1
|
Adachi Y, Masuda M, Sakakibara I, Uchida T, Niida Y, Mori Y, Kamei Y, Okumura Y, Ohminami H, Ohnishi K, Yamanaka-Okumura H, Nikawa T, Taketani Y. All-trans retinoic acid changes muscle fiber type via increasing GADD34 dependent on MAPK signal. Life Sci Alliance 2022; 5:5/7/e202101345. [PMID: 35318262 PMCID: PMC8960774 DOI: 10.26508/lsa.202101345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
ATRA increases GADD34 expression by decreasing the expression of Six1, which down-regulates the transcriptional activity with TLE3 and increasing mRNA stability through blocking the interaction between TTP and ARE on GADD34 mRNA, resulting in muscle fiber type change. All-trans retinoic acid (ATRA) increases the sensitivity to unfolded protein response in differentiating leukemic blasts. The downstream transcriptional factor of PERK, a major arm of unfolded protein response, regulates muscle differentiation. However, the role of growth arrest and DNA damage-inducible protein 34 (GADD34), one of the downstream factors of PERK, and the effects of ATRA on GADD34 expression in muscle remain unclear. In this study, we identified ATRA increased the GADD34 expression independent of the PERK signal in the gastrocnemius muscle of mice. ATRA up-regulated GADD34 expression through the transcriptional activation of GADD34 gene via inhibiting the interaction of homeobox Six1 and transcription co-repressor TLE3 with the MEF3-binding site on the GADD34 gene promoter in skeletal muscle. ATRA also inhibited the interaction of TTP, which induces mRNA degradation, with AU-rich element on GADD34 mRNA via p-38 MAPK, resulting in the instability of GADD34 mRNA. Overexpressed GADD34 in C2C12 cells changes the type of myosin heavy chain in myotubes. These results suggest ATRA increases GADD34 expression via transcriptional and post-transcriptional regulation, which changes muscle fiber type.
Collapse
Affiliation(s)
- Yuichiro Adachi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Iori Sakakibara
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Niida
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Mori
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Kamei
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yosuke Okumura
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirokazu Ohminami
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hisami Yamanaka-Okumura
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
2
|
All-trans retinoic acid reduces the transcriptional regulation of intestinal sodium-dependent phosphate co-transporter gene (Npt2b). Biochem J 2020; 477:817-831. [PMID: 32016357 DOI: 10.1042/bcj20190716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/13/2020] [Accepted: 02/03/2020] [Indexed: 01/03/2023]
Abstract
Inorganic phosphate (Pi) homeostasis is regulated by intestinal absorption via type II sodium-dependent co-transporter (Npt2b) and by renal reabsorption via Npt2a and Npt2c. Although we previously reported that vitamin A-deficient (VAD) rats had increased urine Pi excretion through the decreased renal expression of Npt2a and Npt2c, the effect of vitamin A on the intestinal Npt2b expression remains unclear. In this study, we investigated the effects of treatment with all-trans retinoic acid (ATRA), a metabolite of vitamin A, on the Pi absorption and the Npt2b expression in the intestine of VAD rats, as well as and the underlying molecular mechanisms. In VAD rats, the intestinal Pi uptake activity and the expression of Npt2b were increased, but were reduced by the administration of ATRA. The transcriptional activity of reporter plasmid containing the promoter region of the rat Npt2b gene was reduced by ATRA in NIH3T3 cells overexpressing retinoic acid receptor (RAR) and retinoid X receptor (RXR). On the other hand, CCAAT/enhancer-binding proteins (C/EBP) induced transcriptional activity of the Npt2b gene. Knockdown of the C/EBP gene and a mutation analysis of the C/EBP responsible element in the Npt2b gene promoter indicated that C/EBP plays a pivotal role in the regulation of Npt2b gene transcriptional activity by ATRA. EMSA revealed that the RAR/RXR complex inhibits binding of C/EBP to Npt2b gene promoter. Together, these results suggest that ATRA may reduce the intestinal Pi uptake by preventing C/EBP activation of the intestinal Npt2b gene.
Collapse
|
3
|
Niida Y, Masuda M, Adachi Y, Yoshizawa A, Ohminami H, Mori Y, Ohnishi K, Yamanaka-Okumura H, Uchida T, Nikawa T, Yamamoto H, Miyazaki M, Taketani Y. Reduction of stearoyl-CoA desaturase (SCD) contributes muscle atrophy through the excess endoplasmic reticulum stress in chronic kidney disease. J Clin Biochem Nutr 2020; 67:179-187. [PMID: 33041516 PMCID: PMC7533850 DOI: 10.3164/jcbn.20-24] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy is associated with mortality and poor prognosis in patients with chronic kidney disease (CKD). However, underlying mechanism by which CKD causes muscle atrophy has not been completely understood. The quality of lipids (lipoquality), which is defined as the functional features of diverse lipid species, has recently been recognized as the pathology of various diseases. In this study, we investigated the roles of the stearoyl-CoA desaturase (SCD), which catalyzes the conversion of saturated fatty acids into monounsaturated fatty acids, in skeletal muscle on muscle atrophy in CKD model animals. In comparison to control rats, CKD rats decreased the SCD activity and its gene expression in atrophic gastrocnemius muscle. Next, oleic acid blocked the reduction of the thickness of C2C12 myotubes and the increase of the endoplasmic reticulum stress induced by SCD inhibitor. Furthermore, endoplasmic reticulum stress inhibitor ameliorated CKD-induced muscle atrophy (the weakness of grip strength and the decrease of muscle fiber size of gastrocnemius muscle) in mice and the reduction of the thickness of C2C12 myotubes by SCD inhibitor. These results suggest that the repression of SCD activity causes muscle atrophy through excessive endoplasmic reticulum stress in CKD.
Collapse
Affiliation(s)
- Yuki Niida
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuichiro Adachi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Aika Yoshizawa
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hirokazu Ohminami
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuki Mori
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hisami Yamanaka-Okumura
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hironori Yamamoto
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.,Department of Health and Nutrition, Faculty of Human Life, Jin-ai University, 3-1-1 Ohde-cho, Fukui 915-8586, Japan.,Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
4
|
He Q, Shumate LT, Matthias J, Aydin C, Wein MN, Spatz JM, Goetz R, Mohammadi M, Plagge A, Divieti Pajevic P, Bastepe M. A G protein-coupled, IP3/protein kinase C pathway controlling the synthesis of phosphaturic hormone FGF23. JCI Insight 2019; 4:125007. [PMID: 31484825 PMCID: PMC6777913 DOI: 10.1172/jci.insight.125007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 08/01/2019] [Indexed: 12/23/2022] Open
Abstract
Dysregulated actions of bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) result in several inherited diseases, such as X-linked hypophosphatemia (XLH), and contribute substantially to the mortality in kidney failure. Mechanisms governing FGF23 production are poorly defined. We herein found that ablation of the Gq/11α-like, extralarge Gα subunit (XLαs), a product of GNAS, exhibits FGF23 deficiency and hyperphosphatemia in early postnatal mice (XLKO). FGF23 elevation in response to parathyroid hormone, a stimulator of FGF23 production via cAMP, was intact in XLKO mice, while skeletal levels of protein kinase C isoforms α and δ (PKCα and PKCδ) were diminished. XLαs ablation in osteocyte-like Ocy454 cells suppressed the levels of FGF23 mRNA, inositol 1,4,5-trisphosphate (IP3), and PKCα/PKCδ proteins. PKC activation in vivo via injecting phorbol myristate acetate (PMA) or by constitutively active Gqα-Q209L in osteocytes and osteoblasts promoted FGF23 production. Molecular studies showed that the PKC activation-induced FGF23 elevation was dependent on MAPK signaling. The baseline PKC activity was elevated in bones of Hyp mice, a model of XLH. XLαs ablation significantly, but modestly, reduced serum FGF23 and elevated serum phosphate in Hyp mice. These findings reveal a potentially hitherto-unknown mechanism of FGF23 synthesis involving a G protein-coupled IP3/PKC pathway, which may be targeted to fine-tune FGF23 levels.
Collapse
Affiliation(s)
- Qing He
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren T. Shumate
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Matthias
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Cumhur Aydin
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Endodontics, Gulhane Faculty of Dentistry, University of Health Sciences, Ankara, Turkey
| | - Marc N. Wein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jordan M. Spatz
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Regina Goetz
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Moosa Mohammadi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Antonius Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paola Divieti Pajevic
- Department of Molecular & Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Coffin JD, Homer-Bouthiette C, Hurley MM. Fibroblast Growth Factor 2 and Its Receptors in Bone Biology and Disease. J Endocr Soc 2018; 2:657-671. [PMID: 29942929 PMCID: PMC6009610 DOI: 10.1210/js.2018-00105] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/23/2018] [Indexed: 01/24/2023] Open
Abstract
The fibroblast growth factor (FGF) regulatory axis is phylogenetically ancient, evolving into a large mammalian/human gene family of 22 ligands that bind to four receptor tyrosine kinases for a complex physiologic system controlling cell growth, differentiation, and metabolism. The tissue targets for the primary FGF function are mainly in cartilage and in bone for morphogenesis, mineralization, and metabolism. A multitude of complexities in the FGF ligand-receptor signaling pathways have made translation into therapies for FGF-related bone disorders such as osteomalacia, osteoarthritis, and osteoporosis difficult but not impossible.
Collapse
Affiliation(s)
| | | | - Marja Marie Hurley
- Department of Medicine, University of Connecticut School of Medicine, UCONN Health, Farmington, Connecticut
| |
Collapse
|
6
|
Sugihara K, Masuda M, Nakao M, Abuduli M, Imi Y, Oda N, Okahisa T, Yamamoto H, Takeda E, Taketani Y. Dietary phosphate exacerbates intestinal inflammation in experimental colitis. J Clin Biochem Nutr 2017; 61:91-99. [PMID: 28955125 PMCID: PMC5612814 DOI: 10.3164/jcbn.16-117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/26/2016] [Indexed: 12/31/2022] Open
Abstract
The recent widespread consumption of Western diets and food additives worldwide is associated with excessive inorganic phosphate intake. However, researchers have known little about the impact of dietary phosphate intake on the development of inflammatory bowel disease to date. In this study, we investigated the effects of dietary phosphate on intestinal inflammation in experimental colitis. Sprague-Dawley rats were fed different phosphate diets (0.5%, 1.0% and 1.5% phosphate) with or without dextran sulfate sodium. For in vitro study, the effects of phosphate on proinflammatory cytokine induction and reactive oxygen species production in RAW264.7 macrophage were examined. Dietary phosphate exacerbated intestinal inflammation in experimental colitis in a dose-dependent manner, as assessed by the clinical disease activity score, colon length, and histology. Furthermore, the high phosphate diet increased myeloperoxidase activity and proinflammatory cytokine mRNA expression through the activation of nuclear factor κB in the inflamed colon. In addition, high phosphate loading in RAW264.7 cells directly enhanced reactive oxygen species production and proinflammatory cytokine gene expression. Our results demonstrated that the high phosphate diet exacerbated intestinal inflammation in experimental colitis. These findings have important therapeutic implications for inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Kohei Sugihara
- Departments of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Masashi Masuda
- Departments of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Mari Nakao
- Departments of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Maerjianghan Abuduli
- Departments of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yukiko Imi
- Departments of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Naoko Oda
- Departments of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Toshiya Okahisa
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hironori Yamamoto
- Department of Health and Nutrition, Faculty of Human Life, Jin-ai University, Fukui 915-8586, Japan
| | - Eiji Takeda
- Departments of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yutaka Taketani
- Departments of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
7
|
Fakhar M, Rashid S. Targeted inhibition of Klotho binding to fibroblast growth factor 23 prevents hypophosphetemia. J Mol Graph Model 2017; 75:9-19. [PMID: 28501532 DOI: 10.1016/j.jmgm.2017.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
Klotho is a transmembrane protein which plays significant role in the pathogenesis of phosphate ion (Pi)-related disorders. Pi accumulation in human kidney tissues results in the major metabolic disorders due to malfunctioning of Klotho-FGFR1-FGF23 trimeric complex. The potential role of Klotho in Pi metabolism was elaborated through modeling and interaction analysis of glycosyl hydrolase (GS1 and GS2) domains with Fibroblast growth factor 23 (FGF23). In order to inhibit the association of Klotho and FGF23, binding patterns of three reported hits (N-(2-chlorophenyl)-1H-indole-3-carboxamide, N-[2-(1-cyclohexen-1-yl)ethyl]-6,7,8,9-tetrahydropyrido[1,2-e]purin-4-amine and 2-(1-propyl)amino-11-chlorothiazolo[5,4-a]acridine) were evaluated through molecular docking analysis. These inhibitors effectively targeted both GS1 and GS2 domains of Klotho at the similar sites required for FGF23 binding. To further characterize the comparative binding profile of these compounds, molecular dynamics simulation assays were performed. Taken together, current study emphasizes that Klotho may be anticipated as a target molecule in familial hypophosphatemic rickets and mentioned compounds may prove to be effective therapeutic targets against hypophosphetemia induced disorders.
Collapse
Affiliation(s)
- Muhammad Fakhar
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
8
|
Kaneko I, Tatsumi S, Segawa H, Miyamoto KI. Control of phosphate balance by the kidney and intestine. Clin Exp Nephrol 2016; 21:21-26. [PMID: 27900568 DOI: 10.1007/s10157-016-1359-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/07/2016] [Indexed: 01/06/2023]
Abstract
The prevention and correction of hyperphosphatemia are major goals of the treatment of chronic kidney disease (CKD)-bone mineral disorders, and thus, Pi balance requires special attention. Pi balance is maintained by intestinal absorption, renal excretion, and bone accretion. The kidney is mainly responsible for the plasma Pi concentration. In CKD, reduced glomerular filtration rate leads to various Pi metabolism abnormalities, and Pi absorption in the small intestine also has an important role in Pi metabolism. Disturbances in Pi metabolism are mediated by a series of complex changes in regulatory hormones originating from the skeleton, intestine, parathyroid gland, and kidney. In this review, we describe the regulation of type II sodium-dependent Pi co-transporters by the kidney and intestine, including the regulation of Pi transport, circadian rhythm, and the vicious circle between salivary Pi secretion and intestinal Pi absorption in animals with and without CKD.
Collapse
Affiliation(s)
- Ichiro Kaneko
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
9
|
Masuda M, Miyazaki-Anzai S, Keenan AL, Okamura K, Kendrick J, Chonchol M, Offermanns S, Ntambi JM, Kuro-O M, Miyazaki M. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity. J Clin Invest 2015; 125:4544-58. [PMID: 26517697 DOI: 10.1172/jci82871] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023] Open
Abstract
Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.
Collapse
|
10
|
He Q, Zhu Y, Corbin BA, Plagge A, Bastepe M. The G protein α subunit variant XLαs promotes inositol 1,4,5-trisphosphate signaling and mediates the renal actions of parathyroid hormone in vivo. Sci Signal 2015; 8:ra84. [PMID: 26307011 DOI: 10.1126/scisignal.aaa9953] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
GNAS, which encodes the stimulatory G protein (heterotrimeric guanine nucleotide-binding protein) α subunit (Gαs), also encodes a large variant of Gαs termed extra-large α subunit (XLαs), and alterations in XLαs abundance or activity are implicated in various human disorders. Although XLαs, like Gαs, stimulates generation of the second messenger cyclic adenosine monophosphate (cAMP), evidence suggests that XLαs and Gαs have opposing effects in vivo. We investigated the role of XLαs in mediating signaling by parathyroid hormone (PTH), which activates a G protein-coupled receptor (GPCR) that stimulates both Gαs and Gαq/11 in renal proximal tubules to maintain phosphate and vitamin D homeostasis. At postnatal day 2 (P2), XLαs knockout (XLKO) mice exhibited hyperphosphatemia, hypocalcemia, and increased serum concentrations of PTH and 1,25-dihydroxyvitamin D. The ability of PTH to reduce serum phosphate concentrations was impaired, and the abundance of the sodium phosphate cotransporter Npt2a in renal brush border membranes was reduced in XLKO mice, whereas PTH-induced cAMP excretion in the urine was modestly increased. Basal and PTH-stimulated production of inositol 1,4,5-trisphosphate (IP3), which is the second messenger produced by Gαq/11 signaling, was repressed in renal proximal tubules from XLKO mice. Crossing of XLKO mice with mice overexpressing XLαs specifically in renal proximal tubules rescued the phenotype of the XLKO mice. Overexpression of XLαs in HEK 293 cells enhanced IP3 generation in unstimulated cells and in cells stimulated with PTH or thrombin, which acts through a Gq/11-coupled receptor. Together, our findings suggest that XLαs enhances Gq/11 signaling to mediate the renal actions of PTH during early postnatal development.
Collapse
Affiliation(s)
- Qing He
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yan Zhu
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Braden A Corbin
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Antonius Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine University of Liverpool, Liverpool L69 3BX, UK
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Shaman AM, Kowalski SR. Hyperphosphatemia Management in Patients with Chronic Kidney Disease. Saudi Pharm J 2015; 24:494-505. [PMID: 27330380 PMCID: PMC4908098 DOI: 10.1016/j.jsps.2015.01.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/01/2015] [Indexed: 01/07/2023] Open
Abstract
Hyperphosphatemia in chronic kidney disease (CKD) patients is a potentially life altering condition that can lead to cardiovascular calcification, metabolic bone disease (renal osteodystrophy) and the development of secondary hyperparathyroidism (SHPT). It is also associated with increased prevalence of cardiovascular diseases and mortality rates. To effectively manage hyperphosphatemia in CKD patients it is important to not only consider pharmacological and nonpharmacological treatment options but also to understand the underlying physiologic pathways involved in phosphorus homoeostasis. This review will therefore provide both a background into phosphorus homoeostasis and the management of hyperphosphatemia in CKD patients. In addition, it will cover some of the most important reasons for failure to control hyperphosphatemia with emphasis on the effect of the gastric pH on phosphate binders efficiency.
Collapse
Affiliation(s)
- Ahmed M Shaman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Stefan R Kowalski
- School of Pharmacy and Medical Sciences, University of South Australia, South Australia, Australia
| |
Collapse
|
12
|
Homer-Bouthiette C, Doetschman T, Xiao L, Hurley MM. Knockout of nuclear high molecular weight FGF2 isoforms in mice modulates bone and phosphate homeostasis. J Biol Chem 2014; 289:36303-14. [PMID: 25389287 PMCID: PMC4276890 DOI: 10.1074/jbc.m114.619569] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/07/2014] [Indexed: 11/06/2022] Open
Abstract
We previously reported that targeted overexpression of the fibroblast growth factor 2 (FGF2) high molecular weight (HMW) isoforms in osteoblastic lineage cells in mice resulted in phenotypic changes, including dwarfism, rickets, osteomalacia, hypophosphatemia, increased serum parathyroid hormone, and increased levels of the phosphatonin FGF23 in serum and bone. This study examined the effects of genetically knocking out the FGF2HMW isoforms (HMWKO) on bone and phosphate homeostasis. HMWKO mice were not dwarfed and had significantly increased bone mineral density and bone mineral content in femurs and lumbar vertebrae when compared with the wild-type (WT) littermates. Micro-computed tomography analysis of femurs revealed increased trabecular bone volume, thickness, number, and connective tissue density with decreased trabecular spacing compared with WT. In addition, there was significantly decreased cortical porosity and increased cortical thickness and sub-periosteal area in femurs of HMWKO. Histomorphometric analysis demonstrated increased osteoblast activity and diminished osteoclast activity in the HMWKO. In vitro bone marrow stromal cell cultures showed there was a significant increase in alkaline phosphatase-positive colony number at 1 week in HMWKO. At 3 weeks of culture, the mineralized area was also significantly increased. There was increased expression of osteoblast differentiation marker genes and reduced expression of genes associated with impaired mineralization, including a significant reduction in Fgf23 and Sost mRNA. Normal serum phosphate and parathyroid hormone were observed in HMWKO mice. This study demonstrates a significant negative impact of HMWFGF2 on biological functions in bone and phosphate homeostasis in mice.
Collapse
Affiliation(s)
- Collin Homer-Bouthiette
- From the Department of Medicine, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030 and
| | - Thomas Doetschman
- the B105 Institute and Department Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724-5217
| | - Liping Xiao
- From the Department of Medicine, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030 and
| | - Marja M Hurley
- From the Department of Medicine, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030 and
| |
Collapse
|
13
|
Ikeda S, Yamamoto H, Masuda M, Takei Y, Nakahashi O, Kozai M, Tanaka S, Nakao M, Taketani Y, Segawa H, Iwano M, Miyamoto KI, Takeda E. Downregulation of renal type IIa sodium-dependent phosphate cotransporter during lipopolysaccharide-induced acute inflammation. Am J Physiol Renal Physiol 2014; 306:F744-50. [PMID: 24500689 DOI: 10.1152/ajprenal.00474.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The type IIa sodium-dependent phosphate cotransporter (Npt2a) plays a critical role in reabsorption of inorganic phosphate (Pi) by renal proximal tubular cells. Pi abnormalities during early stages of sepsis have been reported, but the mechanisms regulating Pi homeostasis during acute inflammation are poorly understood. We examined the regulation of Pi metabolism and renal Npt2a expression during lipopolysaccharide (LPS)-induced inflammation in mice. Dose-response and time-course studies with LPS showed significant increases of plasma Pi and intact parathyroid hormone (iPTH) levels and renal Pi excretion, while renal calcium excretion was significantly decreased. There was no difference in plasma 1,25-dihydroxyvitamin D levels, but the induction of plasma intact fibroblast growth factor 23 levels peaked 3 h after LPS treatment. Western blotting, immunostaining, and quantitative real-time PCR showed that LPS administration significantly decreased Npt2a protein expression in the brush border membrane (BBM) 3 h after injection, but there was no change in renal Npt2a mRNA levels. Moreover, tumor necrosis factor-α injection also increased plasma iPTH and decreased renal BBM Npt2a expression. Importantly, we revealed that parathyroidectomized rats had impaired renal Pi excretion and BBM Npt2a expression in response to LPS. These results suggest that the downregulation of Npt2a expression in renal BBM through induction of plasma iPTH levels alter Pi homeostasis during LPS-induced acute inflammation.
Collapse
Affiliation(s)
- Shoko Ikeda
- Dept. of Health and Nutrition, Faculty of Human Life, Jin-ai Univ., Ohde-cho 3-1-1, Echizen city, Fukui 915-8586, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Masuda M, Miyazaki-Anzai S, Levi M, Ting TC, Miyazaki M. PERK-eIF2α-ATF4-CHOP signaling contributes to TNFα-induced vascular calcification. J Am Heart Assoc 2013; 2:e000238. [PMID: 24008080 PMCID: PMC3835225 DOI: 10.1161/jaha.113.000238] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Vascular calcification is a common feature in patients with chronic kidney disease (CKD). CKD increases serum levels of tumor necrosis factor-α (TNFα), a critical mediator of vascular calcification. However, the molecular mechanism by which TNFα promotes CKD-dependent vascular calcification remains obscure. The purpose of the present study was to investigate whether TNFα-induced vascular calcification in CKD is caused by the endoplasmic reticulum response involving protein kinase RNA-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). METHODS AND RESULTS We examined the effects of TNFα on the endoplasmic reticulum (ER) stress response of vascular smooth muscle cells (VSMCs). TNFα treatment drastically induced the PERK-eIF2α-ATF4-CHOP axis of the ER stress response in VSMCs. PERK, ATF4, and CHOP shRNA-mediated knockdowns drastically inhibited mineralization and osteogenesis of VSMCs induced by TNFα. CKD induced by 5/6 nephrectomies activated the PERK-eIF2α-ATF4-CHOP axis of the ER stress response in the aortas of ApoE-/- mice with increased aortic TNFα expression and vascular calcification. Treatment of 5/6 nephrectomized ApoE-/- mice with the TNFα neutralizing antibody or chemical Chaperones reduced aortic PERK-eIF2α-ATF4-CHOP signaling of the ER stress increased by CKD. This resulted in the inhibition of CKD-dependent vascular calcification. CONCLUSIONS These results suggest that TNFα induces the PERK-eIF2α-ATF4-CHOP axis of the ER stress response, leading to CKD-dependent vascular calcification.
Collapse
Affiliation(s)
- Masashi Masuda
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO
| | | | | | | | | |
Collapse
|
15
|
Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, Jurutka PW. Molecular mechanisms of vitamin D action. Calcif Tissue Int 2013; 92:77-98. [PMID: 22782502 DOI: 10.1007/s00223-012-9619-0] [Citation(s) in RCA: 497] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 12/14/2022]
Abstract
The hormonal metabolite of vitamin D, 1α,25-dihydroxyvitamin D(3) (1,25D), initiates biological responses via binding to the vitamin D receptor (VDR). When occupied by 1,25D, VDR interacts with the retinoid X receptor (RXR) to form a heterodimer that binds to vitamin D responsive elements in the region of genes directly controlled by 1,25D. By recruiting complexes of either coactivators or corepressors, ligand-activated VDR-RXR modulates the transcription of genes encoding proteins that promulgate the traditional functions of vitamin D, including signaling intestinal calcium and phosphate absorption to effect skeletal and calcium homeostasis. Thus, vitamin D action in a particular cell depends upon the metabolic production or delivery of sufficient concentrations of the 1,25D ligand, expression of adequate VDR and RXR coreceptor proteins, and cell-specific programming of transcriptional responses to regulate select genes that encode proteins that function in mediating the effects of vitamin D. For example, 1,25D induces RANKL, SPP1 (osteopontin), and BGP (osteocalcin) to govern bone mineral remodeling; TRPV6, CaBP(9k), and claudin 2 to promote intestinal calcium absorption; and TRPV5, klotho, and Npt2c to regulate renal calcium and phosphate reabsorption. VDR appears to function unliganded by 1,25D in keratinocytes to drive mammalian hair cycling via regulation of genes such as CASP14, S100A8, SOSTDC1, and others affecting Wnt signaling. Finally, alternative, low-affinity, non-vitamin D VDR ligands, e.g., lithocholic acid, docosahexaenoic acid, and curcumin, have been reported. Combined alternative VDR ligand(s) and 1,25D/VDR control of gene expression may delay chronic disorders of aging such as osteoporosis, type 2 diabetes, cardiovascular disease, and cancer.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, 425 North 5th Street, Phoenix, AZ 85004-2157, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Haussler MR, Whitfield GK, Kaneko I, Forster R, Saini R, Hsieh JC, Haussler CA, Jurutka PW. The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Rev Endocr Metab Disord 2012; 13:57-69. [PMID: 21932165 PMCID: PMC3288475 DOI: 10.1007/s11154-011-9199-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1,25-dihydroxyvitamin D (1,25D), through association with the nuclear vitamin D receptor (VDR), exerts control over a novel endocrine axis consisting of the bone-derived hormone FGF23, and the kidney-expressed klotho, CYP27B1, and CYP24A1 genes, which together prevent hyperphosphatemia/ectopic calcification and govern the levels of 1,25D to maintain bone mineral integrity while promoting optimal function of other vital tissues. When occupied by 1,25D, VDR interacts with RXR to form a heterodimer that binds to VDREs in the region of genes directly controlled by 1,25D (e.g., FGF23, klotho, Npt2c, CYP27B1 and CYP24A1). By recruiting complexes of comodulators, activated VDR initiates a series of events that induces or represses the transcription of genes encoding proteins such as: the osteocyte-derived hormone, FGF23; the renal anti-senescence factor and protein co-receptor for FGF23, klotho; other mediators of phosphate transport including Npt2a/c; and vitamin D hormone metabolic enzymes, CYP27B1 and CYP24A1. The mechanism whereby osteocytes are triggered to release FGF23 is yet to be fully defined, but 1,25D, phosphate, and leptin appear to play major roles. The kidney responds to FGF23 to elicit CYP24A1-catalyzed detoxification of the 1,25D hormone while also repressing both Npt2a/c to mediate phosphate elimination and CYP27B1 to limit de novo 1,25D synthesis. Comprehension of these skeletal and renal actions of 1,25D should facilitate the development of novel mimetics to prevent ectopic calcification, chronic renal and vascular disease, and promote healthful aging.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA.
| | | | | | | | | | | | | | | |
Collapse
|