitination, and SUMOylation. In acetylation, histone deacetylase (HDAC) and its interactors cause transcriptional deregulation and cause mitochondrial dysfunction, apoptosis, inflammatory response, and cell-cycle impairment that cause brain homeostasis and neuronal cell death. Other regulatory PTMs involved in the pathogenesis of neurodegenerative diseases (NDDs) are ubiquitination and SUMOylation for the degradation of the misfolded proteins. Thus, we aim to investigate the potential acetylation/ubiquitination/SUMOylation crosstalk sites in the HDAC interactors, which cause NDDs. Furthermore, we aim to identify the influence of PTMs on the structural features of proteins and the impact of putative lysine mutation on disease susceptibility. Last, we aim to examine the impact of the putative mutation on acetylated lysine for ubiquitination and SUMOylation. Results : Herein, we integrate 1455 genes, 3094 genes, and 1940 genes related to HDAC interactors, Alzheimer's disease (AD), and Parkinson's disease (PD), respectively. Furthermore, the protein-protein interaction and PTM integrations from different databases identified 32 proteins that are associated with HDAC, AD, and PD with 1489 potential lysine-modified sites. HDAC interactors poly(ADP-ribose) polymerase 1 (PARP1), nucleophosmin (NPM1), and cyclin-dependent kinase 1 (CDK1) involved in the progression of NDDs and 64 and 75% of PTM sites in PARP1, NPM1, and CDK1 fall into coiled and ordered regions, respectively. Moreover, 15 putative lysine sites have been found in the crosstalk and K148, K249, K528, K637, K700, and K796 of PARP1 are crosstalk hotspots. Conclusion : The loss of acetylated hotspot sites results in the loss of ubiquitination and SUMOylation function on nearby sites, which is relatively higher when compared to the gain of function.
Collapse
|
10
|
Loaeza-Loaeza J, Beltran AS, Hernández-Sotelo D. DNMTs and Impact of CpG Content, Transcription Factors, Consensus Motifs, lncRNAs, and Histone Marks on DNA Methylation. Genes (Basel) 2020; 11:genes11111336. [PMID: 33198240 PMCID: PMC7696963 DOI: 10.3390/genes11111336] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
DNA methyltransferases (DNMTs) play an essential role in DNA methylation and transcriptional regulation in the genome. DNMTs, along with other poorly studied elements, modulate the dynamic DNA methylation patterns of embryonic and adult cells. We summarize the current knowledge on the molecular mechanism of DNMTs’ functional targeting to maintain genome-wide DNA methylation patterns. We focus on DNMTs’ intrinsic characteristics, transcriptional regulation, and post-transcriptional modifications. Furthermore, we focus special attention on the DNMTs’ specificity for target sites, including key cis-regulatory factors such as CpG content, common motifs, transcription factors (TF) binding sites, lncRNAs, and histone marks to regulate DNA methylation. We also review how complexes of DNMTs/TFs or DNMTs/lncRNAs are involved in DNA methylation in specific genome regions. Understanding these processes is essential because the spatiotemporal regulation of DNA methylation modulates gene expression in health and disease.
Collapse
Affiliation(s)
- Jaqueline Loaeza-Loaeza
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, NC 39087 Chilpancingo, Mexico;
| | - Adriana S. Beltran
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Daniel Hernández-Sotelo
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, NC 39087 Chilpancingo, Mexico;
- Correspondence:
| |
Collapse
|
11
|
Beyer JN, Raniszewski NR, Burslem GM. Advances and Opportunities in Epigenetic Chemical Biology. Chembiochem 2020; 22:17-42. [PMID: 32786101 DOI: 10.1002/cbic.202000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The study of epigenetics has greatly benefited from the development and application of various chemical biology approaches. In this review, we highlight the key targets for modulation and recent methods developed to enact such modulation. We discuss various chemical biology techniques to study DNA methylation and the post-translational modification of histones as well as their effect on gene expression. Additionally, we address the wealth of protein synthesis approaches to yield histones and nucleosomes bearing epigenetic modifications. Throughout, we highlight targets that present opportunities for the chemical biology community, as well as exciting new approaches that will provide additional insight into the roles of epigenetic marks.
Collapse
Affiliation(s)
- Jenna N Beyer
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Nicole R Raniszewski
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA.,Department of Cancer Biology and Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Cervena K, Siskova A, Buchler T, Vodicka P, Vymetalkova V. Methylation-Based Therapies for Colorectal Cancer. Cells 2020; 9:E1540. [PMID: 32599894 PMCID: PMC7349319 DOI: 10.3390/cells9061540] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal carcinogenesis (CRC) is caused by the gradual long-term accumulation of both genetic and epigenetic changes. Recently, epigenetic alterations have been included in the classification of the CRC molecular subtype, and this points out their prognostic impact. As epigenetic modifications are reversible, they may represent relevant therapeutic targets. DNA methylation, catalyzed by DNA methyltransferases (DNMTs), regulates gene expression. For many years, the deregulation of DNA methylation has been considered to play a substantial part in CRC etiology and evolution. Despite considerable advances in CRC treatment, patient therapy response persists as limited, and their profit from systemic therapies are often hampered by the introduction of chemoresistance. In addition, inter-individual changes in therapy response in CRC patients can arise from their specific (epi)genetic compositions. In this review article, we summarize the options of CRC treatment based on DNA methylation status for their predictive value. This review also includes the therapy outcomes based on the patient's methylation status in CRC patients. In addition, the current challenge of research is to develop therapeutic inhibitors of DNMT. Based on the essential role of DNA methylation in CRC development, the application of DNMT inhibitors was recently proposed for the treatment of CRC patients, especially in patients with DNA hypermethylation.
Collapse
Affiliation(s)
- Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Anna Siskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic;
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
13
|
Kim DH, Kim HM, Huong PTT, Han HJ, Hwang J, Cha-Molstad H, Lee KH, Ryoo IJ, Kim KE, Huh YH, Ahn JS, Kwon YT, Soung NK, Kim BY. Enhanced anticancer effects of a methylation inhibitor by inhibiting a novel DNMT1 target, CEP 131, in cervical cancer. BMB Rep 2019. [PMID: 31068247 PMCID: PMC6549914 DOI: 10.5483/bmbrep.2019.52.5.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Methylation is a primary epigenetic mechanism regulating gene expression. 5-aza-2′-deoxycytidine is an FDA-approved drug prescribed for treatment of cancer by inhibiting DNA-Methyl-Transferase 1 (DNMT1). Results of this study suggest that prolonged treatment with 5-aza-2′-deoxycytidine could induce centrosome abnormalities in cancer cells and that CEP131, a centrosome protein, is regulated by DNMT1. Interestingly, cancer cell growth was attenuated in vitro and in vivo by inhibiting the expression of Cep131. Finally, Cep131-deficient cells were more sensitive to treatment with DNMT1 inhibitors. These findings suggest that Cep131 is a potential novel anti-cancer target. Agents that can inhibit this protein may be useful alone or in combination with DNMT1 inhibitors to treat cancer.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116; Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hye-Min Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Pham Thi Thu Huong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Ho-Jin Han
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116; Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Joonsung Hwang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Hyunjoo Cha-Molstad
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Kyung Ho Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - In-Ja Ryoo
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Kyoon Eon Kim
- Department of Biochemistry, College of Natural Science, Chungnam National University, Daejeon 34134, Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116; Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116; Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Bo Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116; Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
14
|
Singh S, Sonkar SK, Sonkar GK, Mahdi AA. Diabetic kidney disease: A systematic review on the role of epigenetics as diagnostic and prognostic marker. Diabetes Metab Res Rev 2019; 35:e3155. [PMID: 30892801 DOI: 10.1002/dmrr.3155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/26/2019] [Accepted: 03/14/2019] [Indexed: 12/13/2022]
Abstract
Diabetic kidney disease is one of the most serious microvascular complications and among the leading causes of end stage renal disease. Persistently increasing albuminuria has been considered to be the central hallmark of nephropathy. However, albuminuria can indicate kidney damage for clinicians; it is not a specific biomarker for prediction of diabetic kidney disease prior to the onset of this devastating complication, and in fact all individuals with microalbuminuria do not progress to overt nephropathy. Controlled glycemia is unable to prevent nephropathy in all diabetic individuals indicating the role of other factors in progression of diabetic kidney disease. There are numerous cellular and molecular defects persisting prior to appearance of clinical symptoms. So, there is an urgent need to look for easy, novel, and accurate way to detect diabetic kidney disease prior to its beginning or at the infancy stage so that its progression can be slowed or arrested. It is now accepted that initiation and progression of diabetic kidney disease are a result of complex interactions between genetic and environmental factors. Environmental signals can alter the intracellular pathways by chromatin modifiers and regulate gene expression patterns leading to diabetes and its complications. In the present review, we have discussed a possible link between aberrant DNA methylation and altered gene expression in diabetic kidney disease. Drugs targeting to reverse epigenetic alteration can retard or stop the development of this devastating disease, just by breaking the chain of events occurring prior to the development of this microvascular complication in patients with diabetes.
Collapse
Affiliation(s)
- Sangeeta Singh
- Department of Biochemistry, King George's Medical University, U.P., Lucknow, India
| | | | | | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, U.P., Lucknow, India
| |
Collapse
|
15
|
Mc Auley MT, Mooney KM, Salcedo-Sora JE. Computational modelling folate metabolism and DNA methylation: implications for understanding health and ageing. Brief Bioinform 2019; 19:303-317. [PMID: 28007697 DOI: 10.1093/bib/bbw116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 11/12/2022] Open
Abstract
Dietary folates have a key role to play in health, as deficiencies in the intake of these B vitamins have been implicated in a wide variety of clinical conditions. The reason for this is folates function as single carbon donors in the synthesis of methionine and nucleotides. Moreover, folates have a vital role to play in the epigenetics of mammalian cells by supplying methyl groups for DNA methylation reactions. Intriguingly, a growing body of experimental evidence suggests that DNA methylation status could be a central modulator of the ageing process. This has important health implications because the methylation status of the human genome could be used to infer age-related disease risk. Thus, it is imperative we further our understanding of the processes which underpin DNA methylation and how these intersect with folate metabolism and ageing. The biochemical and molecular mechanisms, which underpin these processes, are complex. However, computational modelling offers an ideal framework for handling this complexity. A number of computational models have been assembled over the years, but to date, no model has represented the full scope of the interaction between the folate cycle and the reactions, which governs the DNA methylation cycle. In this review, we will discuss several of the models, which have been developed to represent these systems. In addition, we will present a rationale for developing a combined model of folate metabolism and the DNA methylation cycle.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Department of Chemical Engineering, Thornton Science Park, University of Chester, UK
| | - Kathleen M Mooney
- Faculty of Health and Social Care, Edge Hill University, Ormskirk, Lancashire, UK
| | | |
Collapse
|
16
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
17
|
DNA damage and tissue repair: What we can learn from planaria. Semin Cell Dev Biol 2018; 87:145-159. [PMID: 29727725 DOI: 10.1016/j.semcdb.2018.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Abstract
Faithful renewal of aging and damaged tissues is central to organismal lifespan. Stem cells (SCs) generate the cellular progeny that replenish adult tissues across the body but this task becomes increasingly compromised over time. The age related decline in SC-mediated tissue maintenance is a multifactorial event that commonly affects genome integrity. The presence of DNA damage in SCs that are under continuous demand to divide poses a great risk for age-related disorders such as cancer. However, performing analysis of SCs with genomic instability and the DNA damage response during tissue renewal present significant challenges. Here we introduce an alternative experimental system based on the planaria flatworm Schmidtea mediterranea to address at the organismal level studies intersecting SC-mediated tissue renewal in the presence of genomic instability. Planaria have abundant SCs (neoblasts) that maintain high rates of cellular turnover and a variety of molecular tools have been developed to induce DNA damage and dissect how neoblasts respond to this stressor. S. mediterranea displays high evolutionary conservation of DNA repair mechanisms and signaling pathways regulating adult SCs. We describe genetically induced-DNA damage models and highlight body-wide signals affecting cellular decisions such as survival, proliferation, and death in the presence of genomic instability. We also discuss transcriptomic changes in the DNA damage response during injury repair and propose DNA repair as key component of tissue regeneration. Additional studies using planaria will provide insights about mechanisms regulating survival and growth of cells with DNA damage during tissue renewal and regeneration.
Collapse
|
18
|
Wang L, Liu X, Wang H, Yuan H, Chen S, Chen Z, The H, Zhou J, Zhu J. RNF4 regulates zebrafish granulopoiesis through the DNMT1‐C/EBPα axis. FASEB J 2018; 32:4930-4940. [DOI: 10.1096/fj.201701450rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luxiang Wang
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaohui Liu
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haihong Wang
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Yuan
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Saijuan Chen
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhu Chen
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hugues The
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Equipe Labellisée No. 11 Ligue Nationale Contre le CancerHôpital St. LouisUniversité de Paris 7/INSERM/CNRS UMR 944/7212ParisFrance
| | - Jun Zhou
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jun Zhu
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Equipe Labellisée No. 11 Ligue Nationale Contre le CancerHôpital St. LouisUniversité de Paris 7/INSERM/CNRS UMR 944/7212ParisFrance
| |
Collapse
|
19
|
Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron PF. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics 2018; 10:17. [PMID: 29449903 PMCID: PMC5807744 DOI: 10.1186/s13148-018-0450-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/30/2018] [Indexed: 11/28/2022] Open
Abstract
Our current view of DNA methylation processes is strongly moving: First, even if it was generally admitted that DNMT3A and DNMT3B are associated with de novo methylation and DNMT1 is associated with inheritance DNA methylation, these distinctions are now not so clear. Secondly, since one decade, many partners of DNMTs have been involved in both the regulation of DNA methylation activity and DNMT recruitment on DNA. The high diversity of interactions and the combination of these interactions let us to subclass the different DNMT-including complexes. For example, the DNMT3L/DNMT3A complex is mainly related to de novo DNA methylation in embryonic states, whereas the DNMT1/PCNA/UHRF1 complex is required for maintaining global DNA methylation following DNA replication. On the opposite to these unspecific DNA methylation machineries (no preferential DNA sequence), some recently identified DNMT-including complexes are recruited on specific DNA sequences. The coexistence of both types of DNA methylation (un/specific) suggests a close cooperation and an orchestration between these systems to maintain genome and epigenome integrities. Deregulation of these systems can lead to pathologic disorders.
Collapse
Affiliation(s)
- Eric Hervouet
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | - Paul Peixoto
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | | | | | - Pierre-François Cartron
- 3INSERM unit S1232, University of Nantes, Nantes, France.,4Institut de cancérologie de l'Ouest, Nantes, France.,REpiCGO (Cancéropole Grand-Ouest), Nantes, France.,EpiSAVMEN Networks, Nantes, Région Pays de la Loire France
| |
Collapse
|
20
|
Petrus P, Bialesova L, Checa A, Kerr A, Naz S, Bäckdahl J, Gracia A, Toft S, Dahlman-Wright K, Hedén P, Dahlman I, Wheelock CE, Arner P, Mejhert N, Gao H, Rydén M. Adipocyte Expression of SLC19A1 Links DNA Hypermethylation to Adipose Tissue Inflammation and Insulin Resistance. J Clin Endocrinol Metab 2018; 103:710-721. [PMID: 29121255 DOI: 10.1210/jc.2017-01382] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
CONTEXT Insulin resistance (IR) is promoted by a chronic low-grade inflammation in white adipose tissue (WAT). The latter might be regulated through epigenetic mechanisms such as DNA methylation. The one carbon cycle (1CC) is a central metabolic process governing DNA methylation. OBJECTIVE To identify adipocyte-expressed 1CC genes linked to WAT inflammation, IR, and their causal role. DESIGN Cohort study. SETTING Outpatient academic clinic. PARTICIPANTS Obese and nonobese subjects. METHODS Gene expression and DNA methylation arrays were performed in subcutaneous WAT and isolated adipocytes. In in vitro differentiated human adipocytes, gene knockdown was achieved by small interfering RNA, and analyses included microarray, quantitative polymerase chain reaction, DNA methylation by enzyme-linked immunosorbent assay and pyrosequencing, protein secretion by enzyme-linked immunosorbent assay, targeted metabolomics, and luciferase reporter and thermal shift assays. MAIN OUTCOME MEASURES Effects on adipocyte inflammation. RESULTS In adipocytes from obese individuals, global DNA hypermethylation was associated positively with gene expression of proinflammatory pathways. Among the 1CC genes, IR in vivo and proinflammatory gene expression in WAT were most strongly and inversely associated with SLC19A1, a gene encoding a membrane folate carrier. SLC19A1 knockdown in human adipocytes perturbed intracellular 1CC metabolism, induced global DNA hypermethylation, and increased expression of proinflammatory genes. Several CpG loci linked SLC19A1 to inflammation; validation studies were focused on the chemokine C-C motif chemokine ligand 2 (CCL2) in which methylation in the promoter (cg12698626) regulated CCL2 expression and CCL2 secretion through altered transcriptional activity. CONCLUSIONS Reduced SLC19A1 expression in human adipocytes induces DNA hypermethylation, resulting in increased expression of specific proinflammatory genes, including CCL2. This constitutes an epigenetic mechanism that might link dysfunctional adipocytes to WAT inflammation and IR.
Collapse
Affiliation(s)
- Paul Petrus
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lucia Bialesova
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Checa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alastair Kerr
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shama Naz
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Bäckdahl
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ana Gracia
- Department of Nutrition and Food Science, University of Basque Country (UPV/EHU), Vitoria, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Sofia Toft
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Per Hedén
- Department of Plastic Surgery, Akademikliniken, Stockholm, Sweden
| | - Ingrid Dahlman
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Battaglia S, Karasik E, Gillard B, Williams J, Winchester T, Moser MT, Smiraglia DJ, Foster BA. LSD1 dual function in mediating epigenetic corruption of the vitamin D signaling in prostate cancer. Clin Epigenetics 2017; 9:82. [PMID: 28811844 PMCID: PMC5553900 DOI: 10.1186/s13148-017-0382-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lysine-specific demethylase 1A (LSD1) is a key regulator of the androgen (AR) and estrogen receptors (ER), and LSD1 levels correlate with tumor aggressiveness. Here, we demonstrate that LSD1 regulates vitamin D receptor (VDR) activity and is a mediator of 1,25(OH)2-D3 (vitamin D) action in prostate cancer (PCa). METHODS Athymic nude mice were xenografted with CWR22 cells and monitored weekly after testosterone pellet removal. Expression of LSD1 and VDR (IHC) were correlated with tumor growth using log-rank test. TRAMP tumors and prostates from wild-type (WT) mice were used to evaluate VDR and LSD1 expression via IHC and western blotting. The presence of VDR and LSD1 in the same transcriptional complex was evaluated via immunoprecipitation (IP) using nuclear cell lysate. The effect of LSD1 and 1,25(OH)2-D3 on cell viability was evaluated in C4-2 and BC1A cells via trypan blue exclusion. The role of LSD1 in VDR-mediated gene transcription was evaluated for Cdkn1a, E2f1, Cyp24a1, and S100g via qRT-PCR-TaqMan and via chromatin immunoprecipitation assay. Methylation of Cdkn1a TSS was measured via bisulfite sequencing, and methylation of a panel of cancer-related genes was quantified using methyl arrays. The Cancer Genome Atlas data were retrieved to identify genes whose status correlates with LSD1 and DNA methyltransferase 1 (DNMT1). Results were correlated with patients' survival data from two separate cohorts of primary and metastatic PCa. RESULTS LSD1 and VDR protein levels are elevated in PCa tumors and correlate with faster tumor growth in xenograft mouse models. Knockdown of LSD1 reduces PCa cell viability, and gene expression data suggest a dual coregulatory role of LSD1 for VDR, acting as a coactivator and corepressor in a locus-specific manner. LSD1 modulates VDR-dependent transcription by mediating the recruitment of VDR and DNMT1 at the TSS of VDR-targeted genes and modulates the epigenetic status of transcribed genes by altering H3K4me2 and H3K9Ac and DNA methylation. Lastly, LSD1 and DNMT1 belong to a genome-wide signature whose expression correlates with shorter progression-free survival and overall survival in primary and metastatic patients' samples, respectively. CONCLUSIONS Results demonstrate that LSD1 has a dual coregulatory role as corepressor and coactivator for VDR and defines a genomic signature whose targeting might have clinical relevance for PCa patients.
Collapse
Affiliation(s)
- Sebastiano Battaglia
- Center for Immunotherapy, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Bryan Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Jennifer Williams
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Trisha Winchester
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Michael T Moser
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Dominic J Smiraglia
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| |
Collapse
|
22
|
Wu Z, Mei X, Ying Z, Sun Y, Song J, Shi W. Ultraviolet B inhibition of DNMT1 activity via AhR activation dependent SIRT1 suppression in CD4+ T cells from systemic lupus erythematosus patients. J Dermatol Sci 2017; 86:230-237. [PMID: 28336124 DOI: 10.1016/j.jdermsci.2017.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/22/2017] [Accepted: 03/08/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previous studies have reported that ultraviolet B (UVB) inhibits DNA methyltransferase1 (DNMT1) activity in CD4+ T cells from systemic lupus erythematosus (SLE) patients. Silent mating type information regulation 2 homolog 1 (SIRT1) is a type of Class III histone deacetylases (HDACs), and has been reported to play roles in the pathogenesis of different autoimmune diseases and can modulate DNMT1 activity. Moreover, aryl hydrocarbon receptor (AhR) has been reported to link UVB with SLE. However, the exact mechanisms by which DNMT1 activity is inhibited by UVB in lupus CD4+ T cells remain largely unknown. OBJECTIVE To elucidate the exact mechanisms by which DNMT1 activity is inhibited by UVB in lupus CD4+ T cells. METHODS Twenty-two newly diagnosed active SLE patients and 30 healthy controls were enrolled in the study. CD4+ T cells were isolated, cultured and treated. DNMT1 activity assay, quantitative real-time PCR (qRT-PCR), Western blotting, RNA interference using small interfering RNA and Chromatin Immunoprecipitation (ChIP) assay were employed. RESULTS DNMT1 activity was inhibited in si-SIRT1-transfected CD4+ T cells, and increased by the established SIRT1 activator, SRT1720. Moreover, the mRNA and protein expression of SIRT1 were suppressed by UVB exposure in lupus CD4+ T cells. UVB-inhibited DNMT1 activity was reversed by SRT1720 in si-control-transfected lupus CD4+ T cells, but not in si-SIRT1-transfected lupus CD4 + T cells. Furthermore, AhR activation by VAF347 reduced the mRNA and protein expression of SIRT1. ChIP using an antibody against AhR in normal CD4+ T cells revealed a 16-fold stronger signal at the site about 1.6kb upstream from the translation start site of the SIRT1 promoter. Finally, UVB could activate AhR and inhibit the mRNA and protein expression of SIRT1. AhR knockdown abrogated the inhibition of UVB-mediated SIRT1 mRNA and protein expression and DNMT1 activity in lupus CD4+ T cells. CONCLUSION UVB suppressed SIRT1 expression via activating AhR, and subsequently inhibited DNMT1 activity in CD4+ T cells from SLE patients.
Collapse
Affiliation(s)
- Zhouwei Wu
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| | - Xingyu Mei
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zuolin Ying
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yue Sun
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jun Song
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weimin Shi
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
23
|
Ambrosi C, Manzo M, Baubec T. Dynamics and Context-Dependent Roles of DNA Methylation. J Mol Biol 2017; 429:1459-1475. [PMID: 28214512 DOI: 10.1016/j.jmb.2017.02.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/26/2017] [Accepted: 02/09/2017] [Indexed: 12/22/2022]
Abstract
DNA methylation is one of the most extensively studied epigenetic marks. It is involved in transcriptional gene silencing and plays important roles during mammalian development. Its perturbation is often associated with human diseases. In mammalian genomes, DNA methylation is a prevalent modification that decorates the majority of cytosines. It is found at the promoters and enhancers of inactive genes, at repetitive elements, and within transcribed gene bodies. Its presence at promoters is dynamically linked to gene activity, suggesting that it could directly influence gene expression patterns and cellular identity. The genome-wide distribution and dynamic behaviour of this mark have been studied in great detail in a variety of tissues and cell lines, including early embryonic development and in embryonic stem cells. In combination with functional studies, these genome-wide maps of DNA methylation revealed interesting features of this mark and provided important insights into its dynamic nature and potential functional role in genome regulation. In this review, we discuss how these recent observations, in combination with insights obtained from biochemical and functional genetics studies, have expanded our current knowledge about the regulation and context-dependent roles of DNA methylation in mammalian genomes.
Collapse
Affiliation(s)
- Christina Ambrosi
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Molecular Life Sciences PhD Program of the Life Sciences Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Massimiliano Manzo
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Molecular Life Sciences PhD Program of the Life Sciences Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
24
|
Abe JI, Sandhu UG, Hoang NM, Thangam M, Quintana-Quezada RA, Fujiwara K, Le NT. Coordination of Cellular Localization-Dependent Effects of Sumoylation in Regulating Cardiovascular and Neurological Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:337-358. [PMID: 28197922 PMCID: PMC5716632 DOI: 10.1007/978-3-319-50044-7_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sumoylation, a reversible post-transcriptional modification process, of proteins are involved in cellular differentiation, growth, and even motility by regulating various protein functions. Sumoylation is not limited to cytosolic proteins as recent evidence shows that nuclear proteins, those associated with membranes, and mitochondrial proteins are also sumoylated. Moreover, it is now known that sumoylation plays an important role in the process of major human ailments such as malignant, cardiovascular and neurological diseases. In this chapter, we will highlight and discuss how the localization of SUMO protease and SUMO E3 ligase in different compartments within a cell regulates biological processes that depend on sumoylation. First, we will discuss the key role of sumoylation in the nucleus, which leads to the development of endothelial dysfunction and atherosclerosis . We will then discuss how sumoylation of plasma membrane potassium channel proteins are involved in epilepsy and arrhythmia. Mitochondrial proteins are known to be also sumoylated, and the importance of dynamic-related protein 1 (DRP1) sumoylation on mitochondrial function will be discussed. As we will emphasize throughout this review, sumoylation plays crucial roles in different cellular compartments, which is coordinately regulated by the translocation of various SUMO proteases and SUMO E3 ligase. Comprehensive approach will be necessary to understand the molecular mechanism for efficiently moving around various enzymes that regulate sumoylation within cells.
Collapse
Affiliation(s)
- Jun-Ichi Abe
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA.
| | - Uday G Sandhu
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Nguyet Minh Hoang
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Manoj Thangam
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Raymundo A Quintana-Quezada
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Keigi Fujiwara
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Nhat Tu Le
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| |
Collapse
|
25
|
Abstract
Reversible post-translational modification is a rapid and efficient system to control the activity of pre-existing proteins. Modifiers range from small chemical moieties, such as phosphate groups, to proteins themselves as the modifier. The patriarch of the protein modifiers is ubiquitin which plays a central role in protein degradation and protein targeting. Over the last 20 years, the ubiquitin family has expanded to include a variety of ubiquitin-related small modifier proteins that are all covalently attached to a lysine residue on target proteins via series of enzymatic reactions. Of these more recently discovered ubiquitin-like proteins, the SUMO family has gained prominence as a major regulatory component that impacts numerous aspects of cell growth, differentiation, and response to stress. Unlike ubiquitinylation which often leads to proteins turn over, sumoylation performs a variety of function such as altering protein stability, modulating protein trafficking, directing protein-protein interactions, and regulating protein activity. This chapter will introduce the basic properties of SUMO proteins and the general tenets of sumoylation.
Collapse
Affiliation(s)
- Van G Wilson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, 8447 HWY 47, Bryan, TX, 77807-1359, USA.
| |
Collapse
|
26
|
Heo KS, Berk BC, Abe JI. Disturbed Flow-Induced Endothelial Proatherogenic Signaling Via Regulating Post-Translational Modifications and Epigenetic Events. Antioxid Redox Signal 2016; 25:435-50. [PMID: 26714841 PMCID: PMC5076483 DOI: 10.1089/ars.2015.6556] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/02/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Hemodynamic shear stress, the frictional force exerted onto the vascular endothelial cell (EC) surface, influences vascular EC functions. Atherosclerotic plaque formation in the endothelium is known to be site specific: disturbed blood flow (d-flow) formed at the lesser curvature of the aortic arch and branch points promotes plaque formation, and steady laminar flow (s-flow) at the greater curvature is atheroprotective. RECENT ADVANCES Post-translational modifications (PTMs), including phosphorylation and SUMOylation, and epigenetic events, including DNA methylation and histone modifications, provide a new perspective on the pathogenesis of atherosclerosis, elucidating how gene expression is altered by d-flow. Activation of PKCζ and p90RSK, SUMOylation of ERK5 and p53, and DNA hypermethylation are uniquely induced by d-flow, but not by s-flow. CRITICAL ISSUES Extensive cross talk has been observed among the phosphorylation, SUMOylation, acetylation, and methylation PTMs, as well as among epigenetic events along the cascade of d-flow-induced signaling, from the top (mechanosensory systems) to the bottom (epigenetic events). In addition, PKCζ activation plays a role in regulating SUMOylation-related enzymes of PIAS4, p90RSK activation plays a role in regulating SUMOylation-related enzymes of Sentrin/SUMO-specific protease (SENP)2, and DNA methyltransferase SUMOylation may play a role in d-flow signaling. FUTURE DIRECTIONS Although possible contributions of DNA events such as histone modification and the epigenetic and cytosolic events of PTMs in d-flow signaling have become clearer, determining the interplay of each PTM and epigenetic event will provide a new paradigm to elucidate the difference between d-flow and s-flow and lead to novel therapeutic interventions to inhibit plaque formation. Antioxid. Redox Signal. 25, 435-450.
Collapse
Affiliation(s)
- Kyung-Sun Heo
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradford C. Berk
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York
| | - Jun-ichi Abe
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
27
|
Maison C, Bailly D, Quivy JP, Almouzni G. The methyltransferase Suv39h1 links the SUMO pathway to HP1α marking at pericentric heterochromatin. Nat Commun 2016; 7:12224. [PMID: 27426629 PMCID: PMC4960310 DOI: 10.1038/ncomms12224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/10/2016] [Indexed: 02/03/2023] Open
Abstract
The trimethylation of histone H3 on lysine 9 (H3K9me3) – a mark recognized by HP1 that depends on the Suv39h lysine methyltransferases (KMTs) – has provided a basis for the reader/writer model to explain HP1 accumulation at pericentric heterochromatin in mammals. Here, we identify the Suv39h1 paralog, as a unique enhancer of HP1α sumoylation both in vitro and in vivo. The region responsible for promoting HP1α sumoylation (aa1–167) is distinct from the KMT catalytic domain and mediates binding to Ubc9. Tethering the 1–167 domain of Suv39h1 to pericentric heterochromatin, but not mutants unable to bind Ubc9, accelerates the de novo targeting of HP1α to these domains. Our results establish an unexpected feature of Suv39h1, distinct from the KMT activity, with a major role for heterochromatin formation. We discuss how linking Suv39h1 to the SUMO pathway provides conceptual implications for our general view on nuclear domain organization and physiological functions. The Suv39h histone methyltransferases promote trimethylation of histone H3 on lysine 9 (H3K9me3). Here, in the Suv39h1 paralog, the authors identify an enhancer of HP1a sumoylation activity that impacts heterochromatin.
Collapse
Affiliation(s)
- Christèle Maison
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Delphine Bailly
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Jean-Pierre Quivy
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR3664, F-75005 Paris, France
| |
Collapse
|
28
|
SUMO Modification Stabilizes Dengue Virus Nonstructural Protein 5 To Support Virus Replication. J Virol 2016; 90:4308-4319. [PMID: 26889037 PMCID: PMC4836324 DOI: 10.1128/jvi.00223-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) participates in a reversible posttranslational modification process (SUMOylation) that regulates a wide variety of cellular processes and plays important roles for numerous viruses during infection. However, the roles of viral protein SUMOylation in dengue virus (DENV) infection have not been elucidated. In this study, we found that the SUMOylation pathway was involved in the DENV life cycle, since DENV replication was reduced by silencing the cellular gene Ubc9, which encodes the sole E2-conjugating enzyme required for SUMOylation. By in vivo and in vitro SUMOylation assays, the DENV NS5 protein was identified as an authentic SUMO-targeted protein. By expressing various NS5 mutants, we found that the SUMO acceptor sites are located in the N-terminal domain of NS5 and that a putative SUMO-interacting motif (SIM) of this domain is crucial for its SUMOylation. A DENV replicon harboring the SUMOylation-defective SIM mutant showed a severe defect in viral RNA replication, supporting the notion that NS5 SUMOylation is required for DENV replication. SUMOylation-defective mutants also failed to suppress the induction of STAT2-mediated host antiviral interferon signaling. Furthermore, the SUMOylation of NS5 significantly increased the stability of NS5 protein, which could account for most of the biological functions of SUMOylated NS5. Collectively, these findings suggest that the SUMOylation of DENV NS5 is one of the mechanisms regulating DENV replication. IMPORTANCE SUMOylation is a common posttranslational modification that regulates cellular protein functions but has not been reported in the proteins of dengue virus. Here, we found that the replicase of DENV, nonstructural protein 5 (NS5), can be SUMOylated. It is well known that providing RNA-dependent RNA polymerase activity and antagonizing host antiviral IFN signaling are a “double indemnity” of NS5 to support DENV replication. Without SUMOylation, NS5 fails to maintain its protein stability, which consequently disrupts its function in viral RNA replication and innate immunity antagonism. DENV threatens billions of people worldwide, but no licensed vaccine or specific therapeutics are currently available. Thus, our findings suggest that rather than specifically targeting NS5 enzyme activity, NS5 protein stability is a novel drug target on the growing list of anti-DENV strategies.
Collapse
|
29
|
Kim DY, Han YJ, Kim SI, Song JT, Seo HS. Arabidopsis CMT3 activity is positively regulated by AtSIZ1-mediated sumoylation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:209-15. [PMID: 26398805 DOI: 10.1016/j.plantsci.2015.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 05/09/2023]
Abstract
The activities of mammalian DNA and histone methyltransferases are regulated by post-translational modifications such as phosphorylation and sumoylation; however, it is unclear how the activities of these enzymes are regulated at the post-translational level in plants. Here, we demonstrate that the DNA methylation activity of Arabidopsis CHROMOMETHYLASE 3 (CMT3) is positively regulated by the E3 SUMO ligase AtSIZ1. The methylation level of the Arabidopsis genome, including transposons, was significantly lower in the siz1-2 mutant than in wild-type plants. CMT3 was sumoylated by the E3 ligase activity of AtSIZ1 through a direct interaction, and the DNA methyltransferase activity of CMT3 was enhanced by this modification. In addition, the methylation levels of a large number of genes, including the nitrate reductase gene NIA2, were lower in siz1-2 and cmt3 plants than in wild-type plants. Furthermore, the CHG methylation activity of CMT3 was specific for NIA2and not NIA1 (the other nitrate reductase gene in Arabidopsis), indicating that CMT3 selectively regulates the CHG methylation levels of target genes. Taken together, our results indicate that the sumoylation of CMT3 is critical for its role in the control of gene expression and that AtSIZ1 positively controls the epigenetic repression of CMT3-mediated gene expression.
Collapse
Affiliation(s)
- Do Youn Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yun Jung Han
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Sung-Il Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Hak Soo Seo
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 151-818, Republic of Korea.
| |
Collapse
|
30
|
Elrouby N. Analysis of Small Ubiquitin-Like Modifier (SUMO) Targets Reflects the Essential Nature of Protein SUMOylation and Provides Insight to Elucidate the Role of SUMO in Plant Development. PLANT PHYSIOLOGY 2015; 169:1006-17. [PMID: 26320229 PMCID: PMC4587472 DOI: 10.1104/pp.15.01014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/28/2015] [Indexed: 05/09/2023]
Abstract
Posttranslational modification of proteins by small ubiquitin-like modifier (SUMO) has received much attention, reflected by a flood of recent studies implicating SUMO in a wide range of cellular and molecular activities, many of which are conserved throughout eukaryotes. Whereas most of these studies were performed in vitro or in single cells, plants provide an excellent system to study the role of SUMO at the developmental level. Consistent with its essential roles during plant development, mutations of the basic SUMOylation machinery in Arabidopsis (Arabidopsis thaliana) cause embryo stage arrest or major developmental defects due to perturbation of the dynamics of target SUMOylation. Efforts to identify SUMO protein targets in Arabidopsis have been modest; however, recent success in identifying thousands of human SUMO targets using unique experimental designs can potentially help identify plant SUMO targets more efficiently. Here, known Arabidopsis SUMO targets are reevaluated, and potential approaches to dissect the roles of SUMO in plant development are discussed.
Collapse
Affiliation(s)
- Nabil Elrouby
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| |
Collapse
|
31
|
Cubeñas-Potts C, Srikumar T, Lee C, Osula O, Subramonian D, Zhang XD, Cotter RJ, Raught B, Matunis MJ. Identification of SUMO-2/3-modified proteins associated with mitotic chromosomes. Proteomics 2015; 15:763-72. [PMID: 25367092 DOI: 10.1002/pmic.201400400] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/07/2014] [Accepted: 10/28/2014] [Indexed: 01/05/2023]
Abstract
Sumoylation is essential for progression through mitosis, but the specific protein targets and functions remain poorly understood. In this study, we used chromosome spreads to more precisely define the localization of SUMO-2/3 (small ubiquitin-related modifier) to the inner centromere and protein scaffold of mitotic chromosomes. We also developed methods to immunopurify proteins modified by endogenous, untagged SUMO-2/3 from mitotic chromosomes. Using these methods, we identified 149 chromosome-associated SUMO-2/3 substrates by nLC-ESI-MS/MS. Approximately one-third of the identified proteins have reported functions in mitosis. Consistent with SUMO-2/3 immunolocalization, we identified known centromere- and kinetochore-associated proteins, as well as chromosome scaffold associated proteins. Notably, >30 proteins involved in chromatin modification or remodeling were identified. Our results provide insights into the roles of sumoylation as a regulator of chromatin structure and other diverse processes in mitosis. Furthermore, our purification and fractionation methodologies represent an important compliment to existing approaches to identify sumoylated proteins using exogenously expressed and tagged SUMOs.
Collapse
Affiliation(s)
- Caelin Cubeñas-Potts
- Department of Biochemistry & Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Valencia Antúnez CA, Taja Chayeb L, Rodríguez-Segura MÁ, López Álvarez GS, García-Cuéllar CM, Villa Treviño S. DNA methyltransferases 3a and 3b are differentially expressed in the early stages of a rat liver carcinogenesis model. Oncol Rep 2014; 32:2093-103. [PMID: 25190601 DOI: 10.3892/or.2014.3462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/23/2014] [Indexed: 11/06/2022] Open
Abstract
Carcinogenesis is driven by the accumulation of mutations and abnormal DNA methylation patterns, particularly the hypermethylation of tumor‑suppressor genes. Changes in genomic DNA methylation patterns are established by the DNA methyltransferases (DNMTs) family: DNMT1, DNMT3a and DNMT3b. The DNMTs are known to be overexpressed in tumors. However, when the DNMTs expression profile is altered in earlier stages of carcinogenesis remains to be elucidated. The resistant hepatocyte model (RHM) allows the analysis of the hepatocellular carcinoma (HCC) from the formation of altered cell foci to the appearance of tumors in rats. To investigate the DNMTs expression in this model, we first observed that timp3, rassf1a and p16 genes became methylated during cancer development by methylation‑specific PCR (MSP) and the bisulphate sequencing PCR (BSP) of timp3. The differential expression at the RNA and protein level of the three DNMTs was also assessed. dnmt1 expression was higher in tumors than in normal and early cancer stages. However, no evident overexpression of the enzyme was identified by immunohistochemistry. By contrast, DNMT3a and DNMT3b were consistently subexpressed in tumors. In the present study, we report a carcinogenesis model that does not feature the overexpression of DNMT1 but exhibits a transient expression of DNMT3a and DNMT3b.
Collapse
Affiliation(s)
- Carlos Alberto Valencia Antúnez
- Department of Cell Biology Center for Research and Advanced Studies (CINVESTAV) IPN, Basic Research Branch, Mexico, D.F., Mexico
| | - Lucía Taja Chayeb
- National Cancer Institute, Basic Research Branch, Mexico, D.F., Mexico
| | - Miguel Ángel Rodríguez-Segura
- Department of Physics, Center for Research and Advanced Studies (CINVESTAV) IPN, Basic Research Branch, Mexico, D.F., Mexico
| | - Guadalupe Soledad López Álvarez
- Department of Cell Biology Center for Research and Advanced Studies (CINVESTAV) IPN, Basic Research Branch, Mexico, D.F., Mexico
| | | | - Saúl Villa Treviño
- Department of Cell Biology Center for Research and Advanced Studies (CINVESTAV) IPN, Basic Research Branch, Mexico, D.F., Mexico
| |
Collapse
|
33
|
Bosch-Presegué L, Vaquero A. Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J 2014; 282:1745-67. [DOI: 10.1111/febs.13053] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Laia Bosch-Presegué
- Chromatin Biology Laboratory; Cancer Epigenetics and Biology Program; Institut d'Investigació Biomèdica de Bellvitge; Barcelona Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory; Cancer Epigenetics and Biology Program; Institut d'Investigació Biomèdica de Bellvitge; Barcelona Spain
| |
Collapse
|
34
|
Filtz TM, Vogel WK, Leid M. Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharmacol Sci 2013; 35:76-85. [PMID: 24388790 DOI: 10.1016/j.tips.2013.11.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 01/03/2023]
Abstract
Transcription factors comprise just over 7% of the human proteome and serve as gatekeepers of cellular function, integrating external signal information into gene expression programs that reconfigure cellular physiology at the most basic levels. Surface-initiated cell signaling pathways converge on transcription factors, decorating these proteins with an array of post-translational modifications (PTMs) that are often interdependent, being linked in time, space, and combinatorial function. These PTMs orchestrate every activity of a transcription factor over its entire lifespan--from subcellular localization to protein-protein interactions, sequence-specific DNA binding, transcriptional regulatory activity, and protein stability--and play key roles in the epigenetic regulation of gene expression. The multitude of PTMs of transcription factors also offers numerous potential points of intervention for development of therapeutic agents to treat a wide spectrum of diseases. We review PTMs most commonly targeting transcription factors, focusing on recent reports of sequential and linked PTMs of individual factors.
Collapse
Affiliation(s)
- Theresa M Filtz
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Walter K Vogel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Mark Leid
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA; Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
35
|
Aberrant DNA methylation in human cancers. ACTA ACUST UNITED AC 2013; 33:798-804. [PMID: 24337838 DOI: 10.1007/s11596-013-1201-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 11/15/2013] [Indexed: 12/13/2022]
Abstract
DNA methylation, one of the best-characterized epigenetic modifications, plays essential roles in diseases, including human cancers. In recent years, our understanding on DNA methylation with human cancers has made significant progress, which was facilitated by stunning development in the analysis of the human methylome of multiple cancer types. In this review, recent developments in the characterization of aberrant DNA methylation involved in human cancers development were discussed with special emphasis on the mechanisms of aberrant DNA methylation in human cancers. We also summarize the recent treatment strategy for human cancers with de-methylation drugs.
Collapse
|
36
|
Johnson AA, Akman K, Calimport SRG, Wuttke D, Stolzing A, de Magalhães JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 2013; 15:483-94. [PMID: 23098078 DOI: 10.1089/rej.2012.1324] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
DNA methylation is a major control program that modulates gene expression in a plethora of organisms. Gene silencing through methylation occurs through the activity of DNA methyltransferases, enzymes that transfer a methyl group from S-adenosyl-L-methionine to the carbon 5 position of cytosine. DNA methylation patterns are established by the de novo DNA methyltransferases (DNMTs) DNMT3A and DNMT3B and are subsequently maintained by DNMT1. Aging and age-related diseases include defined changes in 5-methylcytosine content and are generally characterized by genome-wide hypomethylation and promoter-specific hypermethylation. These changes in the epigenetic landscape represent potential disease biomarkers and are thought to contribute to age-related pathologies, such as cancer, osteoarthritis, and neurodegeneration. Some diseases, such as a hereditary form of sensory neuropathy accompanied by dementia, are directly caused by methylomic changes. Epigenetic modifications, however, are reversible and are therefore a prime target for therapeutic intervention. Numerous drugs that specifically target DNMTs are being tested in ongoing clinical trials for a variety of cancers, and data from finished trials demonstrate that some, such as 5-azacytidine, may even be superior to standard care. DNMTs, demethylases, and associated partners are dynamically shaping the methylome and demonstrate great promise with regard to rejuvenation.
Collapse
Affiliation(s)
- Adiv A Johnson
- Department of Physiological Sciences, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | |
Collapse
|
37
|
Badeaux AI, Shi Y. Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 2013; 14:211-24. [PMID: 23524488 PMCID: PMC4082330 DOI: 10.1038/nrm3545] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells of a multicellular organism, all containing nearly identical genetic information, respond to differentiation cues in variable ways. In addition, cells are plastic, able to execute their specialized function while maintaining the ability to adapt to environmental changes. This is achieved through multiple mechanisms, including the direct regulation of chromatin-based processes in response to stimuli. How signal transduction pathways directly communicate with chromatin to change the epigenetic landscape is poorly understood. The preponderance of covalent modifications on histone tails coupled with a relatively small number of functional outputs raises the possibility that chromatin acts as a site of signal integration and storage.
Collapse
Affiliation(s)
- Aimee I. Badeaux
- Harvard Medical School, Boston Children’s Hospital, Division of Newborn Medicine, 61 Binney Street, Enders 908, Boston, Massachusetts 02115, USA
| | - Yang Shi
- Harvard Medical School, Boston Children’s Hospital, Division of Newborn Medicine, 61 Binney Street, Enders 908, Boston, Massachusetts 02115, USA
| |
Collapse
|
38
|
Schneider K, Fuchs C, Dobay A, Rottach A, Qin W, Wolf P, Álvarez-Castro JM, Nalaskowski MM, Kremmer E, Schmid V, Leonhardt H, Schermelleh L. Dissection of cell cycle-dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modeling. Nucleic Acids Res 2013; 41:4860-76. [PMID: 23535145 PMCID: PMC3643600 DOI: 10.1093/nar/gkt191] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA methyltransferase 1 (Dnmt1) reestablishes methylation of hemimethylated CpG sites generated during DNA replication in mammalian cells. Two subdomains, the proliferating cell nuclear antigen (PCNA)-binding domain (PBD) and the targeting sequence (TS) domain, target Dnmt1 to the replication sites in S phase. We aimed to dissect the details of the cell cycle–dependent coordinated activity of both domains. To that end, we combined super-resolution 3D-structured illumination microscopy and fluorescence recovery after photobleaching (FRAP) experiments of GFP-Dnmt1 wild type and mutant constructs in somatic mouse cells. To interpret the differences in FRAP kinetics, we refined existing data analysis and modeling approaches to (i) account for the heterogeneous and variable distribution of Dnmt1-binding sites in different cell cycle stages; (ii) allow diffusion-coupled dynamics; (iii) accommodate multiple binding classes. We find that transient PBD-dependent interaction directly at replication sites is the predominant specific interaction in early S phase (residence time Tres ≤10 s). In late S phase, this binding class is taken over by a substantially stronger (Tres ∼22 s) TS domain-dependent interaction at PCNA-enriched replication sites and at nearby pericentromeric heterochromatin subregions. We propose a two-loading-platform-model of additional PCNA-independent loading at postreplicative, heterochromatic Dnmt1 target sites to ensure faithful maintenance of densely methylated genomic regions.
Collapse
Affiliation(s)
- Katrin Schneider
- Department of Biology and Center for Integrated Protein Science, Ludwig Maximilians University Munich (LMU), 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
A major challenge in nuclear organization is the packaging of DNA into dynamic chromatin structures that can respond to changes in the transcriptional requirements of the cell. Posttranslational protein modifications, of histones and other chromatin-associated factors, are essential regulators of chromatin dynamics. In this Review, we summarize studies demonstrating that posttranslational modification of proteins by small ubiquitin-related modifiers (SUMOs) regulates chromatin structure and function at multiple levels and through a variety of mechanisms to influence gene expression and maintain genome integrity.
Collapse
Affiliation(s)
- Caelin Cubeñas-Potts
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
40
|
Abstract
The discovery of epigenetic processes as possible pivotal regulatory mechanisms in psychiatric diseases raised the question of how psychoactive drugs may impact the epigenetic machinery. In the present study we set out to explore the specificity and the mode of action of the reported inhibitory effect of the TCA (tricyclic antidepressant) amitriptyline on DNMT (DNA methyltransferase) activity in primary astrocytes from the rat cortex. We found that the impact on DNMT was shared by another TCA, imipramine, and by paroxetine, but not by venlafaxine or the mood stabilizers carbamazepine and valproic acid. DNMT activity in subventricular neural stem cells was refractory to the action of ADs (antidepressants). Among the established DNMTs, ADs primarily targeted DNMT1. The reduction of enzymatic DNMT1 activity was neither due to reduced DNMT1 expression nor due to direct drug interference. We tested putative DNMT1-inhibitory mechanisms and discovered that a known stimulator of DNMT1, the histone methyltransferase G9a, exhibited decreased protein levels and interactions with DNMT1 upon AD exposure. Adding recombinant G9a completely reversed the AD repressive effect on DNMT1 function. In conclusion, the present study presents a model where distinct ADs affect DNMT1 activity via G9a with important repercussions for possible novel treatment regimes.
Collapse
|
41
|
Mohan KN, Chaillet JR. Cell and molecular biology of DNA methyltransferase 1. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:1-42. [PMID: 24016522 DOI: 10.1016/b978-0-12-407694-5.00001-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The DNA cytosine methyltransferase 1 (DNMT1) is a ubiquitous nuclear enzyme that catalyzes the well-established reaction of placing methyl groups on the unmethylated cytosines in methyl-CpG:CpG base pairs in the hemimethylated DNA formed by methylated parent and unmethylated daughter strands. This activity regenerates fully methylated methyl-CpG:methyl-CpG pairs. Despite the straightforward nature of its catalytic activity, detailed biochemical, genetic, and developmental studies revealed intricate details of the central regulatory role of DNMT1 in governing the epigenetic makeup of the nuclear genome. DNMT1 mediates demethylation and also participates in seemingly wide cellular functions unrelated to maintenance DNA methylation. This review brings together mechanistic details of maintenance methylation by DNMT1, its regulation at transcriptional and posttranscriptional levels, and the seemingly unexpected functions of DNMT1 in the context of DNA methylation which is central to epigenetic changes that occur during development and the process of cell differentiation.
Collapse
Affiliation(s)
- K Naga Mohan
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Andhra Pradesh, India
| | | |
Collapse
|
42
|
Kar S, Deb M, Sengupta D, Shilpi A, Parbin S, Torrisani J, Pradhan S, Patra S. An insight into the various regulatory mechanisms modulating human DNA methyltransferase 1 stability and function. Epigenetics 2012; 7:994-1007. [PMID: 22894906 DOI: 10.4161/epi.21568] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is one of the principal epigenetic signals that participate in cell specific gene expression in vertebrates. DNA methylation plays a quintessential role in the control of gene expression, cellular differentiation and development. It also plays a central role in the preservation of chromatin structure and chromosomal integrity, parental imprinting, X-chromosome inactivation, aging and carcinogenesis. The foremost contributor in the mammalian methylation scheme is DNMT1, a maintenance methyltransferase that faithfully copies the pre-existing methyl marks onto hemimethylated daughter strands during DNA replication to maintain the established methylation patterns across successive cell divisions. The ever-changing cellular physiology and the significant part that DNA methylation plays in genome regulation necessitate rigid management of this enzyme. In mammalian cells, a host of intrinsic and extrinsic mechanisms regulate the expression, activity and stability of DNMT1. Transcriptional regulation, post-transcriptional auto-inhibitory controls and post-translational modifications of the enzyme are responsible for the efficient inheritance of DNA methylation patterns. Also, a large number of intra- and intercellular signaling cascades and numerous interactions with other modulator molecules that affect the catalytic activity of the enzyme at multiple levels function as major checkpoints of the DNMT1 control system. An in-depth understanding of the DNMT1 enzyme, its targeting and function is crucial for comprehending how DNA methylation is coordinated with other critical developmental and physiological processes. This review aims to provide a comprehensive account of the various regulatory mechanisms and interactions of DNMT1 so as to elucidate its function at the molecular level and understand the dynamics of DNA methylation at the cellular level.
Collapse
Affiliation(s)
- Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee B, Morano A, Porcellini A, Muller MT. GADD45α inhibition of DNMT1 dependent DNA methylation during homology directed DNA repair. Nucleic Acids Res 2011; 40:2481-93. [PMID: 22135303 PMCID: PMC3315326 DOI: 10.1093/nar/gkr1115] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this work, we examine regulation of DNA methyltransferase 1 (DNMT1) by the DNA damage inducible protein, GADD45α. We used a system to induce homologous recombination (HR) at a unique double-strand DNA break in a GFP reporter in mammalian cells. After HR, the repaired DNA is hypermethylated in recombinant clones showing low GFP expression (HR-L expressor class), while in high expressor recombinants (HR-H clones) previous methylation patterns are erased. GADD45α, which is transiently induced by double-strand breaks, binds to chromatin undergoing HR repair. Ectopic overexpression of GADD45α during repair increases the HR-H fraction of cells (hypomethylated repaired DNA), without altering the recombination frequency. Conversely, silencing of GADD45α increases methylation of the recombined segment and amplifies the HR-L expressor (hypermethylated) population. GADD45α specifically interacts with the catalytic site of DNMT1 and inhibits methylation activity in vitro. We propose that double-strand DNA damage and the resulting HR process involves precise, strand selected DNA methylation by DNMT1 that is regulated by GADD45α. Since GADD45α binds with high avidity to hemimethylated DNA intermediates, it may also provide a barrier to spreading of methylation during or after HR repair.
Collapse
Affiliation(s)
- Bongyong Lee
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32826-3227, USA
| | | | | | | |
Collapse
|
44
|
SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol Cell Biol 2011; 31:4720-34. [PMID: 21947282 DOI: 10.1128/mcb.06147-11] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation and histone acetylation/deacetylation are distinct biochemical processes that control gene expression. While DNA methylation is a common epigenetic signal that inhibits gene transcription, histone deacetylation similarly represses transcription but can be both an epigenetic and nonepigenetic phenomenon. Here we report that the histone deacetylase SIRT1 regulates the activities of DNMT1, a key enzyme responsible for DNA methylation. In mass spectrometry analysis, 12 new acetylated lysine sites were identified in DNMT1. SIRT1 physically associates with DNMT1 and can deacetylate acetylated DNMT1 in vitro and in vivo. Interestingly, deacetylation of different lysines on DNMT1 has different effects on the functions of DNMT1. For example, deacetylation of Lys1349 and Lys1415 in the catalytic domain of DNMT1 enhances DNMT1's methyltransferase activity, while deacetylation of lysine residues in the GK linker decreases DNMT1's methyltransferase-independent transcriptional repression function. Furthermore, deacetylation of all identified acetylated lysine sites in DNMT1 abrogates its binding to SIRT1 and impairs its capability to regulate cell cycle G(2)/M transition. Finally, inhibition of SIRT1 strengthens the silencing effects of DNMT1 on the expression of tumor suppressor genes ER-α and CDH1 in MDA-MB-231 breast cancer cells. Together, these results suggest that SIRT1-mediated deacetylation of DNMT1 is crucial for DNMT1's multiple effects in gene silencing.
Collapse
|
45
|
Park BS, Song JT, Seo HS. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nat Commun 2011; 2:400. [PMID: 21772271 PMCID: PMC3160146 DOI: 10.1038/ncomms1408] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/21/2011] [Indexed: 11/09/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) is a small polypeptide that modulates protein activity and regulates hormone signalling, abiotic and biotic responses in plants. Here we show that AtSIZ regulates nitrogen assimilation in Arabidopsis through its E3 SUMO ligase function. Dwarf plants of siz1-2 flower early, show abnormal seed development and have high salicylic acid content and enhanced resistance to bacterial pathogens. These mutant phenotypes are reverted to wild-type phenotypes by exogenous ammonium but not by nitrate, phosphate or potassium. Decreased nitrate reductase activity in siz1-2 plants resulted in low nitrogen concentrations, low nitric oxide production and high nitrate content in comparison with wild-type plants. The nitrate reductases, NIA1 and NIA2, are sumoylated by AtSIZ1, which dramatically increases their activity. Both sumoylated and non-sumoylated NIA1 and NIA2 can form dimers. Our results indicate that AtSIZ1 positively controls nitrogen assimilation by promoting sumoylation of NRs in Arabidopsis.
Collapse
Affiliation(s)
- Bong Soo Park
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
| | - Hak Soo Seo
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
- Bio-MAX Institute, Seoul National University, Seoul 151-818, Korea
| |
Collapse
|
46
|
Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep 2011; 12:647-56. [PMID: 21660058 DOI: 10.1038/embor.2011.110] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/24/2011] [Indexed: 02/07/2023] Open
Abstract
DNA methyltransferases (DNMTs) establish and maintain DNA methylation patterns at specific regions of the genome, thereby contributing to gene regulation. It is becoming evident that an intricate web of pathways target DNMTs to these genomic regions. Here, we review the understanding of these regulatory mechanisms and provide an overview of the new findings, emphasizing the emerging scenario in which several levels of regulation are coordinated to control DNMTs. The mechanisms involved include the dynamic interplay between interdependent post-translational modifications that regulate DNMTs, post-transcriptional regulation by miRNAs and the emerging role of non-coding RNA in targeting mammalian DNMTs. The analysis of these mechanisms is imperative to the understanding of the role of DNA methylation in regulating gene expression during development and in disease.
Collapse
|
47
|
Meng HX, Hackett JA, Nestor C, Dunican DS, Madej M, Reddington JP, Pennings S, Harrison DJ, Meehan RR. Apoptosis and DNA methylation. Cancers (Basel) 2011; 3:1798-820. [PMID: 24212783 PMCID: PMC3757391 DOI: 10.3390/cancers3021798] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 01/05/2023] Open
Abstract
Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG.
Collapse
Affiliation(s)
- Huan X. Meng
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
| | - James A. Hackett
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
| | - Colm Nestor
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
- Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mail: (D.J.H.)
| | - Donncha S. Dunican
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
| | - Monika Madej
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
| | - James P. Reddington
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
| | - Sari Pennings
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; E-Mail: (S.P.)
| | - David J. Harrison
- Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mail: (D.J.H.)
| | - Richard R. Meehan
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
- Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mail: (D.J.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44 (0)-332-2471; Fax: +44 (0) 131 467 8456
| |
Collapse
|
48
|
Kinney SRM, Pradhan S. Regulation of expression and activity of DNA (cytosine-5) methyltransferases in mammalian cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:311-33. [PMID: 21507356 DOI: 10.1016/b978-0-12-387685-0.00009-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three active DNA (cytosine-5) methyltransferases (DNMTs) have been identified in mammalian cells, Dnmt1, Dnmt3a, and Dnmt3b. DNMT1 is primarily a maintenance methyltransferase, as it prefers to methylate hemimethylated DNA during DNA replication and in vitro. DNMT3A and DNMT3B are de novo methyltransferases and show similar activity on unmethylated and hemimethylated DNA. DNMT3L, which lacks the catalytic domain, binds to DNMT3A and DNMT3B variants and facilitates their chromatin targeting, presumably for de novo methylation. There are several mechanisms by which mammalian cells regulate DNMT levels, including varied transcriptional activation of the respective genes and posttranslational modifications of the enzymes that can affect catalytic activity, targeting, and enzyme degradation. In addition, binding of miRNAs or RNA-binding proteins can also alter the expression of DNMTs. These regulatory processes can be disrupted in disease or by environmental factors, resulting in altered DNMT expression and aberrant DNA methylation patterns.
Collapse
|
49
|
Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. Chembiochem 2010; 12:206-22. [PMID: 21243710 DOI: 10.1002/cbic.201000195] [Citation(s) in RCA: 498] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Indexed: 12/16/2022]
Abstract
DNA methylation plays an important role in epigenetic signalling, having an impact on gene regulation, chromatin structure, development and disease. Here, we review the structures and functions of the mammalian DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b, including their domain structures, catalytic mechanisms, localisation, regulation, post-translational modifications and interaction with chromatin and other proteins, summarising data obtained in genetic, cell biology and enzymatic studies. We focus on the question of how the molecular and enzymatic properties of these enzymes are connected to the dynamics of DNA methylation patterns and to the roles the enzymes play in the processes of de novo and maintenance DNA methylation. Recent enzymatic and genome-wide methylome data have led to a new model of genomic DNA methylation patterns based on the preservation of average levels of DNA methylation in certain regions, rather than the methylation states of individual CG sites.
Collapse
Affiliation(s)
- Renata Zofia Jurkowska
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University, Bremen, Germany
| | | | | |
Collapse
|
50
|
Shamay M, Greenway M, Liao G, Ambinder RF, Hayward SD. De novo DNA methyltransferase DNMT3b interacts with NEDD8-modified proteins. J Biol Chem 2010; 285:36377-86. [PMID: 20847044 PMCID: PMC2978566 DOI: 10.1074/jbc.m110.155721] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/08/2010] [Indexed: 01/09/2023] Open
Abstract
DNA methylation and histone modifications play an important role in transcription regulation. In cancer cells, many promoters become aberrantly methylated through the activity of the de novo DNA methyltransferases DNMT3a and DNMT3b and acquire repressive chromatin marks. NEDD8 is a ubiquitin-like protein modifier that is conjugated to target proteins, such as cullins, to regulate their activity, and cullin 4A (CUL4A) in its NEDD8-modified form is essential for repressive chromatin formation. We found that DNMT3b associates with NEDD8-modified proteins. Whereas DNMT3b interacts directly in vitro with NEDD8, conjugation of NEDD8 to target proteins enhances this interaction in vivo. DNMT3b immunoprecipitated two major bands of endogenously NEDDylated proteins at the size of NEDDylated cullins, and indeed DNMT3b interacted with CUL1, CUL2, CUL3, CUL4A, and CUL5. Moreover, DNMT3b preferentially immunoprecipitated the NEDDylated form of endogenous CUL4A. NEDD8 enhanced DNMT3b-dependent DNA methylation. Chromatin immunoprecipitation assays suggest that DNMT3b recruits CUL4A and NEDD8 to chromatin, whereas deletion of Dnmt3b reduces the association of CUL4A and NEDD8 at a repressed promoter in a cancer cell line.
Collapse
Affiliation(s)
- Meir Shamay
- Viral Oncology Program, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA.
| | | | | | | | | |
Collapse
|