1
|
Saurav K, Caso A, Urajová P, Hrouzek P, Esposito G, Delawská K, Macho M, Hájek J, Cheel J, Saha S, Divoká P, Arsin S, Sivonen K, Fewer DP, Costantino V. Fatty Acid Substitutions Modulate the Cytotoxicity of Puwainaphycins/Minutissamides Isolated from the Baltic Sea Cyanobacterium Nodularia harveyana UHCC-0300. ACS OMEGA 2022; 7:11818-11828. [PMID: 35449984 PMCID: PMC9016887 DOI: 10.1021/acsomega.1c07160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/15/2022] [Indexed: 05/08/2023]
Abstract
Puwainaphycins (PUW) and minutissamides (MIN) are structurally homologous cyclic lipopeptides that exhibit high structural variability and possess antifungal and cytotoxic activities. While only a minor variation can be found in the amino acid composition of the peptide cycle, the fatty acid (FA) moiety varies largely. The effect of FA functionalization on the bioactivity of PUW/MIN chemical variants is poorly understood. A rapid and selective liquid chromatography-mass spectrometry-based method led us to identify 13 PUW/MIN (1-13) chemical variants from the benthic cyanobacterium Nodularia harveyana strain UHCC-0300 from the Baltic Sea. Five new variants identified were designated as PUW H (1), PUW I (2), PUW J (4), PUW K (10), and PUW L (13) and varied slightly in the peptidic core composition, but a larger variation was observed in the oxo-, chloro-, and hydroxy-substitutions on the FA moiety. To address the effect of FA substitution on the cytotoxic effect, the major variants (3 and 5-11) together with four other PUW/MIN variants (14-17) previously isolated were included in the study. The data obtained showed that hydroxylation of the FA moiety abolishes the cytotoxicity or significantly reduces it when compared with the oxo-substituted C18-FA (compounds 5-8). The oxo-substitution had only a minor effect on the cytotoxicity of the compound when compared to variants bearing no substitution. The activity of PUW/MIN variants with chlorinated FA moieties varied depending on the position of the chlorine atom on the FA chain. This study also shows that variation in the amino acids distant from the FA moiety (position 4-8 of the peptide cycle) does not play an important role in determining the cytotoxicity of the compound. These findings confirmed that the lipophilicity of FA is essential to maintain the cytotoxicity of PUW/MIN lipopeptides. Further, a 63 kb puwainaphycin biosynthetic gene cluster from a draft genome of the N. harveyana strain UHCC-0300 was identified. This pathway encoded two specific lipoinitiation mechanisms as well as enzymes needed for the modification of the FA moiety. Examination on biosynthetic gene clusters and the structural variability of the produced PUW/MIN suggested different mechanisms of fatty-acyl-AMP ligase cooperation with accessory enzymes leading to a new set of PUW/MIN variants bearing differently substituted FA.
Collapse
Affiliation(s)
- Kumar Saurav
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
- ,
| | - Alessia Caso
- TheBlue
Chemistry Lab, Università Degli Studi
di Napoli “Federico II”, task Force “BigFed2”, Napoli 80131, Italy
| | - Petra Urajová
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Pavel Hrouzek
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Germana Esposito
- TheBlue
Chemistry Lab, Università Degli Studi
di Napoli “Federico II”, task Force “BigFed2”, Napoli 80131, Italy
| | - Kateřina Delawská
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
- Faculty
of Science, University of South Bohemia, Branišovská 1760 České Budějovice, Czech Republic
| | - Markéta Macho
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
- Faculty
of Science, University of South Bohemia, Branišovská 1760 České Budějovice, Czech Republic
| | - Jan Hájek
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - José Cheel
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Subhasish Saha
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Petra Divoká
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Sila Arsin
- Department
of Microbiology, Viikki Biocenter, University
of Helsinki, FI-00014 Helsinki, Finland
| | - Kaarina Sivonen
- Department
of Microbiology, Viikki Biocenter, University
of Helsinki, FI-00014 Helsinki, Finland
| | - David P. Fewer
- Department
of Microbiology, Viikki Biocenter, University
of Helsinki, FI-00014 Helsinki, Finland
| | - Valeria Costantino
- TheBlue
Chemistry Lab, Università Degli Studi
di Napoli “Federico II”, task Force “BigFed2”, Napoli 80131, Italy
| |
Collapse
|
2
|
Fewer DP, Jokela J, Heinilä L, Aesoy R, Sivonen K, Galica T, Hrouzek P, Herfindal L. Chemical diversity and cellular effects of antifungal cyclic lipopeptides from cyanobacteria. PHYSIOLOGIA PLANTARUM 2021; 173:639-650. [PMID: 34145585 DOI: 10.1111/ppl.13484] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 05/11/2023]
Abstract
Cyanobacteria produce a variety of chemically diverse cyclic lipopeptides with potent antifungal activities. These cyclic lipopeptides have an amphipathic structure comprised of a polar peptide cycle and hydrophobic fatty acid side chain. Many have antibiotic activity against a range of human and plant fungal pathogens. This review article aims to summarize the present knowledge on the chemical diversity and cellular effects of cyanobacterial cyclic lipopeptides that display antifungal activity. Cyclic antifungal lipopeptides from cyanobacteria commonly fall into four structural classes; hassallidins, puwainaphycins, laxaphycins, and anabaenolysins. Many of these antifungal cyclic lipopeptides act through cholesterol and ergosterol-dependent disruption of membranes. In many cases, the cyclic lipopeptides also exert cytotoxicity in human cells, and a more extensive examination of their biological activity and structure-activity relationship is warranted. The hassallidin, puwainaphycin, laxaphycin, and anabaenolysin structural classes are unified through shared complex biosynthetic pathways that encode a variety of unusual lipoinitiation mechanisms and branched biosynthesis that promote their chemical diversity. However, the biosynthetic origins of some cyanobacterial cyclic lipopeptides and the mechanisms, which drive their structural diversification in general, remain poorly understood. The strong functional convergence of differently organized chemical structures suggests that the production of lipopeptide confers benefits for their producer. Whether these benefits originate from their antifungal activity or some other physiological function remains to be answered in the future. However, it is clear that cyanobacteria encode a wealth of new cyclic lipopeptides with novel biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- David P Fewer
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Lassi Heinilä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Reidun Aesoy
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Tomáš Galica
- Academy of Science of the Czech Republic, Institute of Microbiology, Centre Algatech, Třeboň, Czech Republic
| | - Pavel Hrouzek
- Academy of Science of the Czech Republic, Institute of Microbiology, Centre Algatech, Třeboň, Czech Republic
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Nakamoto H, Yokoyama Y, Suzuki T, Miyamoto Y, Fujishiro T, Morikawa M, Miyata Y. A cyclic lipopeptide surfactin is a species-selective Hsp90 inhibitor that suppresses cyanobacterial growth. J Biochem 2021; 170:255-264. [PMID: 33768253 DOI: 10.1093/jb/mvab037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is essential for eukaryotic cells, whereas bacterial homologs play a role under stresses and in pathogenesis. Identifying species-specific Hsp90 inhibitors is challenging because Hsp90 is evolutionarily conserved. We found that a cyclic lipopeptide surfactin inhibits the ATPase activity of Hsp90 from the cyanobacterium Synechococcus elongatus (S. elongatus) PCC 7942 but does not inhibit Escherichia coli (E. coli), yeast and human Hsp90s. Molecular docking simulations indicated that surfactin could bind to the N-terminal dimerization interface of the cyanobacterial Hsp90 in the ATP- and ADP-bound states, which provided molecular insights into the species-selective inhibition. The data suggest that surfactin inhibits a rate-limiting conformational change of S. elongatus Hsp90 in the ATP hydrolysis. Surfactin also inhibited the interaction of the cyanobacterial Hsp90 with a model substrate, and suppressed S. elongatus growth under heat stress, but not that of E. coli. Surfactin did not show significant cellular toxicity toward mammalian cells. These results indicate that surfactin inhibits the cellular function of Hsp90 specifically in the cyanobacterium. The present study shows that a cyclic peptide has a great specificity to interact with a specific homolog of a highly conserved protein family.
Collapse
Affiliation(s)
- Hitoshi Nakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yuhei Yokoyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Takahiro Suzuki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yuri Miyamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Masaaki Morikawa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
4
|
Huang L, Liu R, Li J, Liang X, Lan Q, Shi X, Pan L, Chen H, Ma Z. Synthesis, characterization, anti-tumor activity, photo-luminescence and BHb/HHb/Hsp90 molecular docking of zinc(II) hydroxyl-terpyridine complexes. J Inorg Biochem 2019; 201:110790. [DOI: 10.1016/j.jinorgbio.2019.110790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 01/02/2023]
|
5
|
Halder V, Suliman MNS, Kaschani F, Kaiser M. Plant chemical genetics reveals colistin sulphate as a SA and NPR1-independent PR1 inducer functioning via a p38-like kinase pathway. Sci Rep 2019; 9:11196. [PMID: 31371749 PMCID: PMC6671972 DOI: 10.1038/s41598-019-47526-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023] Open
Abstract
In plants, low-dose of exogenous bacterial cyclic lipopeptides (CLPs) trigger transient membrane changes leading to activation of early and late defence responses. Here, a forward chemical genetics approach identifies colistin sulphate (CS) CLP as a novel plant defence inducer. CS uniquely triggers activation of the PATHOGENESIS-RELATED 1 (PR1) gene and resistance against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in Arabidopsis thaliana (Arabidopsis) independently of the PR1 classical inducer, salicylic acid (SA) and the key SA-signalling protein, NON-EXPRESSOR OF PR1 (NPR1). Low bioactive concentration of CS does not trigger activation of early defence markers such as reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK). However, it strongly suppresses primary root length elongation. Structure activity relationship (SAR) assays and mode-of-action (MoA) studies show the acyl chain and activation of a ∼46 kDa p38-like kinase pathway to be crucial for CS' bioactivity. Selective pharmacological inhibition of the active p38-like kinase pathway by SB203580 reverses CS' effects on PR1 activation and root length suppression. Our results with CS as a chemical probe highlight the existence of a novel SA- and NPR1-independent branch of PR1 activation functioning via a membrane-sensitive p38-like kinase pathway.
Collapse
Affiliation(s)
- Vivek Halder
- Chemical Biology Laboratory, Max Planck Institute of Plant Breeding Research, Carl-von-Linnè-Weg 10, 50829, Köln, Germany. .,Chemical Biology, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany. .,Rijk Zwaan, De Lier, 2678 ZG, The Netherlands.
| | - Mohamed N S Suliman
- Chemical Biology Laboratory, Max Planck Institute of Plant Breeding Research, Carl-von-Linnè-Weg 10, 50829, Köln, Germany.,Desert Research Centre, 11753 El matareya, Cairo, Egypt
| | - Farnusch Kaschani
- Chemical Biology, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany.
| |
Collapse
|
6
|
Lee EH, Kim S, Choi MS, Yang H, Park SM, Oh HA, Moon KS, Han JS, Kim YB, Yoon S, Oh JH. Gene networking in colistin-induced nephrotoxicity reveals an adverse outcome pathway triggered by proteotoxic stress. Int J Mol Med 2019; 43:1343-1355. [PMID: 30628653 PMCID: PMC6365082 DOI: 10.3892/ijmm.2019.4052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/17/2018] [Indexed: 01/18/2023] Open
Abstract
Colistin has been widely used for the treatment of infections of multidrug-resistant Gram-negative bacteria, despite the fact that it induces serious kidney injury as a side effect. To investigate the mechanism underlying its nephrotoxicity, colistin methanesulfonate sodium (CMS; 25 or 50 mg/kg) was administered via intraperitoneal injection to Sprague-Dawley rats daily over 7 days. Serum biochemistry and histopathology indicated that nephrotoxicity occurred in the rats administered with CMS. Whole-genome microarrays indicated 894 differentially expressed genes in the group treated with CMS (analysis of variance, false discovery rate <0.05, fold-change ≥1.3). Gene pathway and networking analyses revealed that genes associated with proteotoxic stress, including ribosome synthesis, protein translation, and protein folding, were significantly associated with the nephrotoxicity induced by CMS. It was found that colistin inhibited the expression of the target genes heat shock factor 1 and nuclear factor erythroid-2-related factor-2, which are associated with proteostasis, and that nephrotoxicity of CMS may be initiated by proteotoxic stress due to heat shock response inhibition, leading to oxidative stress, endoplasmic reticulum stress, cell cycle arrest and apoptosis, eventually leading to cell death. A putative adverse outcome pathway was constructed based on the integrated gene networking data, which may clarify the mode of action of colistin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Eun Hee Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Soojin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Mi-Sun Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Heeyoung Yang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Hyun-A Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Kyoung-Sik Moon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Ji-Seok Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Yong-Bum Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| |
Collapse
|
7
|
Stimulation of the ATPase activity of Hsp90 by zerumbone modification of its cysteine residues destabilizes its clients and causes cytotoxicity. Biochem J 2018; 475:2559-2576. [DOI: 10.1042/bcj20180230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
Hsp90 is an ATP-dependent molecular chaperone that assists folding and conformational maturation/maintenance of many proteins. It is a potential cancer drug target because it chaperones oncoproteins. A prokaryotic homolog of Hsp90 (HtpG) is essential for thermo-tolerance in some bacteria and virulence of zoonotic pathogens. To identify a new class of small molecules which target prokaryotic and eukaryotic Hsp90s, we studied the effects of a naturally occurring cyclic sesquiterpene, zerumbone, which inhibits proliferation of a wide variety of tumor cells, on the activity of Hsp90. Zerumbone enhanced the ATPase activity of cyanobacterial Hsp90 (Hsp90SE), yeast Hsp90, and human Hsp90α. It also enhanced the catalytic efficiency of Hsp90SE by greatly increasing kcat. Mass analysis showed that zerumbone binds to cysteine side chains of Hsp90SE covalently. Mutational studies identified 3 cysteine residues (one per each domain of Hsp90SE) that are involved in the enhancement, suggesting the presence of allosteric sites in the middle and C-terminal domains of Hsp90SE. Treatment of cyanobacterial cells with zerumbone caused them to become very temperature-sensitive, a phenotype reminiscent of cyanobacterial Hsp90 mutants, and also decreased the cellular level of linker polypeptides that are clients for Hsp90SE. Zerumbone showed cellular toxicity on cancer-derived mammalian cells by inducing apoptosis. In addition, zerumbone inhibited the binding of Hsp90/Cdc37 to client kinases. Altogether, we conclude that modification of cysteine residues of Hsp90 by zerumbone enhances its ATPase activity and inhibits physiological Hsp90 function. The activation of Hsp90 may provide new strategies to inhibit its chaperone function in cells.
Collapse
|
8
|
Yue Q, Stahl F, Plettenburg O, Kirschning A, Warnecke A, Zeilinger C. The Noncompetitive Effect of Gambogic Acid Displaces Fluorescence-Labeled ATP but Requires ATP for Binding to Hsp90/HtpG. Biochemistry 2018; 57:2601-2605. [PMID: 29664615 DOI: 10.1021/acs.biochem.8b00155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heat shock protein 90 (Hsp90) family plays a critical role in maintaining the homeostasis of the intracellular environment for human and prokaryotic cells. Hsp90 orthologues were identified as important target proteins for cancer and plant disease therapies. It was shown that gambogic acid (GBA) has the potential to inhibit human Hsp90. However, it is unknown whether it is also able to act on the bacterial high-temperature protein (HtpG) analogue. In this work, we screened GBA and nine other novel potential Hsp90 inhibitors using a miniaturized high-throughput protein microarray-based assay and found that GBA shows an inhibitory effect on different Hsp90s after dissimilarity analysis of the protein sequence alignment. The dissociation constant of GBA and HtpG Xanthomonas (XcHtpG) computed from microscale thermophoresis is 682.2 ± 408 μM in the presence of ATP, which is indispensable for the binding of GBA to XcHtpG. Our results demonstrate that GBA is a promising Hsp90/HtpG inhibitor. The work further demonstrates that our assay concept has great potential for finding new potent Hsp/HtpG inhibitors.
Collapse
Affiliation(s)
- Qing Yue
- Institute of Biophysics and Center of Biomolecular Drug Research (BMWZ) , Leibniz Universität Hannover , Schneiderberg 38 , 30167 Hannover , Germany.,Department of Otorhinolaryngology , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Frank Stahl
- Institute of Technical Chemistry and Center of Biomolecular Drug Research (BMWZ) , Leibniz Universität Hannover , Schneiderberg 1B , 30167 Hannover , Germany
| | - Oliver Plettenburg
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ) , Leibniz Universität Hannover , Schneiderberg 1B , 30167 Hannover , Germany.,Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH , Institute of Medicinal Chemistry , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ) , Leibniz Universität Hannover , Schneiderberg 1B , 30167 Hannover , Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Carsten Zeilinger
- Institute of Biophysics and Center of Biomolecular Drug Research (BMWZ) , Leibniz Universität Hannover , Schneiderberg 38 , 30167 Hannover , Germany
| |
Collapse
|
9
|
Lupoli TJ, Vaubourgeix J, Burns-Huang K, Gold B. Targeting the Proteostasis Network for Mycobacterial Drug Discovery. ACS Infect Dis 2018; 4:478-498. [PMID: 29465983 PMCID: PMC5902792 DOI: 10.1021/acsinfecdis.7b00231] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the world's deadliest infectious diseases and urgently requires new antibiotics to treat drug-resistant strains and to decrease the duration of therapy. During infection, Mtb encounters numerous stresses associated with host immunity, including hypoxia, reactive oxygen and nitrogen species, mild acidity, nutrient starvation, and metal sequestration and intoxication. The Mtb proteostasis network, composed of chaperones, proteases, and a eukaryotic-like proteasome, provides protection from stresses and chemistries of host immunity by maintaining the integrity of the mycobacterial proteome. In this Review, we explore the proteostasis network as a noncanonical target for antibacterial drug discovery.
Collapse
Affiliation(s)
- Tania J. Lupoli
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Kristin Burns-Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| |
Collapse
|
10
|
Zininga T, Pooe OJ, Makhado PB, Ramatsui L, Prinsloo E, Achilonu I, Dirr H, Shonhai A. Polymyxin B inhibits the chaperone activity of Plasmodium falciparum Hsp70. Cell Stress Chaperones 2017; 22:707-715. [PMID: 28455613 PMCID: PMC5573689 DOI: 10.1007/s12192-017-0797-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is a molecular chaperone that plays an important role in cellular proteostasis. Hsp70s are also implicated in the survival and pathogenicity of malaria parasites. The main agent of malaria, Plasmodium falciparum, expresses six Hsp70s. Of these, two (PfHsp70-1 and PfHsp70-z) localize to the parasite cytosol. Previously conducted gene knockout studies suggested that PfHsp70-z is essential, and it has been demonstrated that small-molecule inhibitors targeting PfHsp70-1 cause parasite death. For this reason, both PfHsp70-1 and PfHsp70-z are potential antimalarial targets. Two cyclic lipopeptides, colistin and polymyxin B (PMB), have been shown to bind another heat shock protein, Hsp90, inhibiting its chaperone function. In the current study, we investigated the effect of PMB on the structure-function features of PfHsp70-1 and PfHsp70-z. Using surface plasmon resonance analysis, we observed that PMB directly interacts with both PfHsp70-1 and PfHsp70-z. In addition, using circular dichroism spectrometric analysis combined with tryptophan fluorescence measurements, we observed that PMB modulated the secondary and tertiary structures of Hsp70. Furthermore, PMB inhibited the basal ATPase activity and chaperone function of the two Hsp70s. Our findings suggest that PMB associates with Hsp70 to inhibit its function. In light of the central role of Hsp70 in cellular proteostasis and its essential role in the development of malaria parasites in particular, our findings expand the library of small-molecule inhibitors that target this medically important class of molecular chaperones.
Collapse
Affiliation(s)
- Tawanda Zininga
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa
| | - Ofentse J Pooe
- Department of Biochemistry, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Pertunia B Makhado
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa
| | - Lebogang Ramatsui
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, 6140, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Heinrich Dirr
- Protein Structure-Function Research Unit, School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa.
| |
Collapse
|
11
|
Kawamura T, Kawatani M, Muroi M, Kondoh Y, Futamura Y, Aono H, Tanaka M, Honda K, Osada H. Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival. Sci Rep 2016; 6:26521. [PMID: 27210421 PMCID: PMC4876372 DOI: 10.1038/srep26521] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/29/2016] [Indexed: 01/04/2023] Open
Abstract
Since recent publications suggested that the survival of cancer cells depends on MTH1 to avoid incorporation of oxidized nucleotides into the cellular DNA, MTH1 has attracted attention as a potential cancer therapeutic target. In this study, we identified new purine-based MTH1 inhibitors by chemical array screening. However, although the MTH1 inhibitors identified in this study targeted cellular MTH1, they exhibited only weak cytotoxicity against cancer cells compared to recently reported first-in-class inhibitors. We performed proteomic profiling to investigate the modes of action by which chemically distinct MTH1 inhibitors induce cancer cell death, and found mechanistic differences among the first-in-class MTH1 inhibitors. In particular, we identified tubulin as the primary target of TH287 and TH588 responsible for the antitumor effects despite the nanomolar MTH1-inhibitory activity in vitro. Furthermore, overexpression of MTH1 did not rescue cells from MTH1 inhibitor–induced cell death, and siRNA-mediated knockdown of MTH1 did not suppress cancer cell growth. Taken together, we conclude that the cytotoxicity of MTH1 inhibitors is attributable to off-target effects and that MTH1 is not essential for cancer cell survival.
Collapse
Affiliation(s)
- Tatsuro Kawamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Kawatani
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Muroi
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Harumi Aono
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Miho Tanaka
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Kawatani M, Fukushima Y, Kondoh Y, Honda K, Sekine T, Yamaguchi Y, Taniguchi N, Osada H. Identification of matrix metalloproteinase inhibitors by chemical arrays. Biosci Biotechnol Biochem 2015; 79:1597-602. [PMID: 25988721 DOI: 10.1080/09168451.2015.1045829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade many extracellular matrix components and that have been implicated in the pathogenesis of various human diseases including cancer metastasis. Here, we screened MMP-9 inhibitors using photo-cross-linked chemical arrays, which can detect small-molecule ligand-protein interactions on a chip in a high-throughput manner. The array slides were probed sequentially with His-MMP-9, anti-His antibody, and a Cy5-labeled secondary antibody and then scanned with a microarray scanner. We obtained 27 hits among 24,275 compounds from the NPDepo library; 2 of the identified compounds (isoxazole compound 1 and naphthofluorescein) inhibited MMP-9 enzyme activity in vitro. We further explored 17 analogs of 1 and found that compound 18 had the strongest inhibitory activity. Compound 18 also inhibited other MMPs, including MMP-2, MMP-12, and MMP-13 and significantly inhibited cell migration in human fibrosarcoma HT1080 cells. These results suggest that 18 is a broad-spectrum MMP inhibitor.
Collapse
|
13
|
Kondoh Y, Honda K, Osada H. Construction and application of a photo-cross-linked chemical array. Methods Mol Biol 2015; 1263:29-41. [PMID: 25618334 DOI: 10.1007/978-1-4939-2269-7_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chemical array technology is a powerful tool for high-throughput screening of small-molecule ligand-protein interactions. A chemical array is a collection of small-molecule compounds spotted and immobilized on a glass slide surface, providing a multiplex platform to identify small-molecule compounds binding to a protein of interest in high-throughput screening. Several research groups have developed a variety of methods for the immobilization of small molecules onto a solid matrix. We have developed a unique photo-cross-linked chemical array for immobilizing small molecules in a functional-group-independent manner. In this chapter, we describe in detail a protocol for the construction of a photo-cross-linked chemical array and its application for ligand screening by using a tag-fused protein.
Collapse
Affiliation(s)
- Yasumitsu Kondoh
- Antibiotics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | | |
Collapse
|
14
|
Yokoyama Y, Ohtaki A, Jantan I, Yohda M, Nakamoto H. Goniothalamin enhances the ATPase activity of the molecular chaperone Hsp90 but inhibits its chaperone activity. J Biochem 2014; 157:161-8. [PMID: 25294885 DOI: 10.1093/jb/mvu061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hsp90 is an ATP-dependent molecular chaperone that is involved in important cellular pathways such as signal transduction pathways. It is a potential cancer drug target because it plays a critical role for stabilization and activation of oncoproteins. Thus, small molecule compounds that control the Hsp90 function are useful to elucidate potential lead compounds against cancer. We studied effect of a naturally occurring styryl-lactone goniothalamin on the activity of Hsp90. Although many drugs targeting Hsp90 inhibit the ATPase activity of Hsp90, goniothalamin enhanced rather than inhibited the ATPase activity of a cyanobacterial Hsp90 (HtpG) and a yeast Hsp90. It increased both K(m) and k(cat) of the Hsp90s. Domain competition assays and tryptophan fluorescence measurements with various truncated derivatives of HtpG indicated that goniothalamin binds to the N-terminal domain of HtpG. Goniothalamin did not influence on the interaction of HtpG with a non-native protein or the anti-aggregation activity of HtpG significantly. However, it inhibited the activity of HtpG that assists refolding of a non-native protein in cooperation with the Hsp70 chaperone system. This is the first report to show that a small molecule that binds to the N-terminal domain of Hsp90 activates its ATPase activity, while inhibiting the chaperone function of Hsp90.
Collapse
Affiliation(s)
- Yuhei Yokoyama
- Molecular Biology Course, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan; Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; and Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Aguru Ohtaki
- Molecular Biology Course, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan; Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; and Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ibrahim Jantan
- Molecular Biology Course, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan; Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; and Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Yohda
- Molecular Biology Course, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan; Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; and Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Hitoshi Nakamoto
- Molecular Biology Course, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan; Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; and Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
15
|
Wall CA, Koniges GJ, Miller SR. Divergence with gene flow in a population of thermophilic bacteria: a potential role for spatially varying selection. Mol Ecol 2014; 23:3371-83. [PMID: 24863904 DOI: 10.1111/mec.12812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 01/14/2023]
Abstract
A fundamental goal of evolutionary biology is to understand how ecological diversity arises and is maintained in natural populations. We have investigated the contributions of gene flow and divergent selection to the distribution of genetic variation in an ecologically differentiated population of a thermophilic cyanobacterium (Mastigocladus laminosus) found along the temperature gradient of a nitrogen-limited stream in Yellowstone National Park. For most loci sampled, gene flow appears to be sufficient to prevent substantial genetic divergence. However, one locus (rfbC) exhibited a comparatively low migration rate as well as other signatures expected for a gene experiencing spatially varying selection, including an excess of common variants, an elevated level of polymorphism and extreme genetic differentiation along the gradient. rfbC is part of an expression island involved in the production of the polysaccharide component of the protective envelope of the heterocyst, the specialized nitrogen-fixing cell of these bacteria. SNP genotyping in the vicinity of rfbC revealed a ~5-kbp region including a gene content polymorphism that is tightly associated with environmental temperature and therefore likely contains the target of selection. Two genes have been deleted both in the predominant haplotype found in the downstream region of White Creek and in strains from other Yellowstone populations of M. laminosus, which may result in the production of heterocysts with different envelope properties. This study implicates spatially varying selection in the maintenance of variation related to thermal performance at White Creek despite on-going or recent gene flow.
Collapse
Affiliation(s)
- Christopher A Wall
- Division of Biological Sciences, 32 Campus Dr. #4824, The University of Montana Missoula, MT, 59812-4824, USA
| | | | | |
Collapse
|
16
|
Kawatani M, Osada H. Affinity-based target identification for bioactive small molecules. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00276d] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A variety of new approaches of affinity-based target identification for bioactive small molecules are being developed, facilitating drug development and understanding complicated biological processes.
Collapse
|
17
|
Alix JH. Targeting HSP70 to Fight Cancer and Bad Bugs: One and the Same Battle? Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Identification and characterization of an inhibitor of trichothecene 3-O-acetyltransferase, TRI101, by the chemical array approach. Biosci Biotechnol Biochem 2013; 77:1958-60. [PMID: 24018674 DOI: 10.1271/bbb.130153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trichothecene 3-O-acetyltransferase (TRI101) is an indispensable enzyme for the biosynthesis of trichothecenes, a group of mycotoxins produced by Fusarium graminearum. In this study, an inhibitor of TRI101 was identified by chemical array analysis using compounds from the RIKEN Natural Products Depository (NPDepo) library. Although the addition of the identified enzyme inhibitor to the fungal culture did not inhibit trichothecene production, it can serve as a candidate lead compound in the development of a mycotoxin inhibitor that inactivates fungal defense mechanisms.
Collapse
|