1
|
Patil NY, Tang H, Rus I, Zhang K, Joshi AD. Decoding Cinnabarinic Acid-Specific Stanniocalcin 2 Induction by Aryl Hydrocarbon Receptor. Mol Pharmacol 2022; 101:45-55. [PMID: 34764210 PMCID: PMC8969126 DOI: 10.1124/molpharm.121.000376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/17/2021] [Indexed: 01/03/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-mediated transcription factor known for regulating response to xenobiotics, including prototypical 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the activation of CYP1A1 expression. Upon ligand-binding, AhR translocates to the nucleus, interacts with the AhR nuclear translocator, and binds to xenobiotic response elements (XREs; GCGTG) present in the promoter region of AhR-regulated genes. Recently, we identified a novel tryptophan catabolite, cinnabarinic acid (CA), as an endogenous AhR agonist capable of activating expression of AhR target gene stanniocalcin 2 (stc2). The CA-driven stc2 induction bestowed cytoprotection against hepatotoxicity in an AhR-dependent manner. Interestingly, only CA but not TCDD was able to induce stc2 expression in liver, and CA was unable to upregulate the TCDD responsive cyp1a1 gene. In this report, we identified CA-specific histone H4 lysine 5 acetylation and H3 lysine 79 methylation at the AhR-bound stc2 promoter. Moreover, histone H4 lysine 5 acetylation writer, activating transcription factor 2 (Atf2), and H3 lysine 79 methylation writer, disruptor of telomeric silencing 1-like histone lysine methyltransferase (Dot1l), were interacting with the AhR complex at the stc2 promoter exclusively in response to CA treatment concurrent with the histone epigenetic marks. Suppressing Atf2 and Dot1l expression using RNA interference confirmed their role in stc2 expression. CRISPR/Cas9-assisted replacement of cyp1a1 promoter-encompassing XREs with stc2 promoter XREs resulted in CA-dependent induction of cyp1a1, underlining a fundamental role of quaternary structure of XRE sequence in agonist-specific gene regulation. In conclusion, CA-driven recruitment of specific chromatin regulators to the AhR complex and resulting histone epigenetic modifications may serve as a molecular basis for agonist-specific stc2 regulation by AhR. SIGNIFICANCE STATEMENT: Results reported here provide a mechanistic explanation for the agonist-specific differential gene regulation by identifying interaction of aryl hydrogen receptor with specific chromatin regulators concomitant with unique histone epigenetic marks. This study also demonstrated that the agonist-specific target-gene expression can be transferred with the gene-specific promoter xenobiotic response element-sequence in the context of chromatin architecture.
Collapse
Affiliation(s)
- Nikhil Y Patil
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| | - Hui Tang
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| | - Iulia Rus
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| | - Kangling Zhang
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| | - Aditya D Joshi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| |
Collapse
|
2
|
Mir R, Abu-Duhier FM, Albalawi IA. Molecular Evaluation of HIF-1α Gene Variation and Determination of Its Frequency and Association with Breast Cancer Susceptibility in Saudi Arabia. Endocr Metab Immune Disord Drug Targets 2020; 21:544-553. [PMID: 32914726 DOI: 10.2174/1871530320666200910105214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
AIM Hypoxia-inducible factor 1 (HIF-1α) is responsible in regulating oxygen homeostasis in tissues and is a central effector of the hypoxic response besides its protein overexpression has been shown to have prognostic relevance in several cancers including breast cancer. Several reports indicated that HIF-1α gene variation C1772T (Pro582Ser) is associated with increased breast susceptibility but results remained controversial. Therefore, we performed the molecular evaluation of HIF-1α gene variation and determined its frequency and association with Breast Cancer susceptibility in Saudi Arabia. METHODS This study was conducted on histologically confirmed Breast cancer patients and gender matched healthy women. HIF-1α C1772T (Pro582Ser) genotyping was done by Amplification refractory mutation system PCR method. The HIF-1α gene genotypes were correlated with different clinicopathological characteristics of breast cancer patients. RESULTS A significant difference was observed in genotype distribution of HIF-1α gene variation C1772T (Pro582Ser) between breast cancer cases and gender matched healthy controls (P=0.010). Our findings showed that the HIF- 1α variant was associated with an increased risk of Breast cancer for HIF-1α CC vs CT genotype OR = 2.20, 95% CI = (1.28 -3.77), P = 0.004) in codominant inheritance model. The significant association was reported for HIF1A for genotypes CC vs (CT+ TT) OR = 1.98, 95% CI = (1.17-3.34), P = 0.010) in dominant inheritance model tested. In case of recessive inheritance model, a non-significant association of HIF-1 alpha gene variants was reported for (CC+ CT) vs TT) OR = 1.03, 95% CI = (0. 064-16.79), P = 0.97). During the allelic comparison, a non-significant association was reported between A vs C allele among Breast cancer patients. A significant association of HIF- 1α polymorphism was reported with stage as well as distant metastasis of the disease. CONCLUSION A significant difference was observed in genotype distribution of HIF-1α gene variation C1772T (Pro>Ser) between breast cancer cases and gene matched healthy controls (P=0.010). HIF-1α- CT heterozygosity and CC genotype increased the susceptibility .The HIF-1α polymorphism was reported to be significantly associated with the distant metastasis of Breast cancer. Further studies with larger data set and well-designed models are required to validate our findings.
Collapse
Affiliation(s)
- Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisel M Abu-Duhier
- Prince Fahd Bin Sultan Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ibrahim A Albalawi
- Prince Fahd Bin Sultan Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
3
|
Regulation of glyceraldehyde-3-phosphate dehydrogenase by hypoxia inducible factor 1 in the white shrimp Litopenaeus vannamei during hypoxia and reoxygenation. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:56-65. [PMID: 31100464 DOI: 10.1016/j.cbpa.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
Hypoxia is a frequent source of stress in the estuarine habitat of the white shrimp Litopenaeus vannamei. During hypoxia, L. vannamei gill cells rely more heavily on anaerobic glycolysis to obtain ATP. This is mediated by transcriptional up-regulation of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The hypoxia inducible factor 1 (HIF-1) is an important transcriptional activator of several glycolytic enzymes during hypoxia in diverse animals, including crustaceans. In this work, we cloned and sequenced a fragment corresponding to the 5' flank of the GAPDH gene and identified a putative HIF-1 binding site, as well as sites for other transcription factors involved in the hypoxia signaling pathway. To investigate the role of HIF-1 in GAPDH regulation, we simultaneously injected double-stranded RNA (dsRNA) into shrimp to silence HIF-1α and HIF-1β under normoxia, hypoxia, and hypoxia followed by reoxygenation, and then measured gill HIF-1α, HIF-1β expression, GAPDH expression and activity, and glucose and lactate concentrations at 0, 3, 24 and 48 h. During normoxia, HIF-1 silencing induced up-regulation of GAPDH transcripts and activity, suggesting that expression is down-regulated via HIF-1 under these conditions. In contrast, HIF-1 silencing during hypoxia abolished the increases in GAPDH expression and activity, glucose and lactate concentrations. Finally, HIF-1 silencing during hypoxia-reoxygenation prevented the increase in GAPDH expression, however, those changes were not reflected in GAPDH activity and lactate accumulation. Altogether, these results indicate that GAPDH and glycolysis are transcriptionally regulated by HIF-1 in gills of white shrimp.
Collapse
|
4
|
Shao Y, Dong LJ, Takahashi Y, Chen J, Liu X, Chen Q, Ma JX, Li XR. miRNA-451a regulates RPE function through promoting mitochondrial function in proliferative diabetic retinopathy. Am J Physiol Endocrinol Metab 2019; 316:E443-E452. [PMID: 30576241 PMCID: PMC6459296 DOI: 10.1152/ajpendo.00360.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to explore the role of microRNA-451a (miR-451a) in diabetic retinopathy through activating transcription factor 2 (ATF2). The epiretinal membrane samples from patients with proliferative diabetic retinopathy (PDR) were immunolabeled with an antibody for Ki-67 to identify the proliferative cells. The expression of miR-451a was measured by qRT-PCR in the retina of Akita mice and in RPE cells under diabetic conditions. The potential downstream targets of miR-451a were predicted by bioinformatics and confirmed by dual luciferase assay, qRT-PCR, and Western blotting. Mitochondrial function, cell proliferation, and migration assays were used to detect the functional change after transfection of miR-451a mimic and inhibitor. Proliferative RPE cells were identified in the epiretinal membrane from PDR patients. The expression of miR-451a was downregulated both in the retina of Akita mice and 4-hydroxynonenal (4-HNE)-treated RPE cells. Bioinformatic analysis and luciferase assay identified ATF2 as a potential target of miR-451a. miR-451a inhibited proliferation and migration of RPE cells. The mitochondrial function was enhanced by miR-451a mimic, but suppressed by miR-451a inhibitor. In diabetic conditions, miR-451a showed a protective effect on mitochondrial function. The results of qRT-PCR and Western blotting revealed that overexpression of miR-451a downregulated the expression of ATF2 and its downstream target genes CyclinA1, CyclinD1, and MMP2. In conclusion, miR-451a/ATF2 plays a vital role in the regulation of proliferation and migration in RPE cells through regulation of mitochondrial function, which may provide new perspectives for developing effective therapies for PDR.
Collapse
Affiliation(s)
- Yan Shao
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Li-Jie Dong
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
| | - Yusuke Takahashi
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medicine, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Jianglei Chen
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Xun Liu
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
| | - Qian Chen
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Eye Institute of Xiamen University & Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University , Xiamen, Fujian , China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Xiao-Rong Li
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
| |
Collapse
|
5
|
Hyuga S, Wada H, Eguchi H, Otsuru T, Iwgami Y, Yamada D, Noda T, Asaoka T, Kawamoto K, Gotoh K, Takeda Y, Tanemura M, Umeshita K, Doki Y, Mori M. Expression of carbonic anhydrase IX is associated with poor prognosis through regulation of the epithelial‑mesenchymal transition in hepatocellular carcinoma. Int J Oncol 2017; 51:1179-1190. [PMID: 28849188 DOI: 10.3892/ijo.2017.4098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/03/2017] [Indexed: 11/05/2022] Open
Abstract
Carbonic anhydrase 9 (CA9) is a plasma membrane-associated isoenzyme that catalyzes pH regulation under hypoxic conditions. CA9 is transcriptionally regulated by hypoxia-inducible factor 1. Recent studies reported that hypoxia also promoted the epithelial-mesenchymal transition (EMT) in various cancers. In the present study, we evaluated the relationship between CA9 expression and EMT in vitro with two hepatoma cell lines. We also examined the clinical significance of CA9 expression in 117 consecutive patients that underwent hepatectomies for hepatocellular carcinoma (HCC). We evaluated CA9 expression and EMT induction under hypoxia with quantitative RT-PCR, western blot analysis and immunofluorescence staining, in HuH7 and HepG2 cells. We knocked down CA9 expression with small interfering RNA to evaluate the relationship between CA9 and EMT. We found that hypoxia induced CA9 expression in HCC cells and promoted EMT, evidenced by a loss of E-cadherin and an increase in N-cadherin. Twist, a transcriptional regulator of EMT, was also upregulated with hypoxia. The CA9 deficiency attenuated hypoxia-induced changes in E-cadherin and N-cadherin. Immunohistochemical evaluations of patient samples showed that CA9 was expressed in 50.4% of patients (59/117). However, patients with and without CA9 expression were not significantly different in clinicopathological factors. Nevertheless, a multivariate analysis showed that CA9 expression was an independent factor for both recurrence and prognosis among patients that underwent curative surgery for HCC. In conclusion, this study revealed that CA9 expression was a pivotal predictive factor for poor prognosis after radical surgery for HCC. Moreover, the CA9 regulation of the expression of EMT-related molecules represented a mechanism that enhanced malignant potential.
Collapse
Affiliation(s)
- Satoshi Hyuga
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Toru Otsuru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yoshifumi Iwgami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yutaka Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Koji Umeshita
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
6
|
A comprehensive assessment of networks and pathways of hypoxia-associated proteins and identification of responsive protein modules. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s13721-016-0123-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Dong Y, Kimura Y, Ito T, Velayo C, Sato T, Sugibayashi R, Funamoto K, Hitomi K, Iida K, Endo M, Sato N, Yaegashi N. Vaginal LPS changed gene transcriptional regulation response to ischemic reperfusion and increased vulnerability of fetal brain hemorrhage. Biochem Biophys Res Commun 2015; 468:228-33. [PMID: 26523514 DOI: 10.1016/j.bbrc.2015.10.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/24/2015] [Indexed: 01/09/2023]
Abstract
During pregnancy, both ischemic reperfusion and bacterial agent LPS are known risk factors for fetal brain damage. However, there is a lack of evidence to explain whether vaginal LPS affects the fetus response to ischemic reperfusion. Here we reported that there was more than 2 folds higher vulnerability of fetal brain hemorrhage response to ischemic reperfusion when mother mouse was treated with vaginal LPS. As our previously reported, ischemic reperfusion induces P53-dependent fetal brain damage was based on a molecular mechanism: the transcriptional pattern was changed from HIF-1alpha-dependent to P53-dependent immediately. In the present work, only with vaginal LPS precondition, phosphorylation of activated transcriptional factor (ATF) 2 at Thr71 appeared in response to ischemic reperfusion. Moreover, this phosphorylation was completely blocked by pre-treatment with a P53 inhibitor, pifithrin-α. We concluded that vaginal LPS precondition trigged the p53-dependent phosphorylation of ATF2 in response to ischemic reperfusion, which played an important role of increasing vulnerability to hemorrhage in fetus.
Collapse
Affiliation(s)
- Yupeng Dong
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yoshitaka Kimura
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics & Gynecology, Tohoku University Hospital, Sendai, Japan
| | - Takuya Ito
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Clarissa Velayo
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Sato
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rika Sugibayashi
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyoe Funamoto
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kudo Hitomi
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keita Iida
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Endo
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoaki Sato
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics & Gynecology, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
8
|
Bhullar KS, Jha A, Rupasinghe HPV. Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem Biol Interact 2015; 242:107-22. [PMID: 26409325 DOI: 10.1016/j.cbi.2015.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 09/13/2015] [Accepted: 09/22/2015] [Indexed: 01/16/2023]
Abstract
Anticancer activity of a novel curcumin analog (E)-2-(4-hydroxy-3-methoxybenzylidene)-5-((E)-3-(4-hydroxy-3-methoxyphenyl)acryloyl)cyclopentanone (CUR3d) was studied using a human hepatocellular carcinoma cell line (HepG2). The results showed that CUR3d completely inhibits the tumor cell proliferation in a dose- and time-dependent manner. CUR3d at 100 μmol/L activated the pro-apoptotic caspase-3 along with downregulation of anti-apoptotic BIRC5 and Bcl2. CUR3d treatment controlled the cancer cell growth by downregulating the expression of PI3K/Akt (Akt1, Akt2) pathway along with NF-κB. CUR3d down-regulated the members of epidermal growth receptor family (EGFR, ERBB3, ERBB2) and insulin like growth receptors (IGF1, IGF-1R, IGF2). This correlated with the downregulation of G-protein (RHOA, RHOB) and RAS (ATF2, HRAS, KRAS, NRAS) pathway signaling. CUR3d also arrested cell cycle via inhibition of CDK2, CDK4, CDK5, CDK9, MDM2, MDM4 and TERT genes. Cell cycle essential aurora kinases (AURKα, AURKβ) and polo-like kinases (PLK1, PLK2, PLK3) were also modulated by CUR3d. Topoisomerases (TOP2α, TOP2β), important factors in cancer cell immortality, as well as HIF-1α were downregulated following CUR3d treatment. The expression of protein kinase-C family (PRKC-A, PRKC-D, PRKC-E) was also attenuated by CUR3d. The downregulation of histone deacetylases (Class I, II, IV) and PARP I further strengthened the anticancer efficacy of CUR3d. Downregulation of carcinogenic cathepsins (CTSB, CTSD) and heat shock proteins exhibited CUR3d's potency as a potential immunological adjuvant. Finally, the non-toxic manifestation of CUR3d in healthy liver and lung cells along with downregulation of drug resistant gene ABCC1 further warrant need for advance investigations.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Amitabh Jha
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia, B4P 2R6, Canada
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
9
|
MicroRNA-451 regulates activating transcription factor 2 expression and inhibits liver cancer cell migration. Oncol Rep 2014; 32:1021-8. [PMID: 24968707 DOI: 10.3892/or.2014.3296] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/11/2014] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence suggests that microRNAs (miRNAs) can function as oncogenes or as tumor suppressor genes depending on the tissue type or target. Therefore, clarification of the specific roles of miRNAs is vital for the diagnosis and treatment of cancer. In the present study, miR-451 was found to be downregulated in hepatocellular carcinoma (HCC) tissues when compared to that in adjacent tissues. Functional analysis showed that, in vitro, miR-451 inhibited the migration of hepatoma cell lines HepG2 and SK-Hep-1. Further investigation of the molecular mechanisms identified activating transcription factor 2 (ATF2) as a target of miR-451. miR-451 inhibited ATF2 expression by binding to the 3'UTR. An in vivo assay revealed a significant negative correlation between miR-451 and ATF2 in liver cancer tissues. According to previous findings reported in the literature, the opposing functions of ATF2 are related to its subcellular localization. In the nucleus, ATF2 displays oncogenic activities in melanoma. In the present study, ATF2 exhibited a higher expression level in the nucleus in tumoral tissues of HCC as detected by immunohistochemistry. In conclusion, in this study, we identified a potential target of miR-451, ATF2, and revealed a novel role of miR-451 in the inhibition of the migratory ability of hepatoma cell lines.
Collapse
|
10
|
Sasaki M, Fujimoto S, Sato Y, Nishi Y, Mukai E, Yamano G, Sato H, Tahara Y, Ogura K, Nagashima K, Inagaki N. Reduction of reactive oxygen species ameliorates metabolism-secretion coupling in islets of diabetic GK rats by suppressing lactate overproduction. Diabetes 2013; 62:1996-2003. [PMID: 23349483 PMCID: PMC3661648 DOI: 10.2337/db12-0903] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We previously demonstrated that impaired glucose-induced insulin secretion (IS) and ATP elevation in islets of Goto-Kakizaki (GK) rats, a nonobese model of diabetes, were significantly restored by 30-60-min suppression of endogenous reactive oxygen species (ROS) overproduction. In this study, we investigated the effect of a longer (12 h) suppression of ROS on metabolism-secretion coupling in β-cells by exposure to tempol, a superoxide (O2(-)) dismutase mimic, plus ebselen, a glutathione peroxidase mimic (TE treatment). In GK islets, both H2O2 and O2(-) were sufficiently reduced and glucose-induced IS and ATP elevation were improved by TE treatment. Glucose oxidation, an indicator of Krebs cycle velocity, also was improved by TE treatment at high glucose, whereas glucokinase activity, which determines glycolytic velocity, was not affected. Lactate production was markedly increased in GK islets, and TE treatment reduced lactate production and protein expression of lactate dehydrogenase and hypoxia-inducible factor 1α (HIF1α). These results indicate that the Warburg-like effect, which is characteristic of aerobic metabolism in cancer cells by which lactate is overproduced with reduced linking to mitochondria metabolism, plays an important role in impaired metabolism-secretion coupling in diabetic β-cells and suggest that ROS reduction can improve mitochondrial metabolism by suppressing lactate overproduction through the inhibition of HIF1α stabilization.
Collapse
Affiliation(s)
- Mayumi Sasaki
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shimpei Fujimoto
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Yuichi Sato
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Nishi
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Eri Mukai
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Gen Yamano
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroki Sato
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yumiko Tahara
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kasane Ogura
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuaki Nagashima
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Corresponding author: Nobuya Inagaki,
| |
Collapse
|
11
|
Samarajeewa NU, Yang F, Docanto MM, Sakurai M, McNamara KM, Sasano H, Fox SB, Simpson ER, Brown KA. HIF-1α stimulates aromatase expression driven by prostaglandin E2 in breast adipose stroma. Breast Cancer Res 2013; 15:R30. [PMID: 23566437 PMCID: PMC3672802 DOI: 10.1186/bcr3410] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/24/2013] [Accepted: 04/03/2013] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION The majority of postmenopausal breast cancers are estrogen-dependent. Tumor-derived factors, such as prostaglandin E2 (PGE2), stimulate CREB1 binding to cAMP response elements (CREs) on aromatase promoter II (PII), leading to the increased expression of aromatase and biosynthesis of estrogens within human breast adipose stromal cells (ASCs). Hypoxia inducible factor-1α (HIF-1α), a key mediator of cellular adaptation to low oxygen levels, is emerging as a novel prognostic marker in breast cancer. We have identified the presence of a consensus HIF-1α binding motif overlapping with the proximal CRE of aromatase PII. However, the regulation of aromatase expression by HIF-1α in breast cancer has not been characterized. This study aimed to characterize the role of HIF-1α in the activation of aromatase PII. METHODS HIF-1α expression and localization were examined in human breast ASCs using quantitative PCR (QPCR), Western blotting, immunofluorescence and high content screening. QPCR and tritiated water-release assays were performed to assess the effect of HIF-1α on aromatase expression and activity. Reporter assays and chromatin immunoprecipitation (ChIP) were performed to assess the effect of HIF-1α on PII activity and binding. Treatments included PGE2 or DMOG ((dimethyloxalglycine), HIF-1α stabilizer). Double immunohistochemistry for HIF-1α and aromatase was performed on tissues obtained from breast cancer and cancer-free patients. RESULTS Results indicate that PGE2 increases HIF-1α transcript and protein expression, nuclear localization and binding to aromatase PII in human breast ASCs. Results also demonstrate that HIF-1α significantly increases PII activity, and aromatase transcript expression and activity, in the presence of DMOG and/or PGE2, and that HIF-1α and CREB1 act co-operatively on PII. There is a significant increase in HIF-1α positive ASCs in breast cancer patients compared to cancer-free women, and a positive association between HIF-1α and aromatase expression. CONCLUSIONS This study is the first to identify HIF-1α as a modulator of PII-driven aromatase expression in human breast tumor-associated stroma and provides a novel mechanism for estrogen regulation in obesity-related, post-menopausal breast cancer. Together with our on-going studies on the role of AMP-activated protein kinase (AMPK) in the regulation of breast aromatase, this work provides another link between disregulated metabolism and breast cancer.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Adipose Tissue/pathology
- Aromatase/genetics
- Aromatase/metabolism
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Chromatin Immunoprecipitation
- Dinoprostone/pharmacology
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunoenzyme Techniques
- Oxytocics/pharmacology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Nirukshi U Samarajeewa
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
- Department of Physiology, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Fangyuan Yang
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Maria M Docanto
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Minako Sakurai
- Department of Pathology, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Keely M McNamara
- Department of Pathology, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 8006, Australia
- Department of Pathology, Melbourne University, Parkville, VIC 3010, Australia
| | - Evan R Simpson
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Kristy A Brown
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
- Department of Physiology, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
12
|
Pro-life role for c-Jun N-terminal kinase and p38 mitogen-activated protein kinase at rostral ventrolateral medulla in experimental brain stem death. J Biomed Sci 2012; 19:96. [PMID: 23157661 PMCID: PMC3533910 DOI: 10.1186/1423-0127-19-96] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/05/2012] [Indexed: 01/14/2023] Open
Abstract
Background Based on an experimental brain stem death model, we demonstrated previously that activation of the mitogen-activated protein kinase kinase 1/2 (MEK1/2)/extracellular signal-regulated kinase 1/2 (ERK1/2)/
mitogen-activated protein kinase signal-interacting kinase 1/2 (MNK1/2) cascade plays a pro-life role in the rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from systemic arterial pressure, which sequentially increases (pro-life) and decreases (pro-death) to reflect progressive dysfunction of central cardiovascular regulation during the advancement towards brain stem death in critically ill patients. The present study assessed the hypothesis that, in addition to ERK1/2, c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK), the other two mammalian members of MAPKs that are originally identified as stress-activated protein kinases, are activated specifically by MAPK kinase 4 (MAP2K4) or MAP2K6 and play a pro-life role in RVLM during experimental brain stem death. We further delineated the participation of phosphorylating activating transcriptional factor-2 (ATF-2) and c-Jun, the classical transcription factor activated by JNK or p38MAPK, in this process. Results An experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos (Mev; 10 nmol) bilaterally into RVLM of Sprague–Dawley rats was used, alongside cardiovascular, pharmacological and biochemical evaluations. Results from ELISA showed that whereas the total JNK, p38MAPK, MAP2K4 and MAP2K6 were not affected, augmented phosphorylation of JNK at Thr183 and Tyr185 and p38MAPK at Thr180 and Tyr182, accompanied by phosphorylation of their upstream activators MAP2K4 at Ser257 and Thr261 and MAP2K6 at Ser207 and Thr211 in RVLM occurred preferentially during the pro-life phase of experimental brain stem death. Moreover, the activity of transcription factors ATF-2 at Thr71 and c-Jun at Ser73, rather than Elk-1 at Ser383 in RVLM were also augmented during the pro-life phase. Furthermore, pretreatment by microinjection into the bilateral RVLM of specific JNK inhibitors, JNK inhibitor I (100 pmol) or SP600125 (5 pmol), or specific p38MAPK inhibitors, p38MAPK inhibitor III (500 pmol) or SB203580 (2 nmol), exacerbated the depressor effect and blunted the augmented life-and-death signal exhibited during the pro-life phase. On the other hand, pretreatment with the negative control for JNK or p38MAPK inhibitor, JNK inhibitor I negative control (100 pmol) or SB202474 (2 nmol), was ineffective in the vehicle-controls and Mev-treatment groups. Conclusions Our results demonstrated that activation of JNK or p38MAPK in RVLM by their upstream activators MAP2K4 or MAP2K6 plays a preferential pro-life role by sustaining the central cardiovascular regulatory machinery during experimental brain stem death via phosphorylation and activation of nuclear transcription factor ATF-2 or c-Jun.
Collapse
|
13
|
Maitra U, Deng H, Glaros T, Baker B, Capelluto DG, Li Z, Li L. Molecular mechanisms responsible for the selective and low-grade induction of proinflammatory mediators in murine macrophages by lipopolysaccharide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:1014-23. [PMID: 22706082 PMCID: PMC3392521 DOI: 10.4049/jimmunol.1200857] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Low-dose endotoxemia is prevalent in humans with adverse health conditions, and it correlates with the pathogenesis of chronic inflammatory diseases such as atherosclerosis, diabetes, and neurologic inflammation. However, the underlying molecular mechanisms are poorly understood. In this study, we demonstrate that subclinical low-dose LPS skews macrophages into a mild proinflammatory state, through cell surface TLR4, IL-1R-associated kinase-1, and the Toll-interacting protein. Unlike high-dose LPS, low-dose LPS does not induce robust activation of NF-κB, MAPKs, PI3K, or anti-inflammatory mediators. Instead, low-dose LPS induces activating transcription factor 2 through Toll-interacting protein-mediated generation of mitochondrial reactive oxygen species, allowing mild induction of proinflammatory mediators. Low-dose LPS also suppresses PI3K and related negative regulators of inflammatory genes. Our data reveal novel mechanisms responsible for skewed and persistent low-grade inflammation, a cardinal feature of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910
| | - Hui Deng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910
| | - Trevor Glaros
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910
| | - Bianca Baker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910
| | | | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC29425
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910
| |
Collapse
|
14
|
Lau E, Ronai ZA. ATF2 - at the crossroad of nuclear and cytosolic functions. J Cell Sci 2012; 125:2815-24. [PMID: 22685333 DOI: 10.1242/jcs.095000] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An increasing number of transcription factors have been shown to elicit oncogenic and tumor suppressor activities, depending on the tissue and cell context. Activating transcription factor 2 (ATF2; also known as cAMP-dependent transcription factor ATF-2) has oncogenic activities in melanoma and tumor suppressor activities in non-malignant skin tumors and breast cancer. Recent work has shown that the opposing functions of ATF2 are associated with its subcellular localization. In the nucleus, ATF2 contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. ATF2 can also translocate to the cytosol, primarily following exposure to severe genotoxic stress, where it impairs mitochondrial membrane potential and promotes mitochondrial-based cell death. Notably, phosphorylation of ATF2 by the epsilon isoform of protein kinase C (PKCε) is the master switch that controls its subcellular localization and function. Here, we summarize our current understanding of the regulation and function of ATF2 in both subcellular compartments. This mechanism of control of a non-genetically modified transcription factor represents a novel paradigm for 'oncogene addiction'.
Collapse
Affiliation(s)
- Eric Lau
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92130, USA.
| | | |
Collapse
|
15
|
Abstract
MAPK (mitogen-activated protein kinase) pathways are among the most frequently deregulated signalling events in cancer. Among the critical targets of MAPK activities are members of the AP-1 (activator protein 1) transcription factor, a dimeric complex consisting of Jun, Fos, Maf and ATF (activating transcription factor) family DNA-binding proteins. Depending on the cellular context, the composition of the dimeric complexes determines the regulation of growth, survival or apoptosis. JNK (c-Jun N-terminal kinase), p38 and a number of Jun and Fos family proteins have been analysed for their involvement in oncogenic transformation and tumour formation. These data are also emerging for the ATF components of the AP-1 factor. The aim of the present review is to provide an overview of the functions of two ATF family proteins, ATF2 and ATF7, in mammalian development and their potential functions in tumour formation.
Collapse
|
16
|
Au-Yeung HY, New EJ, Chang CJ. A selective reaction-based fluorescent probe for detecting cobalt in living cells. Chem Commun (Camb) 2012; 48:5268-70. [PMID: 22531796 DOI: 10.1039/c2cc31681a] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A reaction-based strategy exploiting cobalt-mediated oxidative C-O bond cleavage affords a selective turn-on fluorescent probe for paramagnetic Co(2+) in water and in living cells.
Collapse
Affiliation(s)
- Ho Yu Au-Yeung
- Department of Chemistry and the Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
17
|
The Myocardial Unfolded Protein Response during Ischemic Cardiovascular Disease. Biochem Res Int 2012; 2012:583170. [PMID: 22536506 PMCID: PMC3321442 DOI: 10.1155/2012/583170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/10/2012] [Indexed: 01/01/2023] Open
Abstract
Heart failure is a progressive and disabling disease. The incidence of heart failure is also on the rise, particularly in the elderly of industrialized societies. This is in part due to an increased ageing population, whom initially benefits from improved, and life-extending cardiovascular therapy, yet ultimately succumb to myocardial failure. A major cause of heart failure is ischemia secondary to the sequence of events that is dyslipidemia, atherosclerosis, and myocardial infarction. In the case of heart failure postmyocardial infarction, ischemia can lead to myocardial cell death by both necrosis and apoptosis. The extent of myocyte death postinfarction is associated with adverse cardiac remodeling that can contribute to progressive heart chamber dilation, ventricular wall thinning, and the onset of loss of cardiac function. In cardiomyocytes, recent studies indicate that myocardial ischemic injury activates the unfolded protein stress response (UPR) and this is associated with increased apoptosis. This paper focuses on the intersection of ischemia, the UPR, and cell death in cardiomyocytes. Targeting of the myocardial UPR may prove to be a viable target for the prevention of myocyte cell loss and the progression of heart failure due to ischemic injury.
Collapse
|
18
|
Molecular characterization and transcriptional analysis of the olive flounder (Paralichthys olivaceus) YGHL1 gene in response to hypoxia and infection. Mol Cell Biochem 2011; 357:305-12. [DOI: 10.1007/s11010-011-0901-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
|
19
|
Schieber C, Howitt J, Putz U, White JM, Parish CL, Donnelly PS, Tan SS. Cellular up-regulation of Nedd4 family interacting protein 1 (Ndfip1) using low levels of bioactive cobalt complexes. J Biol Chem 2010; 286:8555-8564. [PMID: 21187286 DOI: 10.1074/jbc.m110.203448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The delivery of metal ions using cell membrane-permeable metal complexes represents a method for activating cellular pathways. Here, we report the synthesis and characterization of new [Co(III)(salen)(acac)] complexes capable of up-regulating the ubiquitin ligase adaptor protein Ndfip1. Ndfip1 is a neuroprotective protein that is up-regulated in the brain after injury and functions in combination with Nedd4 ligases to ubiquitinate harmful proteins for removal. We previously showed that Ndfip1 can be increased in human neurons using CoCl(2) that is toxic at high concentration. Here we demonstrate a similar effect can be achieved by low concentrations of synthetic Co(III) complexes that are non-toxic and designed to be activated following cellular entry. Activation is achieved by intracellular reduction of Co(III) to Co(II) leading to release of Co(II) ions for Ndfip1 up-regulation. The cellular benefit of Ndfip1 up-regulation by Co(III) complexes includes demonstrable protection against cell death in SH-SY5Y cells during stress. In vivo, focal delivery of Co(III) complexes into the adult mouse brain was observed to up-regulate Ndfip1 in neurons. These results demonstrate that a cellular response pathway can be advantageously manipulated by chemical modification of metal complexes, and represents a significant step of harnessing low concentration metal complexes for therapeutic benefit.
Collapse
Affiliation(s)
- Christine Schieber
- From the School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville 3010, Victoria, Australia and; the Florey Neuroscience Institutes and Centre for Neuroscience, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Jason Howitt
- the Florey Neuroscience Institutes and Centre for Neuroscience, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Ulrich Putz
- the Florey Neuroscience Institutes and Centre for Neuroscience, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Jonathan M White
- From the School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville 3010, Victoria, Australia and
| | - Clare L Parish
- the Florey Neuroscience Institutes and Centre for Neuroscience, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Paul S Donnelly
- From the School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville 3010, Victoria, Australia and.
| | - Seong-Seng Tan
- the Florey Neuroscience Institutes and Centre for Neuroscience, The University of Melbourne, Parkville 3010, Victoria, Australia.
| |
Collapse
|
20
|
Kong HJ, Kim JM, Moon JH, Kim YO, Nam BH, Kim WJ, Lee JH, Lee SJ, Kim KK, Yeo SY, Lee CH. Hypoxia induces the PDZ domain-containing syntenin in the marine teleost Paralichthys olivaceus. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:195-201. [PMID: 20382261 DOI: 10.1016/j.cbpc.2010.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 04/01/2010] [Accepted: 04/06/2010] [Indexed: 11/22/2022]
Abstract
Syntenin is a scaffolding PDZ domain-containing protein with diverse biological activities, including organization of protein complexes in the plasma membrane, regulation of B-cell development, intracellular trafficking, synaptic transmission, and cancer metastasis. In the present study, we isolated and characterized the cDNA of the olive flounder Paralichthys olivaceus syntenin, designated PoSyntenin. The full-length CDS of PoSyntenin with 5'- and 3'-UTR sequences is 2618bp long and consists of a 909bp open reading frame preceded by a 161bp 5'-UTR and followed by a 1551bp 3'-UTR. The PoSyntenin cDNA encodes a polypeptide of 302 amino acids containing two PDZ domains, which shares 61-80% homology with those of other species, including humans. Expression of the PoSyntenin mRNA was detectable from 1day post-hatching and constitutively in the brain, spleen, intestine, stomach, eye, liver, kidney, and gill of normal conditioned fish. Expression of the PoSyntenin mRNA was upregulated in the eye, liver, kidney, spleen, brain, gill, and intestine of flounder under hypoxia and was increased by treatment with the hypoxia-mimic CoCl(2) (a HIF-1 inducer) in HINAE cells. Taken together, these results suggest that PoSyntenin is a hypoxia target gene that has a potential role in the hypoxia response mechanism of fish.
Collapse
Affiliation(s)
- Hee Jeong Kong
- Biotechnology Research Division, National Fisheries Research and Development Institute, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 619-705, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Evans KD, Oberbauer AM. Alendronate inhibits VEGF expression in growth plate chondrocytes by acting on the mevalonate pathway. Open Orthop J 2009; 3:83-8. [PMID: 19834579 PMCID: PMC2761671 DOI: 10.2174/1874325000903010083] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/31/2009] [Accepted: 09/12/2009] [Indexed: 02/03/2023] Open
Abstract
Bisphosphonates decrease chondrocyte turnover at the growth plate and impact bone growth. Likewise vascular endothelial growth factor (VEGF) plays an important role in endochondral bone elongation by influencing chondrocyte turnover at the growth plate. To investigate whether the action of bisphosphonate on the growth plate works through VEGF, VEGF protein expression and isoform transcription in endochondral chondrocytes isolated from growing mice and treated with a clinically used bisphosphonate, alendronate, were assessed. Alendronate at 10µM and 100µM concentrations decreased secreted VEGF protein expression but not cell associated protein. Bisphosphonates are known to inhibit the mevalonate intracellular signaling pathway used by VEGF. Addition of the mevalonate pathway intermediates farnesol (FOH) and geranylgeraniol (GGOH) interacted with the low concentration of alendronate to further decrease secreted VEGF protein whereas FOH partially restored VEGF protein secretion when combined with the high alendronate. Similar to the protein data, the addition of alendronate decreased VEGF mRNA isoforms. VEGF mRNA levels were rescued by the GGOH mevalonate pathway intermediate at the low alendronate dose whereas neither intermediate consistently restored the VEGF mRNA levels at the high alendronate dose. Thus, the bisphophonate alendronate impairs growth plate chondrocyte turnover by down-regulating the secreted forms of VEGF mRNA and protein by inhibiting the mevalonate pathway.
Collapse
Affiliation(s)
- K D Evans
- Department of Animal Science, University of California, One Shields Ave., Davis, CA 95616, USA
| | | |
Collapse
|