1
|
Gu Y, Suarez-Pizarro M, Chen CC, Wu J, Zocchi L, Suh S, Smith PJ, Cruz S, Tinoco R, Benavente CA. UHRF1 is critical for tumor-promoting inflammation and tumorigenesis in retinoblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641083. [PMID: 40093113 PMCID: PMC11908184 DOI: 10.1101/2025.03.02.641083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Retinoblastoma, the most common pediatric intraocular malignancy, arises from RB1 inactivation, leading to uncontrolled proliferation of retinal progenitor cells. Epigenetic dysregulation a key driver of retinoblastoma progression, yet the underlying mechanisms are poorly understood. UHRF1, a regulator of DNA methylation and chromatin remodeling, has been implicated in oncogenesis but its role in retinoblastoma has not been fully characterized. To investigate Uhrf1's role in tumor initiation and progression, we generated a genetically engineered mouse model of retinoblastoma with conditional Uhrf1 knockout. Remarkably, Uhrf1 loss completely blocked tumor formation, despite persistent early oncogenic events. Transcriptomic and epigenomic profiling revealed that Uhrf1 is essential for tumor progression, facilitating oncogenic transcription, chromatin accessibility, and aberrant DNA methylation. Beyond its epigenetic role, we found Uhrf1 modulates the tumor immune microenvironment, promoting chemokine secretion and microglial infiltration, suggesting that Uhrf1 promotes immune cell recruitment. Mechanistically, Uhrf1 enhances chemokine expression through NF-κB signaling, establishing a novel connection between epigenetic regulation and tumor-associated immune responses. These findings establish Uhrf1 as a critical driver of retinoblastoma progression, essential for tumor maintenance but not initiation. By sustaining oncogenic transcriptional programs and shaping a pro-tumor immune microenvironment, Uhrf1 emerges as a promising therapeutic target for inhibiting tumor growth and immune evasion.
Collapse
|
2
|
Xiao Z, Liu X, Wang Y, Jiang S, Feng Y. Comprehensive analysis of single-cell and bulk RNA sequencing reveals postoperative progression markers for non-muscle invasive bladder cancer and predicts responses to immunotherapy. Discov Oncol 2024; 15:649. [PMID: 39532830 PMCID: PMC11557814 DOI: 10.1007/s12672-024-01548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Non-muscle-invasive bladder cancer (NMIBC) is renowned for its high recurrence, invasiveness, and poor prognosis. Consequently, developing new biomarkers for risk assessment and investigating innovative therapeutic targets postoperative in NMIBC patients are crucial to aid in treatment planning. APPROACHES Differential gene expression analysis was performed using multiple Gene Expression Omnibus (GEO) datasets to identify differentially expressed genes (DEGs) between NMIBC and normal tissue, as well as between NMIBC and muscle-invasive bladder cancer (MIBC). Functional enrichment analysis was conducted based on the DEGs identified. Subsequently, prognosis-related genes were selected using Kaplan-Meier (KM) analysis and Cox regression analysis. The Boruta algorithm was utilized to further screen for core DEGs related to postoperative progression in NMIBC based on the aforementioned prognosis-related genes. Single-cell and clinical correlation studies were performed to verify their expression across various stages of bladder cancer. To investigate the link between core genes and the immune microenvironment, single-sample gene set enrichment analysis (ssGSEA) was utilized, and Receiver Operating Characteristic (ROC) and KM analyses were performed to confirm predictive power for immune therapy outcomes. Machine learning (ML) models were constructed using the DepMap dataset to predict the efficacy of core gene inhibitors in treating bladder cancers. The prognostic performance of the core genes was evaluated using ROC curve analysis. An online prediction tool was developed based on the core genes to provide prognostic predictions. Finally, RT-qPCR, CCK-8, and Transwell assays were used to verify the pro-tumor effects of the GINS2 in bladder cancer. RESULTS A total of 70 DEGs were identified, among which 11 prognostic genes were obtained through KM analysis, and an additional 8 prognostic genes were obtained through COX analysis. The Boruta algorithm selected AURKB, GINS2, and UHRF1 as the three core DEGs. Single-cell and clinical variable correlation analyses indicated that the core genes promoted the progression of bladder cancer. The analysis of immune infiltration revealed a strong positive association between the core genes and both activated CD4 T cells and Type 2 helper T cells. Two random forest (RF) models were constructed to effectively predict the treatment effect of bladder cancer after targeted inhibition of AURKB and GINS2. In addition, an online nomogram tool was developed to effectively predict the risk of postoperative progression in NMIBC patients undergoing TURBT. Finally, RT-qPCR, CCK8, and Transwell assays showed that GINS2 promoted the growth and progression of bladder cancer. CONCLUSION AURKB, GINS2, and UHRF1 have the potential to enhance postoperative management of NMIBC patients undergoing transurethral resection of bladder tumor (TURBT) and can predict immunotherapy response, establishing them as promising therapeutic targets.
Collapse
Affiliation(s)
- Zhiliang Xiao
- Department of Urology, The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Xin Liu
- Department of Urology, The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Yuan Wang
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Sicong Jiang
- Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China.
| | - Yan Feng
- Department of Urology, The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
3
|
Tan L, Yin T, Xiang H, Wang L, Mudgal P, Chen J, Ding Y, Wang G, Lim BJW, Huang Y, Huang D, Liang Y, Alexander PB, Xiang K, Wang E, Yan C, Ma Z, Tan M, Li QJ, Wang XF. Aberrant cytoplasmic expression of UHRF1 restrains the MHC-I-mediated anti-tumor immune response. Nat Commun 2024; 15:8569. [PMID: 39362877 PMCID: PMC11450162 DOI: 10.1038/s41467-024-52902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Immunotherapy successfully complements traditional cancer treatment. However, primary and acquired resistance might limit efficacy. Reduced antigen presentation by MHC-I has been identified as potential resistance factor. Here we show that the epigenetic regulator ubiquitin-like with PHD and ring finger domains 1 (UHRF1), exhibits altered expression and aberrant cytosolic localization in cancerous tissues, where it promotes MHC-I ubiquitination and degradation. Cytoplasmic translocation of UHRF1 is induced by its phosphorylation on a specific serine in response to signals provided by factors present in the tumor microenvironment (TME), such as TGF-β, enabling UHRF1 to bind MHC-I. Downregulation of MHC-I results in suppression of the antigen presentation pathway to establish an immune hostile TME. UHRF1 inactivation by genetic deletion synergizes with immune checkpoint blockade (ICB) treatment and induces an anti-tumour memory response by evoking low-affinity T cells. Our study adds to the understanding of UHRF1 in cancer immune evasion and provides a potential target to synergize with immunotherapy and overcome immunotherapeutic resistance.
Collapse
Affiliation(s)
- Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Handan Xiang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Junying Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yi Ding
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Guoping Wang
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Bryan Jian Wei Lim
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Chengsong Yan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Zhehao Ma
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qi-Jing Li
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Deng Z, Long C, Han S, Xu Z, Hou T, Li W, Wang X, Liu X. UHRF1-mediated ubiquitination of nonhomologous end joining factor XLF promotes DNA repair in human tumor cells. J Biol Chem 2024; 300:107823. [PMID: 39341501 PMCID: PMC11530599 DOI: 10.1016/j.jbc.2024.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024] Open
Abstract
UHRF1 (Ubiquitin-like with PHD and Ring Finger domains 1) is a crucial E3 ubiquitin ligase and epigenetic regulator with pivotal roles in various biological processes, including the maintenance of DNA methylation, regulation of gene expression, and facilitation of DNA damage repair. In this study, we unveil that UHRF1 interacts with the nonhomologous end joining factor XLF (also known as Cernunnos) following DNA double strand breaks in HeLa cells. Furthermore, we demonstrate that UHRF1 catalyzes lysine 63-linked polyubiquitination of XLF, rather than lysine 48-linked polyubiquitination. Notably, this polyubiquitination of XLF by UHRF1 does not affect its protein stability; instead, it enhances the recruitment of XLF to the sites of DNA damage. These findings shed light on the role of UHRF1 as a novel regulator of DNA repair through XLF in tumor cells.
Collapse
Affiliation(s)
- Zhiwen Deng
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Caiyun Long
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Shuzhen Han
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Zhishen Xu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China; South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Teng Hou
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Weili Li
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Xingwu Wang
- Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Xiangyu Liu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China; Department of Hematology, The Second People's Hospital of Shenzhen, Shenzhen, China.
| |
Collapse
|
5
|
Gu L, Fu Y, Li X. Roles of post-translational modifications of UHRF1 in cancer. Epigenetics Chromatin 2024; 17:15. [PMID: 38725075 PMCID: PMC11080273 DOI: 10.1186/s13072-024-00540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
UHRF1 as a member of RING-finger type E3 ubiquitin ligases family, is an epigenetic regulator with five structural domains. It has been involved in the regulation of a series of biological functions, such as DNA replication, DNA methylation, and DNA damage repair. Additionally, aberrant overexpression of UHRF1 has been observed in over ten cancer types, indicating that UHRF1 is a typical oncogene. The overexpression of UHRF1 repressed the transcription of such tumor-suppressor genes as CDKN2A, BRCA1, and CDH1 through DNMT1-mediated DNA methylation. In addition to the upstream transcription factors regulating gene transcription, post-translational modifications (PTMs) also contribute to abnormal overexpression of UHRF1 in cancerous tissues. The types of PTM include phosphorylation, acetylation, methylationand ubiquitination, which regulate protein stability, histone methyltransferase activity, intracellular localization and the interaction with binding partners. Recently, several novel PTM types of UHRF1 have been reported, but the detailed mechanisms remain unclear. This comprehensive review summarized the types of UHRF1 PTMs, as well as their biological functions. A deep understanding of these crucial mechanisms of UHRF1 is pivotal for the development of novel UHRF1-targeted anti-cancer therapeutic strategies in the future.
Collapse
Affiliation(s)
- Lili Gu
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yongming Fu
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Xiong Li
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
6
|
Wang X, Lu H, Sprangers G, Hallstrom TC. UHRF2 accumulates in early G 1-phase after serum stimulation or mitotic exit to extend G 1 and total cell cycle length. Cell Cycle 2024; 23:613-627. [PMID: 38752903 PMCID: PMC11135863 DOI: 10.1080/15384101.2024.2353553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024] Open
Abstract
Ubiquitin like with PHD and ring finger domains 2 (UHRF2) regulates the cell cycle and epigenetics as a multi-domain protein sharing homology with UHRF1. UHRF1 functions with DNMT1 to coordinate daughter strand methylation during DNA replication, but UHRF2 can't perform this function, and its roles during cell cycle progression are not well defined. UHRF2 role as an oncogene vs. tumor suppressor differs in distinct cell types. UHRF2 interacts with E2F1 to control Cyclin E1 (CCNE1) transcription. UHRF2 also functions in a reciprocal loop with Cyclin E/CDK2 during G1, first as a direct target of CDK2 phosphorylation, but also as an E3-ligase with direct activity toward both Cyclin E and Cyclin D. In this study, we demonstrate that UHRF2 is expressed in early G1 following either serum stimulation out of quiescence or in cells transiting directly out of M-phase, where UHRF2 protein is lost. Further, UHRF2 depletion in G2/M is reversed with a CDK1 specific inhibitor. UHRF2 controls expression levels of cyclins and CDK inhibitors and controls its own transcription in a negative-feedback loop. Deletion of UHRF2 using CRISPR/Cas9 caused a delay in passage through each cell cycle phase. UHRF2 loss culminated in elevated levels of cyclins but also the CDK inhibitor p27KIP1, which regulates G1 passage, to reduce retinoblastoma phosphorylation and increase the amount of time required to reach G1/S passage. Our data indicate that UHRF2 is a central regulator of cell-cycle pacing through its complex regulation of cell cycle gene expression and protein stability.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Huarui Lu
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Grace Sprangers
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Timothy C. Hallstrom
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Qi X, Liu Y, Peng Y, Fu Y, Fu Y, Yin L, Li X. UHRF1 promotes spindle assembly and chromosome congression by catalyzing EG5 polyubiquitination. J Cell Biol 2023; 222:e202210093. [PMID: 37728657 PMCID: PMC10510743 DOI: 10.1083/jcb.202210093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/18/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
UHRF1 is an epigenetic coordinator bridging DNA methylation and histone modifications. Additionally, UHRF1 regulates DNA replication and cell cycle, and its deletion induces G1/S or G2/M cell cycle arrest. The roles of UHRF1 in the regulation of G2/M transition remain poorly understood. UHRF1 depletion caused chromosome misalignment, thereby inducing cell cycle arrest at mitotic metaphase, and these cells exhibited the defects of spindle geometry, prominently manifested as shorter spindles. Mechanistically, UHRF1 protein directly interacts with EG5, a kinesin motor protein, during mitosis. Furthermore, UHRF1 induced EG5 polyubiquitination at the site of K1034 and further promoted the interaction of EG5 with spindle assembly factor TPX2, thereby ensuring accurate EG5 distribution to the spindles during metaphase. Our study clarifies a novel UHRF1 function as a nuclear protein catalyzing EG5 polyubiquitination for proper spindle architecture and faithful genomic transmission, which is independent of its roles in epigenetic regulation and DNA damage repair inside the nucleus. These findings revealed a previously unknown mechanism of UHRF1 in controlling mitotic spindle architecture and chromosome behavior and provided mechanistic evidence for UHRF1 deletion-mediated G2/M arrest.
Collapse
Affiliation(s)
- Xuli Qi
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youhong Liu
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuchong Peng
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuxin Fu
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongming Fu
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linglong Yin
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiong Li
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Shimizu N, Shiraishi H, Hanada T. Zebrafish as a Useful Model System for Human Liver Disease. Cells 2023; 12:2246. [PMID: 37759472 PMCID: PMC10526867 DOI: 10.3390/cells12182246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | | | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| |
Collapse
|
9
|
Ashraf W, Ahmad T, Reynoird N, Hamiche A, Mély Y, Bronner C, Mousli M. Natural and Synthetic Anticancer Epidrugs Targeting the Epigenetic Integrator UHRF1. Molecules 2023; 28:5997. [PMID: 37630248 PMCID: PMC10459542 DOI: 10.3390/molecules28165997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and its incidence and mortality are increasing each year. Improved therapeutic strategies against cancer have progressed, but remain insufficient to invert this trend. Along with several other risk factors, abnormal genetic and epigenetic regulations play a critical role in the initiation of cellular transformation, as well as tumorigenesis. The epigenetic regulator UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is a multidomain protein with oncogenic abilities overexpressed in most cancers. Through the coordination of its multiple domains and other epigenetic key players, UHRF1 regulates DNA methylation and histone modifications. This well-coordinated dialogue leads to the silencing of tumor-suppressor genes (TSGs) and facilitates tumor cells' resistance toward anticancer drugs, ultimately promoting apoptosis escape and uncontrolled proliferation. Several studies have shown that the downregulation of UHRF1 with natural compounds in tumor cells induces the reactivation of various TSGs, inhibits cell growth, and promotes apoptosis. In this review, we discuss the underlying mechanisms and the potential of various natural and synthetic compounds that can inhibit/minimize UHRF1's oncogenic activities and/or its expression.
Collapse
Affiliation(s)
- Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Tanveer Ahmad
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Nicolas Reynoird
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Ali Hamiche
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| | - Christian Bronner
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Marc Mousli
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| |
Collapse
|
10
|
Kostyrko K, Román M, Lee AG, Simpson DR, Dinh PT, Leung SG, Marini KD, Kelly MR, Broyde J, Califano A, Jackson PK, Sweet-Cordero EA. UHRF1 is a mediator of KRAS driven oncogenesis in lung adenocarcinoma. Nat Commun 2023; 14:3966. [PMID: 37407562 PMCID: PMC10322837 DOI: 10.1038/s41467-023-39591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
KRAS is a frequent driver in lung cancer. To identify KRAS-specific vulnerabilities in lung cancer, we performed RNAi screens in primary spheroids derived from a Kras mutant mouse lung cancer model and discovered an epigenetic regulator Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). In human lung cancer models UHRF1 knock-out selectively impaired growth and induced apoptosis only in KRAS mutant cells. Genome-wide methylation and gene expression analysis of UHRF1-depleted KRAS mutant cells revealed global DNA hypomethylation leading to upregulation of tumor suppressor genes (TSGs). A focused CRISPR/Cas9 screen validated several of these TSGs as mediators of UHRF1-driven tumorigenesis. In vivo, UHRF1 knock-out inhibited tumor growth of KRAS-driven mouse lung cancer models. Finally, in lung cancer patients high UHRF1 expression is anti-correlated with TSG expression and predicts worse outcomes for patients with KRAS mutant tumors. These results nominate UHRF1 as a KRAS-specific vulnerability and potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Kaja Kostyrko
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| | - Marta Román
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Alex G Lee
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - David R Simpson
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Phuong T Dinh
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Stanley G Leung
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Kieren D Marini
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Marcus R Kelly
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Broyde
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - E Alejandro Sweet-Cordero
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Guo Z, Wan X, Luo Y, Liang F, Jiang S, Yuan X, Mo Z. The vicious circle of UHRF1 down-regulation and KEAP1/NRF2/HO-1 pathway impairment promotes oxidative stress-induced endothelial cell apoptosis in diabetes. Diabet Med 2023; 40:e15026. [PMID: 36510823 DOI: 10.1111/dme.15026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Oxidative stress is recognized as a key factor in the induction of endothelial dysfunction in diabetes. However, the specific mechanisms have not been fully elucidated. We herein hypothesized that ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) might have a role in oxidative stress-induced endothelial cell (EC) apoptosis in diabetes. METHODS Western blot, qPCR, wound healing assay, apoptosis assay, reactive oxygen species (ROS) detection, dual-luciferase reporter assay, methylation-specific PCR, bisulfite sequencing PCR and chromatin immunoprecipitation assay were performed. RESULTS UHRF1 expression levels were significantly decreased in endothelial colony-forming cells derived from peripheral blood of participants with type 2 diabetes compared with individuals without diabetes. ECs treated with high glucose, palmitate or hydrogen peroxide in vitro also exhibited decreased UHRF1 protein levels. Silencing of UHRF1 led to decreased migration ability and increased apoptosis and ROS production in ECs, which might be related to impaired Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2)/haeme oxygenase-1 pathway. Mechanistically, UHRF1 is closely implicated in epigenetic regulation of chromatin modification status at KEAP1 genomic locus via histone acetylation. NRF2 down-regulation in turn inhibits UHRF1 protein level, which might be due to increased ROS generation. CONCLUSION Diabetes-induced oxidative stress can mediate down-regulation of UHRF1, which enhances ROS production by regulating KEAP1/p-NRF2 pathway through histone acetylation and might also form a self-perpetuating feedback loop with KEAP1/p-NRF2 to further promote oxidative stress-induced apoptosis of ECs in diabetes.
Collapse
Affiliation(s)
- Zi Guo
- Department of Endocrinology, The Third Xiangya Hospital and Diabetic Foot Research Centre of Central South University, Changsha, China
| | - Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital and Diabetic Foot Research Centre of Central South University, Changsha, China
| | - Yufang Luo
- Department of Endocrinology, The Third Xiangya Hospital and Diabetic Foot Research Centre of Central South University, Changsha, China
| | - Fang Liang
- Department of Endocrinology, The Third Xiangya Hospital and Diabetic Foot Research Centre of Central South University, Changsha, China
| | - Siwei Jiang
- Department of Endocrinology, The Third Xiangya Hospital and Diabetic Foot Research Centre of Central South University, Changsha, China
| | - Xiuhong Yuan
- Department of Clinical Psychology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhaohui Mo
- Department of Endocrinology, The Third Xiangya Hospital and Diabetic Foot Research Centre of Central South University, Changsha, China
| |
Collapse
|
12
|
Sidhu H, Capalash N. Plumbagin downregulates UHRF1, p-Akt, MMP-2 and suppresses survival, growth and migration of cervical cancer CaSki cells. Toxicol In Vitro 2023; 86:105512. [PMID: 36336213 DOI: 10.1016/j.tiv.2022.105512] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/07/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Plumbagin is a natural compound known to impede growth of cancerous cells. However, anti-cervical cancer effects of plumbagin and its underlying molecular mechanism still remains elusive. In this study, plumbagin reduced the viability of CaSki cells in a concentration dependent manner and suppressed their colony formation potential. It led to G2/M phase arrest with downregulation of E2F1 and upregulation of p21. Plumbagin reduced mitochondrial membrane potential and concomitantly increased the percentage of apoptotic cells as revealed by annexin V-propidium iodide staining. Real Time PCR and western blotting confirmed that plumbagin induced apoptosis by reducing the expression of pAkt, procaspase 9 and full-length PARP. Furthermore, scratch assay showed that plumbagin suppressed migratory potential of CaSki cells which could be due to the reduced expression and activity of MMP-2 and upregulation of TIMP2. Interestingly, plumbagin also downregulated UHRF1 expression. Transient silencing of UHRF1 like plumbagin, induced G2/M phase arrest, enhanced apoptosis and suppressed metastasis of CaSki cells suggesting the role of UHRF1 in mediating anti-cancer activities of plumbagin. Plumbagin at IC20 (1 μM) interacted synergistically with cisplatin and reduced its IC50 value by 13.23 fold with improved effectivity as revealed by augmented apoptosis in CaSki cells.
Collapse
Affiliation(s)
- Harsimran Sidhu
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
13
|
AKT1 regulates UHRF1 protein stability and promotes the resistance to abiraterone in prostate cancer. Oncogenesis 2023; 12:1. [PMID: 36593255 PMCID: PMC9807647 DOI: 10.1038/s41389-022-00446-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Oncogenic activation of PI3K/AKT signaling pathway, together with epigenetic aberrations are the characters of castration-resistant prostate cancer (CRPC). UHRF1 as a key epigenetic regulator, plays a critical role in prostate cancer (PCa) development, and its expression is positively correlated with the degree of malignancy. In this present study we investigated the potential regulatory mechanism of AKT1 on UHRF1, and further validated the in vitro and in vivo anticancer efficacy of AKT phosphorylation inhibitor MK2206 in combination with abiraterone. Both UHRF1 and p-AKT aberrantly overexpressed in the abiraterone-resistant PCa cells. Further studies revealed that AKT1 protein interacts with UHRF1, and AKT1 directly phosphorylates UHRF1 via the site Thr-210. MK2206 induced UHRF1 protein degradation by inhibiting AKT1-induced UHRF1 phosphorylation, and then reduced the interaction between UHRF1 and deubiquitinase USP7, while promoted the interaction between UHRF1 and E3 ubiquitin protein ligase BTRC. MK2206 significantly promoted the sensitivity of abiraterone-refractory PCa cells and xenografts to abiraterone by decreasing UHRF1 protein level, and reversed the phenotype of NEPC, evently induced cellular senescence and cell apoptosis. Altogether, our present study for the first time revealed a novel molecular mechanism of abiraterone resistance through PI3K/AKT-UHRF1 pathway, and provided a novel therapeutic modality by targeting PI3K/AKT1 to promote the drug sensitivity of abiraterone in PCa patients.
Collapse
|
14
|
Yaacobi-Artzi S, Kalo D, Roth Z. Seasonal variation in the morphokinetics of in-vitro-derived bovine embryos is associated with the blastocyst developmental competence and gene expression. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1030949. [PMID: 36406891 PMCID: PMC9670144 DOI: 10.3389/frph.2022.1030949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Summer heat stress is a major cause of reduced development of preimplantation embryos. Nevertheless, seasonal effects on embryo morphokinetics have been less studied. We used a non-invasive time-lapse system that allows continuous monitoring of embryos to study the seasonal impact on embryo morphokinetics. The experiments were performed during the cold and the hot seasons. Cumulus-oocyte complexes were aspirated from ovaries, in-vitro-matured, and fertilized. Putative zygotes were cultured in an incubator equipped with a time-lapse system. The cleavage and blastocyst formation rates were lower in the hot vs. the cold season (p < 0.01). The kinetics of the embryos differed between seasons, reflected by a delay in the second cleavage in the hot vs. the cold season (p < 0.03). The distribution of the embryos into different morphological grades (good, fair, and poor) throughout the first three cleavages differed between seasons, with a higher proportion of good-grade embryos in the hot season (p < 0.03). Cleaved embryos were categorized as either normal or abnormal, based on their first cleavage pattern. Normal cleavage was defined as when the first cleavage resulted in two equal blastomeres and further classified as either synchronous or asynchronous, according to their subsequent cleavages. Abnormal cleavage was defined as when the embryo directly cleaved into more than two blastomeres, it cleaved unequally into two unevenly sized blastomeres, or when the fusion of already divided blastomeres occurred. The proportion of abnormally cleaved embryos was higher in the hot season vs. the cold one (p < 0.01), reflected by a higher proportion of unequally cleaved embryos (p < 0.02). In the cold season, abnormally cleaved embryos had a lower potential to develop into blastocysts relative to their normally cleaved counterparts (p < 0.001). Blastocysts that developed in the cold and the hot seasons differed in the expression of genes that related to the cell cycle (STAT1; p < 0.01), stress (HSF1; p < 0.03), and embryo development (ZP3; p < 0.05). A higher expression level was recorded for the STAT1 and UHRF1 genes in blastocysts that developed from unequally vs. the synchronously cleaved embryos (p < 0.04). We provide the first evidence for a seasonal effect on embryo morphokinetics, which might explain the reduced embryo development during the hot season.
Collapse
|
15
|
Park S, Sater AHA, Fahrmann JF, Irajizad E, Cai Y, Katayama H, Vykoukal J, Kobayashi M, Dennison JB, Garcia-Manero G, Mullighan CG, Gu Z, Konopleva M, Hanash S. Novel UHRF1-MYC Axis in Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14174262. [PMID: 36077796 PMCID: PMC9455066 DOI: 10.3390/cancers14174262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin-like, containing PHD and RING finger domain, (UHRF) family members are overexpressed putative oncogenes in several cancer types. We evaluated the protein abundance of UHRF family members in acute leukemia. A marked overexpression of UHRF1 protein was observed in ALL compared with AML. An analysis of human leukemia transcriptomic datasets revealed concordant overexpression of UHRF1 in B-Cell and T-Cell ALL compared with CLL, AML, and CML. In-vitro studies demonstrated reduced cell viability with siRNA-mediated knockdown of UHRF1 in both B-ALL and T-ALL, associated with reduced c-Myc protein expression. Mechanistic studies indicated that UHRF1 directly interacts with c-Myc, enabling ALL expansion via the CDK4/6-phosphoRb axis. Our findings highlight a previously unknown role of UHRF1 in regulating c-Myc protein expression and implicate UHRF1 as a potential therapeutic target in ALL.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ali H. Abdel Sater
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yining Cai
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Makoto Kobayashi
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhaohui Gu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
16
|
Zhou S, Dong J, Xiong M, Gan S, Wen Y, Zhang J, Wang X, Yuan S, Gui Y. UHRF1 interacts with snRNAs and regulates alternative splicing in mouse spermatogonial stem cells. Stem Cell Reports 2022; 17:1859-1873. [PMID: 35905740 PMCID: PMC9391524 DOI: 10.1016/j.stemcr.2022.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/22/2022] Open
Abstract
Life-long male fertility relies on exquisite homeostasis and the development of spermatogonial stem cells (SSCs); however, the underlying molecular genetic and epigenetic regulation in this equilibrium process remains unclear. Here, we document that UHRF1 interacts with snRNAs to regulate pre-mRNA alternative splicing in SSCs and is required for the homeostasis of SSCs in mice. Genetic deficiency of UHRF1 in mouse prospermatogonia results in gradual loss of spermatogonial stem cells, eventually leading to Sertoli-cell-only syndrome (SCOS) and male infertility. Comparative RNA-seq data provide evidence that Uhrf1 ablation dysregulates previously reported SSC maintenance- and differentiation-related genes. We further found that UHRF1 could act as an alternative RNA splicing regulator and interact with Tle3 transcripts to regulate its splicing event in spermatogonia. Collectively, our data reveal a multifunctional role for UHRF1 in regulating gene expression programs and alternative splicing during SSC homeostasis, which may provide clues for treating human male infertility.
Collapse
Affiliation(s)
- Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiming Gan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China.
| | - Yaoting Gui
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
17
|
Comprehensive Pan-Cancer Analysis Reveals the Role of UHRF1-Mediated DNA Methylation and Immune Infiltration in Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3842547. [PMID: 35656341 PMCID: PMC9152404 DOI: 10.1155/2022/3842547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
Ubiquitin-like PHD and ring finger domain protein 1 (UHRF1) are members of the multifunctional UHRF family, which can participate in DNA methylation change and histone posttranslational change through particular domains and participate in the event and development of tumors. The purpose of this study was to decide the molecular traits and potential medicine-based importance of UHRF1 that helped settle methylated immune infiltration in generalized cancer by carefully studying the relationship between UHRF1 expression and a variety of tumors and to further check for truth the functional role of UHRF1 in kidney-related cancer. A comprehensive analysis of UHRF1 in 33 cancers was performed based on TCGA database. This research involves analysis of mRNA expression profiles, prognostic value, immune infiltration, immune neoantigens, TMB, microsatellite instability, DNA methylation, and gene set enrichment analysis (GSEA). Both immune infiltration and DNA methylation were used to evaluate the importance and method of UHRF1 in renal cancer. The results showed that tumor tissue had higher expression level of UHRF1 than usual tissue. The high expression level of UHRF1 is related to the survival rate of renal cancer. UHRF1 expression was associated with tumor mutation load and microsatellite instability in different cancer types, and enrichment analysis identified terminology and pathways associated with UHRF1. This study showed that UHRF1 plays an important role in the group of objects and development of 33 tumors. UHRF1 may serve as a biomarker of immune infiltration and poor outlook of cancer.
Collapse
|
18
|
Zhang J, Zhang H, Ding X, Hu J, Li Y, Zhang J, Wang H, Qi S, Xie A, Shi J, Xiang M, Bin Y, Wang G, Wang L, Wang Z. Crosstalk between macrophage-derived PGE 2 and tumor UHRF1 drives hepatocellular carcinoma progression. Theranostics 2022; 12:3776-3793. [PMID: 35664070 PMCID: PMC9131282 DOI: 10.7150/thno.69494] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/20/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Tumor-associated macrophages (TAMs) and dysregulated tumor epigenetics contribute to hepatocellular carcinoma (HCC) progression. However, the mechanistic interactions between TAMs and tumor epigenetics remain poorly understood. Methods: Immunohistochemistry and multiplexed fluorescence staining were performed to evaluate the correlation between TAMs numbers and UHRF1 expression in human HCC tissues. PGE2 neutralizing antibody and COX-2 inhibitor were used to analyze the regulation of TAMs isolated from HCC tissues on UHRF1 expression. Multiple microRNA prediction programs were employed to identify microRNAs that target UHRF1 3'UTR. Luciferase reporter assay was applied to evaluate the regulation of miR-520d on UHRF1 expression. Chromatin immunoprecipitation (ChIP) assays were performed to assess the abundance of H3K9me2 in the KLF6 promoter and DNMT1 in the CSF1 promoter regulated by UHRF1. The functional roles of TAM-mediated oncogenic network in HCC progression were verified by in vitro colony formation assays, in vivo xenograft experiments and analysis of clinical samples. Results: Here, we find that TAMs induce and maintain high levels of HCC UHRF1, an oncogenic epigenetic regulator. Mechanistically, TAM-derived PGE2 stimulates UHRF1 expression by repressing miR-520d that targets the 3'-UTR of UHRF1 mRNA. In consequence, upregulated UHRF1 methylates H3K9 to diminish tumor KLF6 expression, a tumor inhibitory transcriptional factor that directly transcribes miR-520d. PGE2 reduces KLF6 occupancy in the promoter of miR-520d, dampens miR-520d expression, and sustains robust UHRF1 expression. Moreover, UHRF1 promotes CSF1 expression by inducing DNA hypomethylation of the CSF1 promoter and supports TAM accumulation. Conclusions: Capitalizing on studies on HCC cells and tissues, animal models, and clinical information, we reveal a previously unappreciated TAM-mediated oncogenic network via multiple reciprocal enforcing molecular nodes. Targeting this network may be an approach to treat HCC patients.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Hongyan Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Xiuli Ding
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Jia Hu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Yongkui Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Jinxiang Zhang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Hui Wang
- Department of Human Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430030
| | - Shanshan Qi
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Aqing Xie
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Jie Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Mengxi Xiang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Yawen Bin
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| |
Collapse
|
19
|
Aibara D, Takahashi S, Yagai T, Kim D, Brocker CN, Levi M, Matsusue K, Gonzalez FJ. Gene repression through epigenetic modulation by PPARA enhances hepatocellular proliferation. iScience 2022; 25:104196. [PMID: 35479397 PMCID: PMC9036120 DOI: 10.1016/j.isci.2022.104196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/22/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARA) is a key mediator of lipid metabolism and inflammation. Activation of PPARA in rodents causes hepatocyte proliferation, but the underlying mechanism is poorly understood. This study focused on genes repressed by PPARA and analyzed the mechanism by which PPARA promotes hepatocyte proliferation in mice. Activation of PPARA by agonist treatment was autoregulated, and induced expression of the epigenetic regulator UHRF1 via activation of the newly described PPARA target gene E2f8, which, in turn, regulates Uhrf1. UHRF1 strongly repressed the expression of CDH1 via methylation of the Cdh1 promoter marked with H3K9me3. Repression of CDH1 by PPARA activation was reversed by PPARA deficiency or knockdown of E2F8 or UHRF1. Furthermore, a forced expression of CDH1 inhibited expression of the Wnt signaling target genes such as Myc after PPARA activation, and suppressed hepatocyte hyperproliferation. These results demonstrate that the PPARA-E2F8-UHRF1-CDH1 axis causes epigenetic regulation of hepatocyte proliferation. PPARA activation induces the UHRF1 expression via novel PPARA target gene E2f8 Induction of UHRF1 by PPARA activation represses Cdh1 gene marked with H3K9me3 CDH1 suppresses hepatocyte proliferation after PPARA activation Autoinduction of PPARA by agonist enhances cell proliferation via E2F8-UHRF1-CDH1
Collapse
Affiliation(s)
- Daisuke Aibara
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
- Corresponding author
| | - Tomoki Yagai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad N. Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Kimihiko Matsusue
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author
| |
Collapse
|
20
|
Xiong M, Zhou S, Feng S, Gui Y, Li J, Wu Y, Dong J, Yuan S. UHRF1 is indispensable for meiotic sex chromosome inactivation and interacts with the DNA damage response pathway in mice. Biol Reprod 2022; 107:168-182. [PMID: 35284939 DOI: 10.1093/biolre/ioac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
During male meiosis, the constitutively unsynapsed XY chromosomes undergo meiotic sex chromosome inactivation (MSCI), and the DNA damage response (DDR) pathway is critical for MSCI establishment. Our previous study showed that UHRF1(ubiquitin-like, with PHD and ring finger domains 1) deletion led to meiotic arrest and male infertility; however, the underlying mechanisms of UHRF1 in the regulation of meiosis remain unclear. Here, we report that UHRF1 is required for MSCI and cooperates with the DDR pathway in male meiosis. UHRF1-deficient spermatocytes display aberrant pairing and synapsis of homologous chromosomes during the pachytene stage. In addition, UHRF1 deficiency leads to aberrant recruitment of ATR and FANCD2 on the sex chromosomes and disrupts the diffusion of ATR to the XY chromatin. Furthermore, we show that UHRF1 acts as a cofactor of BRCA1 to facilitate the recruitment of DDR factors onto sex chromosomes for MSCI establishment. Accordingly, deletion of UHRF1 leads to the failure of meiotic silencing on sex chromosomes, resulting in meiotic arrest. In addition to our previous findings, the present study reveals that UHRF1 participates in MSCI, ensuring the progression of male meiosis. This suggests a multifunctional role of UHRF1 in the male germline.
Collapse
Affiliation(s)
- Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinmei Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanqing Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China.,Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
21
|
Ashraf W, Ahmad T, Almalki NAR, Krifa M, Zaayter L, Pizzi A, Muller CD, Hamiche A, Mély Y, Bronner C, Mousli M. Tannin extract from maritime pine bark exhibits anticancer properties by targeting the epigenetic UHRF1/DNMT1 tandem leading to the re-expression of TP73. Food Funct 2022; 13:316-326. [PMID: 34897340 DOI: 10.1039/d1fo01484f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maritime pine bark is a rich source of polyphenolic compounds and is commonly employed as a herbal supplement worldwide. This study was designed to check the potential of maritime pine tannin extract (MPTE) in anticancer therapy and to determine the underlying mechanism of action. Our results showed that MPTE, containing procyanidin oligomers and lanostane type terpenoids, has an inhibitory effect on cancer cell proliferation through cell cycle arrest in the G2/M phase. Treatment with MPTE also induced apoptosis in a concentration-dependent manner in human cancer cell lines (HeLa and U2OS), as evidenced by the enhanced activation of caspase 3 and the cleavage of PARP along with the downregulation of the antiapoptotic protein Bcl-2. Interestingly, human non-cancerous fibroblasts are much less sensitive to MPTE, suggesting that it preferentially targets cancer cells. MPTE played a pro-oxidant role in cancer cells and promoted the expression of the p73 tumor suppressor gene in p53-deficient cells. It also downregulated the protooncogenic proteins UHRF1 and DNMT1, mediators of the DNA methylation machinery, and reduced the global methylation levels in HeLa cells. Overall, our results show that maritime pine tannin extract can play a favorable role in cancer treatment, and can be further explored by the pharmaceutical industry.
Collapse
Affiliation(s)
- Waseem Ashraf
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France. .,Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Tanveer Ahmad
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Naif A R Almalki
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Equipe labellisée Ligue contre le Cancer, Illkirch, France
| | - Mounira Krifa
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France. .,Unit of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Liliyana Zaayter
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | | | - Christian D Muller
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, Illkirch, France
| | - Ali Hamiche
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Equipe labellisée Ligue contre le Cancer, Illkirch, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Christian Bronner
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Equipe labellisée Ligue contre le Cancer, Illkirch, France
| | - Marc Mousli
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
22
|
Rodel HE, Ferreira IATM, Ziegler CGK, Ganga Y, Bernstein M, Hwa SH, Nargan K, Lustig G, Kaplan G, Noursadeghi M, Shalek AK, Steyn AJC, Sigal A. Aggregated Mycobacterium tuberculosis Enhances the Inflammatory Response. Front Microbiol 2021; 12:757134. [PMID: 34925266 PMCID: PMC8674758 DOI: 10.3389/fmicb.2021.757134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) bacilli readily aggregate. We previously reported that Mtb aggregates lead to phagocyte death and subsequent efficient replication in the dead infected cells. Here, we examined the transcriptional response of human monocyte derived macrophages to phagocytosis of aggregated Mtb relative to phagocytosis of non-aggregated single or multiple bacilli. Infection with aggregated Mtb led to an early upregulation of pro-inflammatory associated genes and enhanced TNFα signaling via the NFκB pathway. These pathways were significantly more upregulated relative to infection with single or multiple non-aggregated bacilli per cell. Phagocytosis of aggregates led to a decreased phagosome acidification on a per bacillus basis and increased phagocyte cell death, which was not observed when Mtb aggregates were heat killed prior to phagocytosis. Mtb aggregates, observed in a granuloma from a patient, were found surrounding a lesion cavity. These observations suggest that TB aggregation may be a mechanism for pathogenesis. They raise the possibility that aggregated Mtb, if spread from individual to individual, could facilitate increased inflammation, Mtb growth, and macrophage cell death, potentially leading to active disease, cell necrosis, and additional cycles of transmission.
Collapse
Affiliation(s)
- Hylton E. Rodel
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Carly G. K. Ziegler
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, United States
- Department of Chemistry, Institute for Medical Engineering and Sciences, MIT, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States
| | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | | | - Shi-Hsia Hwa
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Gila Lustig
- Africa Health Research Institute, Durban, South Africa
| | - Gilla Kaplan
- University of Cape Town, Cape Town, South Africa
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Alex K. Shalek
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, United States
- Department of Chemistry, Institute for Medical Engineering and Sciences, MIT, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States
| | - Adrie J. C. Steyn
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology, Centres for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
23
|
Nuclear Organization during Hepatogenesis in Zebrafish Requires Uhrf1. Genes (Basel) 2021; 12:genes12071081. [PMID: 34356097 PMCID: PMC8304062 DOI: 10.3390/genes12071081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/07/2023] Open
Abstract
Acquisition of cellular fate during development is initiated and maintained by well-coordinated patterns of gene expression that are dictated by the epigenetic landscape and genome organization in the nucleus. While the epigenetic marks that mediate developmental gene expression patterns during organogenesis have been well studied, less is known about how epigenetic marks influence nuclear organization during development. This study examines the relationship between nuclear structure, chromatin accessibility, DNA methylation, and gene expression during hepatic outgrowth in zebrafish larvae. We investigate the relationship between these features using mutants that lack DNA methylation. Hepatocyte nuclear morphology was established coincident with hepatocyte differentiation at 80 h post-fertilization (hpf), and nuclear shape and size continued to change until the conclusion of outgrowth and morphogenesis at 120 hpf. Integrating ATAC-Seq analysis with DNA methylation profiling of zebrafish livers at 120 hpf showed that closed and highly methylated chromatin occupies most transposable elements and that open chromatin correlated with gene expression. DNA hypomethylation, due to mutation of genes encoding ubiquitin-like, containing PHD and RING Finger Domains 1 (uhrf1) and DNA methyltransferase (dnmt1), did not block hepatocyte differentiation, but had dramatic effects on nuclear organization. Hepatocytes in uhrf1 mutants have large, deformed nuclei with multiple nucleoli, downregulation of nucleolar genes, and a complete lack of the nuclear lamina. Loss of lamin B2 staining was phenocopied by dnmt1 mutation. Together, these data show that hepatocyte nuclear morphogenesis coincides with organ morphogenesis and outgrowth, and that DNA methylation directs chromatin organization, and, in turn, hepatocyte nuclear shape and size during liver development.
Collapse
|
24
|
Mancini M, Magnani E, Macchi F, Bonapace IM. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res 2021; 49:6053-6068. [PMID: 33939809 PMCID: PMC8216287 DOI: 10.1093/nar/gkab293] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
During S phase, the cooperation between the macromolecular complexes regulating DNA synthesis, epigenetic information maintenance and DNA repair is advantageous for cells, as they can rapidly detect DNA damage and initiate the DNA damage response (DDR). UHRF1 is a fundamental epigenetic regulator; its ability to coordinate DNA methylation and histone code is unique across proteomes of different species. Recently, UHRF1’s role in DNA damage repair has been explored and recognized to be as important as its role in maintaining the epigenome. UHRF1 is a sensor for interstrand crosslinks and a determinant for the switch towards homologous recombination in the repair of double-strand breaks; its loss results in enhanced sensitivity to DNA damage. These functions are finely regulated by specific post-translational modifications and are mediated by the SRA domain, which binds to damaged DNA, and the RING domain. Here, we review recent studies on the role of UHRF1 in DDR focusing on how it recognizes DNA damage and cooperates with other proteins in its repair. We then discuss how UHRF1’s epigenetic abilities in reading and writing histone modifications, or its interactions with ncRNAs, could interlace with its role in DDR.
Collapse
Affiliation(s)
- Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| |
Collapse
|
25
|
Li D, Chen B, Zeng Y, Wang H. UHRF1 Could Be a Prognostic Biomarker and Correlated with Immune Cell Infiltration in Hepatocellular Carcinoma. Int J Gen Med 2021; 14:6769-6776. [PMID: 34675635 PMCID: PMC8520845 DOI: 10.2147/ijgm.s335016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE This study was performed to investigate the relationship among UHRF1 expression, its biological function and immune infiltration in human hepatocellular carcinoma (HCC). METHODS Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine, and The Cancer Genome Atlas (TCGA) databases were used to analyze UHRF1 expression between HCC and normal tissues. Subsequently, GEPIA, TCGA-Portal, Kaplan-Meier Plotter, Protein Atlas and SurvExpress databases were utilized for survival analysis. UHRF1 co-expression genes were identified via the cBioPortal and LinkedOmics databases. Further, gene ontology (GO) analysis as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. Protein-protein interaction (PPI) networks was constructed by STRING database and Cytoscape 3.7.1. Single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithm were employed to assess the correlation between UHRF1 and tumor immune infiltrates on TCGA database. TIMER 2.0 database was used to explore the correlation of UHRF1 expression and immune infiltration level in HCC. Additionally, RT-qPCR was used to analyze the expression of UHRF1 and the relative genes in HCC cell lines. RESULTS Expression level of UHRF1 was upregulated in HCC tissues compared with paired normal tissues (P < 0.05 in GEPIA; P = 1.78E-6 in Oncomine; and P < 0.0001 in TCGA). Its high expression was significantly related with a shorter overall survival in five databases (P < 0.05). Function enrichment analysis demonstrated that functions of UHRF1 concentrated in cell division process and cell cycle (P < 0.05). High UHRF1 expression exhibited dysregulated immune infiltration (ie, neutrophils, eosinophils, dendritic cells resting, macrophages M2, macrophages M0) and poor survival of high UHRF1 expression was tight correlated with immune infiltration status. Moreover, TP53 mutation can lead to high expression of UHRF1 (P = 4.2E-10). CONCLUSION UHRF1 might function as an oncogene via inducing dysregulated immune infiltration in HCC and was identified as a novel prognostic biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Danfeng Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Binlie Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- Medical college, Shantou University, Shantou, Guangdong, People’s Republic of China
| | - Yongming Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Huaiming Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- Correspondence: Huaiming Wang Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, People’s Republic of ChinaTel +86 13750417745Fax +86 0754-88259850 Email
| |
Collapse
|
26
|
Tauber M, Kreuz S, Lemak A, Mandal P, Yerkesh Z, Veluchamy A, Al-Gashgari B, Aljahani A, Cortés-Medina LV, Azhibek D, Fan L, Ong MS, Duan S, Houliston S, Arrowsmith CH, Fischle W. Alternative splicing and allosteric regulation modulate the chromatin binding of UHRF1. Nucleic Acids Res 2020; 48:7728-7747. [PMID: 32609811 PMCID: PMC7430637 DOI: 10.1093/nar/gkaa520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022] Open
Abstract
UHRF1 is an important epigenetic regulator associated with apoptosis and tumour development. It is a multidomain protein that integrates readout of different histone modification states and DNA methylation with enzymatic histone ubiquitylation activity. Emerging evidence indicates that the chromatin-binding and enzymatic modules of UHRF1 do not act in isolation but interplay in a coordinated and regulated manner. Here, we compared two splicing variants (V1, V2) of murine UHRF1 (mUHRF1) with human UHRF1 (hUHRF1). We show that insertion of nine amino acids in a linker region connecting the different TTD and PHD histone modification-binding domains causes distinct H3K9me3-binding behaviour of mUHRF1 V1. Structural analysis suggests that in mUHRF1 V1, in contrast to V2 and hUHRF1, the linker is anchored in a surface groove of the TTD domain, resulting in creation of a coupled TTD-PHD module. This establishes multivalent, synergistic H3-tail binding causing distinct cellular localization and enhanced H3K9me3-nucleosome ubiquitylation activity. In contrast to hUHRF1, H3K9me3-binding of the murine proteins is not allosterically regulated by phosphatidylinositol 5-phosphate that interacts with a separate less-conserved polybasic linker region of the protein. Our results highlight the importance of flexible linkers in regulating multidomain chromatin binding proteins and point to divergent evolution of their regulation.
Collapse
Affiliation(s)
- Maria Tauber
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sarah Kreuz
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Alexander Lemak
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| | - Papita Mandal
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Zhadyra Yerkesh
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Alaguraj Veluchamy
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Bothayna Al-Gashgari
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Abrar Aljahani
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lorena V Cortés-Medina
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Dulat Azhibek
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of the National Cancer Institute, Frederick, MD 21702, USA
| | - Michelle S Ong
- Structural Genomics Consortium, University of Toronto, Toronto M5G 1L7, Canada
| | - Shili Duan
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada.,Structural Genomics Consortium, University of Toronto, Toronto M5G 1L7, Canada
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
27
|
Nakayama J, Gong Z. Transgenic zebrafish for modeling hepatocellular carcinoma. MedComm (Beijing) 2020; 1:140-156. [PMID: 34766114 PMCID: PMC8491243 DOI: 10.1002/mco2.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Liver cancer is the third leading cause of cancer‐related deaths throughout the world, and more than 0.6 million people die from liver cancer annually. Therefore, novel therapeutic strategies to eliminate malignant cells from liver cancer patients are urgently needed. Recent advances in high‐throughput genomic technologies have identified de novo candidates for oncogenes and pharmacological targets. However, testing and understanding the mechanism of oncogenic transformation as well as probing the kinetics and therapeutic responses of spontaneous tumors in an intact microenvironment require in vivo examination using genetically modified animal models. The zebrafish (Danio rerio) has attracted increasing attention as a new model for studying cancer biology since the organs in the model are strikingly similar to human organs and the model can be genetically modified in a short time and at a low cost. This review summarizes the current knowledge of epidemiological data and genetic alterations in hepatocellular carcinoma (HCC), zebrafish models of HCC, and potential therapeutic strategies for targeting HCC based on knowledge from the models.
Collapse
Affiliation(s)
- Joji Nakayama
- Department of Biological Sciences National University of Singapore Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences National University of Singapore Singapore
| |
Collapse
|
28
|
Perego MC, Morrell BC, Zhang L, Schütz LF, Spicer LJ. Developmental and hormonal regulation of ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 gene expression in ovarian granulosa and theca cells of cattle. J Anim Sci 2020; 98:5866609. [PMID: 32614952 DOI: 10.1093/jas/skaa205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022] Open
Abstract
Ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 (UHRF1) is a multi-domain nuclear protein that plays an important role in epigenetics and tumorigenesis, but its role in normal ovarian follicle development remains unknown. Thus, the present study evaluated if UHRF1 mRNA abundance in bovine follicular cells is developmentally and hormonally regulated, and if changes in UHRF1 are associated with changes in DNA methylation in follicular cells. Abundance of UHRF1 mRNA was greater in granulosa cells (GC) and theca cells (TC) from small (<6 mm) than large (≥8 mm) follicles and was greater in small-follicle GC than TC. In GC and TC, fibroblast growth factor 9 (FGF9) treatment increased (P < 0.05) UHRF1 expression by 2-fold. Also, luteinizing hormone (LH) and insulin-like growth factor 1 (IGF1) increased (P < 0.05) UHRF1 expression in TC by 2-fold, and forskolin (an adenylate cyclase inducer) alone or combined with IGF1 increased (P < 0.05) UHRF1 expression by 3-fold. An E2F transcription factor inhibitor (E2Fi) decreased (P < 0.05) UHRF1 expression by 44% in TC and by 99% in GC. Estradiol, progesterone, and dibutyryl-cAMP decreased (P < 0.05) UHRF1 mRNA abundance in GC. Treatment of GC with follicle-stimulating hormone (FSH) alone had no effect but when combined with IGF1 enhanced the UHRF1 mRNA abundance by 2.7-fold. Beauvericin (a mycotoxin) completely inhibited the FSH plus IGF1-induced UHRF1 expression in small-follicle GC. Treatments that increased UHRF1 mRNA (i.e., FGF9) in GC tended to decrease (by 63%; P < 0.10) global DNA methylation, and those that decreased UHRF1 mRNA (i.e., E2Fi) in GC tended to increase (by 2.4-fold; P < 0.10) global DNA methylation. Collectively, these results suggest that UHRF1 expression in both GC and TC is developmentally and hormonally regulated, and that UHRF1 may play a role in follicular growth and development as well as be involved in ovarian epigenetic processes.
Collapse
Affiliation(s)
| | - Breanne C Morrell
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| | | | | | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| |
Collapse
|
29
|
Tu Z, Deng X, Hou S, Feng A, Zhang Q. UHRF1 predicts poor prognosis by triggering cell cycle in lung adenocarcinoma. J Cell Mol Med 2020; 24:8069-8077. [PMID: 32495469 PMCID: PMC7348181 DOI: 10.1111/jcmm.15438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/02/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that ubiquitin‐like with plant homeodomain and ring finger domains 1 (UHRF1) is overexpressed in non‐small cell lung cancer (NSCLC); however, the expression and function of UHRF1 in the subtype of NSCLC are still unclear. Here, we investigate the expression and prognosis traits of UHRF1 in large NSCLC cohorts and explore the molecular characters during UHRF1 up‐regulation. We find that UHRF1 is predominantly overexpressed in lung squamous cell carcinoma (SCC). Surprisingly, the up‐regulated UHRF1 is only associated with the overall survival of lung adenocarcinoma (ADC) and knockdown of UHRF1 dramatically attenuates ADC tumorigenesis. Mechanically, we identify a hub gene that includes a total of 55 UHRF1‐related genes, which are tightly associated with cell cycle pathway and yield to the poor clinical outcome in ADC patients. What's more, we observe knockdown of UHRF1 only affects ADC cells cycle and induces cell apoptosis. These results suggest that up‐regulated UHRF1 only contributes to lung ADC survival by triggering cell cycle pathway, and it may be a prognostic biomarker for lung ADC patients.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xinzhou Deng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shengqi Hou
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anlin Feng
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Ferrari R, de Llobet Cucalon LI, Di Vona C, Le Dilly F, Vidal E, Lioutas A, Oliete JQ, Jochem L, Cutts E, Dieci G, Vannini A, Teichmann M, de la Luna S, Beato M. TFIIIC Binding to Alu Elements Controls Gene Expression via Chromatin Looping and Histone Acetylation. Mol Cell 2020; 77:475-487.e11. [PMID: 31759822 PMCID: PMC7014570 DOI: 10.1016/j.molcel.2019.10.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/20/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
How repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset of AEs pre-marked by the activity-dependent neuroprotector homeobox Protein (ADNP) and located near cell-cycle genes recruits TFIIIC, which alters their chromatin accessibility by direct acetylation of histone H3 lysine-18 (H3K18). This facilitates the contacts of AEs with distant CTCF sites near promoter of other cell-cycle genes, which also become hyperacetylated at H3K18. These changes ensure basal transcription of cell-cycle genes and are critical for their re-activation upon serum re-exposure. Our study reveals how direct manipulation of the epigenetic state of AEs by a general transcription factor regulates 3D genome folding and expression.
Collapse
Affiliation(s)
- Roberto Ferrari
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Lara Isabel de Llobet Cucalon
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Chiara Di Vona
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - François Le Dilly
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Vidal
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Antonios Lioutas
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Javier Quilez Oliete
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Laura Jochem
- The Institute of Cancer Research (ICR), London, UK
| | - Erin Cutts
- The Institute of Cancer Research (ICR), London, UK
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alessandro Vannini
- The Institute of Cancer Research (ICR), London, UK; Human Technopole. Via Cristina Belgioioso, 171, 20157 Milano MI, Italy
| | - Martin Teichmann
- Université de Bordeaux, INSERM U1212 CNRS UMR 5320 146, Bordeaux, France
| | - Susana de la Luna
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
31
|
Qi S, Li Y, Dai Z, Xiang M, Wang G, Wang L, Wang Z. Uhrf1-Mediated Tnf-α Gene Methylation Controls Proinflammatory Macrophages in Experimental Colitis Resembling Inflammatory Bowel Disease. THE JOURNAL OF IMMUNOLOGY 2019; 203:3045-3053. [DOI: 10.4049/jimmunol.1900467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
|
32
|
Hahm JY, Kim JY, Park JW, Kang JY, Kim KB, Kim SR, Cho H, Seo SB. Methylation of UHRF1 by SET7 is essential for DNA double-strand break repair. Nucleic Acids Res 2019; 47:184-196. [PMID: 30357346 PMCID: PMC6326791 DOI: 10.1093/nar/gky975] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a key epigenetic regulator of DNA methylation maintenance and heterochromatin formation. The roles of UHRF1 in DNA damage repair also have been emphasized in recent years. However, the regulatory mechanism of UHRF1 remains elusive. In this study, we showed that UHRF1 is methylated by SET7 and demethylation is catalyzed by LSD1. In addition, methylation of UHRF1 is induced in response to DNA damage and its phosphorylation in S phase is a prerequisite for interaction with SET7. Furthermore, UHRF1 methylation catalyzes the conjugation of polyubiquitin chains to PCNA and promotes homologous recombination for DNA repair. SET7-mediated UHRF1 methylation is also shown to be essential for cell viability against DNA damage. Our data revealed the regulatory mechanism underlying the UHRF1 methylation status by SET7 and LSD1 in double-strand break repair pathway.
Collapse
Affiliation(s)
- Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Joo-Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kee-Beom Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Se-Ryeon Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hana Cho
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
33
|
Luo Y, Shen D, Chen L, Wang G, Liu X, Qian K, Xiao Y, Wang X, Ju L. Identification of 9 key genes and small molecule drugs in clear cell renal cell carcinoma. Aging (Albany NY) 2019; 11:6029-6052. [PMID: 31422942 PMCID: PMC6738436 DOI: 10.18632/aging.102161] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/05/2019] [Indexed: 01/02/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous tumor that the underlying molecular mechanisms are largely unclear. This study aimed to elucidate the key candidate genes and pathways in ccRCC by integrated bioinformatics analysis. 1387 differentially expressed genes were identified based on three expression profile datasets, including 673 upregulated genes and 714 downregulated genes. Then we used weighted correlation network analysis to identify 6 modules associated with pathological stage and grade, blue module was the most relevant module. GO and KEGG pathway analyses showed that genes in blue module were enriched in cell cycle and metabolic related pathways. Further, 25 hub genes in blue module were identified as hub genes. Based on GEPIA database, 9 genes were associated with progression and prognosis of ccRCC patients, including PTTG1, RRM2, TOP2A, UHRF1, CEP55, BIRC5, UBE2C, FOXM1 and CDC20. Then multivariate Cox regression showed that the risk score base on 9 key genes signature was a clinically independent prognostic factor for ccRCC patients. Moreover, we screened out several new small molecule drugs that have the potential to treat ccRCC. Few of them were identified as biomarkers in ccRCC. In conclusion, our research identified 9 potential prognostic genes and several candidate small molecule drugs for ccRCC treatment.
Collapse
Affiliation(s)
- Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20007, USA
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| |
Collapse
|
34
|
Lin Y, Chen Z, Lin S, Zheng Y, Liu Y, Gao J, Chen S. MiR-202 inhibits the proliferation and invasion of colorectal cancer by targeting UHRF1. Acta Biochim Biophys Sin (Shanghai) 2019; 51:598-606. [PMID: 31058289 DOI: 10.1093/abbs/gmz042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to investigate the expression of microRNA-202 (miR-202) and its role in colorectal cancer (CRC) in vivo and in vitro. We examined the expression of miR-202 in CRC tissues by quantitative real-time PCR (qRT-PCR) assay. Lentiviral vectors were constructed to overexpress or inhibit the expression of miR-202 in the CRC cell lines HCT116 and SW480 to determine its effects on cell invasion and proliferation. We found that overexpression of miR-202 significantly inhibited the proliferation and invasion of HCT116 cells. MiRNA target gene prediction, dual luciferase assay, and western blot analysis demonstrated that miR-202 regulated ubiquitin-like with PHD and RING finger domain 1 (UHRF1) expression in both cell lines. The effect of miR-202 on cell proliferation and invasion was partially reversed by activating the expression of UHRF1. Furthermore, miR-202 induced tumor formation in HCT116 xenograft BALB/c nude mice. Mice vaccinated with miR-202-overexpressing cells had smaller tumors and lower UHRF1 expression than the control group. These results indicate the possibility that miR-202 is under-expressed in CRC tissues, and that miR-202 inhibits the proliferation and invasion of CRC via targeting UHRF1. MiR-202 is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yilin Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhihua Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Suyong Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yisu Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ji Gao
- Fujian University of Medicine, School of Nursing, Fuzhou, China
| | - Shaoqin Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
35
|
Niinuma T, Kitajima H, Kai M, Yamamoto E, Yorozu A, Ishiguro K, Sasaki H, Sudo G, Toyota M, Hatahira T, Maruyama R, Tokino T, Nakase H, Sugai T, Suzuki H. UHRF1 depletion and HDAC inhibition reactivate epigenetically silenced genes in colorectal cancer cells. Clin Epigenetics 2019; 11:70. [PMID: 31064417 PMCID: PMC6505222 DOI: 10.1186/s13148-019-0668-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ubiquitin-like protein containing PHD and RING finger domains 1 (UHRF1) is a major regulator of epigenetic mechanisms and is overexpressed in various human malignancies. In this study, we examined the involvement of UHRF1 in aberrant DNA methylation and gene silencing in colorectal cancer (CRC). RESULTS CRC cell lines were transiently transfected with siRNAs targeting UHRF1, after which DNA methylation was analyzed using dot blots, bisulfite pyrosequencing, and Infinium HumanMethylation450 BeadChip assays. Gene expression was analyzed using RT-PCR and gene expression microarrays. Depletion of UHRF1 rapidly induced genome-wide DNA demethylation in CRC cells. Infinium BeadChip assays and bisulfite pyrosequencing revealed significant demethylation across entire genomic regions, including CpG islands, gene bodies, intergenic regions, and repetitive elements. Despite the substantial demethylation, however, UHRF1 depletion only minimally reversed CpG island hypermethylation-associated gene silencing. By contrast, the combination of UHRF1 depletion and histone deacetylase (HDAC) inhibition reactivated the silenced genes and strongly suppressed CRC cell proliferation. The combination of UHRF1 depletion and HDAC inhibition also induced marked changes in the gene expression profiles such that cell cycle-related genes were strikingly downregulated. CONCLUSIONS Our results suggest that (i) maintenance of DNA methylation in CRC cells is highly dependent on UHRF1; (ii) UHRF1 depletion rapidly induces DNA demethylation, though it is insufficient to fully reactivate the silenced genes; and (iii) dual targeting of UHRF1 and HDAC may be an effective new therapeutic strategy.
Collapse
Affiliation(s)
- Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kazuya Ishiguro
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hajime Sasaki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gota Sudo
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Tomo Hatahira
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer, Tokyo, Japan
| | - Takashi Tokino
- Department of Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University, Morioka, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
36
|
Liu Y, Liang G, Zhou T, Liu Z. Silencing UHRF1 Inhibits Cell Proliferation and Promotes Cell Apoptosis in Retinoblastoma Via the PI3K/Akt Signalling Pathway. Pathol Oncol Res 2019; 26:1079-1088. [PMID: 31044388 DOI: 10.1007/s12253-019-00656-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate the effect of silencing ubiquitin-like with PHD and RING finger domains 1 (UHRF1) on the proliferation and apoptosis of retinoblastoma (RB) cells and to clarify the molecular mechanism of the UHRF1 gene in the development of RB. Human RB WERI-Rb-1 cells were selected and assigned into a blank group (WERI-Rb-1 cells with no transfection), NC-shRNA group (WERI-Rb-1 cells infected with NC-shRNA virus) and UHRF1-shRNA group (WERI-Rb-1 cells infected with pGC-UHRF1-shRNA-LV-GFP# (39-1) virus). The mRNA and protein expression of UHRF1 was detected by RT-qPCR and Western blot analysis. The effect of silencing UHRF1 on the proliferation and apoptosis of WERI-Rb-1 cells was assessed by MTT assay, EdU assay, flow cytometry, and Hoechst staining. Furthermore, the expression of cell cycle-related factor (cyclin D1), apoptosis-related factors (caspase-9, Bcl-2 and Bax), and PI3K/Akt signalling pathway-related factors (p-PI3K, PI3K, p-Akt and Akt) were measured via Western blot analysis. The RNA interference plasmid UHRF1-shRNA was successfully constructed. After WERI-Rb-1 cells were infected with UHRF1-shRNA, decreased mRNA and protein expression of UHRF1 was found. WERI-Rb-1 cells infected with UHRF1-shRNA showed inhibited proliferative ability and increased apoptosis. In the UHRF1-shRNA group, more cells arrested at the G0/G1 phase and less cells at the S and G2/M phases. WERI-Rb-1 cells infected with UHRF1-shRNA had increased expression of caspase-9 and Bax and decreased expression of Bcl-2 expression and decreased levels of p-PI3K and p-Akt. In conclusion, our study demonstrated that silencing UHRF1 could inhibit the proliferation of RB cells and promote apoptosis. The mechanism may be caused by the downregulation of the proportion of Bcl-2/Bax expression and the promotion of the expression of caspase-9 through the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Zoonosis, Ministry of Education Institutes, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, People's Republic of China.,Department of Genetic Medicine Weill Medical College, Cornell University, New York, NY, 10065, USA
| | - Guodong Liang
- Department of Colorectal and Stomach Cancer Surgery, Jilin Cancer Hospital, Changchun, 130062, People's Republic of China
| | - Tingting Zhou
- Changchun University of Chinese Medicine Affiliated Hospital, Changchun, 130062, People's Republic of China
| | - Zengshan Liu
- Key Laboratory of Zoonosis, Ministry of Education Institutes, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, People's Republic of China.
| |
Collapse
|
37
|
UHRF genes regulate programmed interdigital tissue regression and chondrogenesis in the embryonic limb. Cell Death Dis 2019; 10:347. [PMID: 31024001 PMCID: PMC6484032 DOI: 10.1038/s41419-019-1575-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
The primordium of the limb contains a number of progenitors far superior to those necessary to form the skeletal components of this appendage. During the course of development, precursors that do not follow the skeletogenic program are removed by cell senescence and apoptosis. The formation of the digits provides the most representative example of embryonic remodeling via cell degeneration. In the hand/foot regions of the embryonic vertebrate limb (autopod), the interdigital tissue and the zones of interphalangeal joint formation undergo massive degeneration that accounts for jointed and free digit morphology. Developmental senescence and caspase-dependent apoptosis are considered responsible for these remodeling processes. Our study uncovers a new upstream level of regulation of remodeling by the epigenetic regulators Uhrf1 and Uhrf2 genes. These genes are spatially and temporally expressed in the pre-apoptotic regions. UHRF1 and UHRF2 showed a nuclear localization associated with foci of methylated cytosine. Interestingly, nuclear labeling increased in cells progressing through the stages of degeneration prior to TUNEL positivity. Functional analysis in cultured limb skeletal progenitors via the overexpression of either UHRF1 or UHRF2 inhibited chondrogenesis and induced cell senescence and apoptosis accompanied with changes in global and regional DNA methylation. Uhrfs modulated canonical cell differentiation factors, such as Sox9 and Scleraxis, promoted apoptosis via up-regulation of Bak1, and induced cell senescence, by arresting progenitors at the S phase and upregulating the expression of p21. Expression of Uhrf genes in vivo was positively modulated by FGF signaling. In the micromass culture assay Uhrf1 was down-regulated as the progenitors lost stemness and differentiated into cartilage. Together, our findings emphasize the importance of tuning the balance between cell differentiation and cell stemness as a central step in the initiation of the so-called “embryonic programmed cell death” and suggest that the structural organization of the chromatin, via epigenetic modifications, may be a precocious and critical factor in these regulatory events.
Collapse
|
38
|
Overexpression of UHRF1 promoted the proliferation of vascular smooth cells via the regulation of Geminin protein levels. Biosci Rep 2019; 39:BSR20181341. [PMID: 30710064 PMCID: PMC6390124 DOI: 10.1042/bsr20181341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 11/17/2022] Open
Abstract
Geminin is an inhibitor of DNA replication licensing and cell cycle. Our previous study demonstrates that Geminin plays an important role in regulating phenotypic diversity and growth of vascular smooth cells (VSMCs). Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is an epigenetic coordinator, whose RING domain confers intrinsic E3 ligase activity, mediating the ubiquitination of several proteins and the protein-protein interaction. Aberrant expression of UHRF1 was related to aggressiveness of multiple human malignancies, where knockdown of UHRF1 led to decreased proliferation of cancer cells. However, it is unclear whether proper UHRF1 function is involved in aberrant proliferation and phenotypic switching of VSMCs via altering Geminin protein levels. In present study, in UHRF1-overexpressing A10 cells, 3H-thymidine and 5-ethynyl-20-deoxyuridine (EdU) and CCK8 were used to examine the proliferation of VSMCs. RT-PCR and Western blot analyses were performed to investigate whether UHRF1-mediated effects were achieved by altering Geminin expression in VSMCs. RNA-seq analysis was performed to dissect related mechanisms or signaling pathways of these effects. The results of in vitro experiments suggested that UHRF1 prompted proliferation and cell cycle of VSMCs via the down-regulation of Geminin protein levels with no change in Geminin mRNA expression. Besides, PI3K-Akt signaling pathway was increased upon UHRF1 up-regulation. Our study demonstrated that overexpressing UHRF1 was involved in VSMCs proliferation through reducing inhibitory Geminin protein levels to promote cell cycle as well as activating PI3K-Akt signaling. This may provide key knowledge for the development of better strategies to prevent diseases related to VSMCs abnormal proliferation.
Collapse
|
39
|
Xue B, Zhao J, Feng P, Xing J, Wu H, Li Y. Epigenetic mechanism and target therapy of UHRF1 protein complex in malignancies. Onco Targets Ther 2019; 12:549-559. [PMID: 30666134 PMCID: PMC6334784 DOI: 10.2147/ott.s192234] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 (UHRF1) functions as an epigenetic regulator recruiting PCNA, DNMT1, histone deacetylase 1, G9a, SuV39H, herpes virus-associated ubiquitin-specific protease, and Tat-interactive protein by multiple corresponding domains of DNA and H3 to maintain DNA methylation and histone modifications. Overexpression of UHRF1 has been found as a potential biomarker in various cancers resulting in either DNA hypermethylation or global DNA hypo-methylation, which participates in the occurrence, progression, and invasion of cancer. The role of UHRF1 in the reciprocal interaction between DNA methylation and histone modifications, the dynamic structural transformation of UHRF1 protein within epigenetic code replication machinery in epigenetic regulations, as well as modifications during cell cycle and chemotherapy targeting UHRF1 are evaluated in this study.
Collapse
Affiliation(s)
- Busheng Xue
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Jiansong Zhao
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Penghui Feng
- Department of Obstetrics and Gynecology-Reproductive Medical Center, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Jia Xing
- Department of Histology and Embryology, Basic Medicine College, China Medical University, Shenyang, People's Republic of China
| | - Hongliang Wu
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Yan Li
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| |
Collapse
|
40
|
Skała E, Toma M, Kowalczyk T, Śliwiński T, Sitarek P. Rhaponticum carthamoides transformed root extract inhibits human glioma cells viability, induces double strand DNA damage, H2A.X phosphorylation, and PARP1 cleavage. Cytotechnology 2018; 70:1585-1594. [PMID: 30171426 PMCID: PMC6269353 DOI: 10.1007/s10616-018-0251-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Rhaponticum carthamoides transformed root extract induces double strand DNA damage by increasing the number of phosphorylated H2A.X- and cleaved PARP1-positive U87MG cells and patient-derived IV grade glioma cells. Furthermore, treatment of these cells with root extract causes down-regulation of UHRF1 and DNMT1. Transformed root extract is rich in caffeoylquinic acid derivatives, especially tricaffeoylquinic acid derivatives. Our findings demonstrate that the R. carthamoides transformed root extract may trigger apoptosis in glioma cells by induction of DNA damage, PARP cleavage and epigenetic modification.
Collapse
Affiliation(s)
- Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151, Łódź, Poland.
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Tomasz Kowalczyk
- Department of Genetics, Plant Molecular Biology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151, Łódź, Poland
| |
Collapse
|
41
|
Uhrf1 regulates active transcriptional marks at bivalent domains in pluripotent stem cells through Setd1a. Nat Commun 2018; 9:2583. [PMID: 29968706 PMCID: PMC6030064 DOI: 10.1038/s41467-018-04818-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/23/2018] [Indexed: 11/18/2022] Open
Abstract
Embryonic stem cells (ESCs) maintain pluripotency through unique epigenetic states. When ESCs commit to a specific lineage, epigenetic changes in histones and DNA accompany the transition to specialized cell types. Investigating how epigenetic regulation controls lineage specification is critical in order to generate the required cell types for clinical applications. Uhrf1 is a widely known hemi-methylated DNA-binding protein, playing a role in DNA methylation through the recruitment of Dnmt1 and in heterochromatin formation alongside G9a, Trim28, and HDACs. Although Uhrf1 is not essential in ESC self-renewal, it remains elusive how Uhrf1 regulates cell specification. Here we report that Uhrf1 forms a complex with the active trithorax group, the Setd1a/COMPASS complex, to maintain bivalent histone marks, particularly those associated with neuroectoderm and mesoderm specification. Overall, our data demonstrate that Uhrf1 safeguards proper differentiation via bivalent histone modifications. Uhrf1 is a known regulator of heterochromatin and DNA methylation in embryonic stem cells (ESCs). Here, the authors demonstrate that Uhrf1 acts together with the Set1/COMPASS complex regulator of active transcription to promote H3K4 methylation at bivalent loci and Uhrf1 loss results in disruption of differentiation.
Collapse
|
42
|
Ibrahim A, Alhosin M, Papin C, Ouararhni K, Omran Z, Zamzami MA, Al-Malki AL, Choudhry H, Mély Y, Hamiche A, Mousli M, Bronner C. Thymoquinone challenges UHRF1 to commit auto-ubiquitination: a key event for apoptosis induction in cancer cells. Oncotarget 2018; 9:28599-28611. [PMID: 29983883 PMCID: PMC6033341 DOI: 10.18632/oncotarget.25583] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/19/2018] [Indexed: 01/26/2023] Open
Abstract
Down-regulation of UHRF1 (Ubiquitin-like containing PHD and Ring Finger 1) in Jurkat cells, induced by natural anticancer compounds such as thymoquinone, allows re-expression of tumor suppressor genes such as p73 and p16INK4A . In order to decipher the mechanisms of UHRF1 down-regulation, we investigated the kinetic of expression of HAUSP (herpes virus-associated ubiquitin-specific protease), UHRF1, cleaved caspase-3 and p73 in Jurkat cells treated with thymoquinone. We found that thymoquinone induced degradation of UHRF1, correlated with a sharp decrease in HAUSP and an increase in cleaved caspase-3 and p73. UHRF1 concomitantly underwent a rapid ubiquitination in response to thymoquinone and this effect was not observed in the cells expressing mutant UHRF1 RING domain, suggesting that UHRF1 commits an auto-ubiquitination through its RING domain in response to thymoquinone treatment. Exposure of cells to Z-DEVD, an inhibitor of caspase-3 markedly reduced the thymoquinone-induced down-regulation of UHRF1, while proteosomal inhibitor MG132 had no such effect. The present findings indicate that thymoquinone induces in cancer cells a fast UHRF1 auto-ubiquitination through its RING domain associated with HAUSP down-regulation. They further suggest that thymoquinone-induced UHRF1 auto-ubiquitination followed by its degradation is a key event in inducing apoptosis through a proteasome-independent mechanism.
Collapse
Affiliation(s)
- Abdulkhaleg Ibrahim
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France.,BioTechnology Research Center (BTRC), Tripoli, Lybia
| | - Mahmoud Alhosin
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Christophe Papin
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Khalid Ouararhni
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman Labeed Al-Malki
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yves Mély
- CNRS UMR 7021 Laboratoire de Bioimagerie et Pathologies, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Ali Hamiche
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marc Mousli
- CNRS UMR 7021 Laboratoire de Bioimagerie et Pathologies, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Christian Bronner
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| |
Collapse
|
43
|
Np95/Uhrf1 regulates tumor suppressor gene expression of neural stem/precursor cells, contributing to neurogenesis in the adult mouse brain. Neurosci Res 2018; 143:31-43. [PMID: 29859850 DOI: 10.1016/j.neures.2018.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/30/2023]
Abstract
Adult neurogenesis is a process of generating new neurons from neural stem/precursor cells (NS/PCs) in restricted adult brain regions throughout life. It is now generally known that adult neurogenesis in the hippocampal dentate gyrus (DG) and subventricular zone participates in various higher brain functions, such as learning and memory formation, olfactory discrimination and repair after brain injury. However, the mechanisms underlying adult neurogenesis remain to be fully understood. Here, we show that Nuclear protein 95 KDa (Np95, also known as UHRF1 or ICBP90), which is an essential protein for maintaining DNA methylation during cell division, is involved in multiple processes of adult neurogenesis. Specific ablation of Np95 in adult NS/PCs (aNS/PCs) led to a decrease in their proliferation and an impairment of neuronal differentiation and to suppression of neuronal maturation associated with the impairment of dendritic formation in the hippocampal DG. We also found that deficiency of Np95 in NS/PCs increased the expression of tumor suppressor genes p16 and p53, and confirmed that expression of these genes in NS/PCs recapitulates the phenotype of Np95-deficient NS/PCs. Taken together, our findings suggest that Np95 plays an essential role in proliferation and differentiation of aNS/PCs through the regulation of tumor suppressor gene expression in adult neurogenesis.
Collapse
|
44
|
Corona E, Wang L, Ko D, Patel CJ. Systematic detection of positive selection in the human-pathogen interactome and lasting effects on infectious disease susceptibility. PLoS One 2018; 13:e0196676. [PMID: 29799843 PMCID: PMC5969750 DOI: 10.1371/journal.pone.0196676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023] Open
Abstract
Infectious disease has shaped the natural genetic diversity of humans throughout the world. A new approach to capture positive selection driven by pathogens would provide information regarding pathogen exposure in distinct human populations and the constantly evolving arms race between host and disease-causing agents. We created a human pathogen interaction database and used the integrated haplotype score (iHS) to detect recent positive selection in genes that interact with proteins from 26 different pathogens. We used the Human Genome Diversity Panel to identify specific populations harboring pathogen-interacting genes that have undergone positive selection. We found that human genes that interact with 9 pathogen species show evidence of recent positive selection. These pathogens are Yersenia pestis, human immunodeficiency virus (HIV) 1, Zaire ebolavirus, Francisella tularensis, dengue virus, human respiratory syncytial virus, measles virus, Rubella virus, and Bacillus anthracis. For HIV-1, GWAS demonstrate that some naturally selected variants in the host-pathogen protein interaction networks continue to have functional consequences for susceptibility to these pathogens. We show that selected human genes were enriched for HIV susceptibility variants (identified through GWAS), providing further support for the hypothesis that ancient humans were exposed to lentivirus pandemics. Human genes in the Italian, Miao, and Biaka Pygmy populations that interact with Y. pestis show significant signs of selection. These results reveal some of the genetic footprints created by pathogens in the human genome that may have left lasting marks on susceptibility to infectious disease.
Collapse
Affiliation(s)
- Erik Corona
- Department of Biomedical Informatics, RTI International, Durham, NC, United States of America
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - Dennis Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
- Department of Medicine, Duke University Medical Center, Durham, NC, United States of America
| | - Chirag J. Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
45
|
The Extract of Leonurus sibiricus Transgenic Roots with AtPAP1 Transcriptional Factor Induces Apoptosis via DNA Damage and Down Regulation of Selected Epigenetic Factors in Human Cancer Cells. Neurochem Res 2018; 43:1363-1370. [PMID: 29786770 PMCID: PMC6006195 DOI: 10.1007/s11064-018-2551-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
Abstract
The aim of this study was to determine the anticancer potential of Leonurus sibiricus extract derived from in vitro transgenic roots transformed by Agrobacetrium rhizogenes with AtPAP1 transcriptional factor, and that of transformed roots without construct, on grade IV human glioma cells and the U87MG cell line, and attempt to characterize the mechanism involved in this process. The anticancer effect induced by the tested extracts was associated with DNA damage, PARP cleavage/increased H2A.X histone levels and UHRF-1/DNMT1 down-regulation of mRNA levels. Additionally, we demonstrated differences in the content of compounds in the tested extracts by HPLC analysis with ATPAP1 construct and without. Both the tested extracts showed anticancer properties and the better results were observed for AtPAP1 with transcriptional factor root extract; this effect could be ascribed to the presence of higher condensed phenolic acids such as neochlorogenic acid, chlorogenic acids, ferulic acid, caffeic acid and p-coumaric acid. Further studies with AtPAP1 (with the transcriptional factor from Arabidopisi thaliana) root extract which showed better activities in combination with anticancer drugs are needed.
Collapse
|
46
|
Saei AA, Sabatier P, Tokat ÜG, Chernobrovkin A, Pirmoradian M, Zubarev RA. Comparative Proteomics of Dying and Surviving Cancer Cells Improves the Identification of Drug Targets and Sheds Light on Cell Life/Death Decisions. Mol Cell Proteomics 2018; 17:1144-1155. [PMID: 29572246 DOI: 10.1074/mcp.ra118.000610] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/20/2018] [Indexed: 01/05/2023] Open
Abstract
Chemotherapeutics cause the detachment and death of adherent cancer cells. When studying the proteome changes to determine the protein target and mechanism of action of anticancer drugs, the still-attached cells are normally used, whereas the detached cells are usually ignored. To test the hypothesis that proteomes of detached cells contain valuable information, we separately analyzed the proteomes of detached and attached HCT-116, A375, and RKO cells treated for 48 h with 5-fluorouracil, methotrexate and paclitaxel. Individually, the proteomic data on attached and detached cells had comparable performance in target and drug mechanism deconvolution, whereas the combined data significantly improved the target ranking for paclitaxel. Comparative analysis of attached versus detached proteomes provided further insight into cell life and death decision making. Six proteins consistently up- or downregulated in the detached versus attached cells regardless of the drug and cell type were discovered; their role in cell death/survival was tested by silencing them with siRNA. Knocking down USP11, CTTN, ACAA2, and EIF4H had anti-proliferative effects, affecting UHRF1 additionally sensitized the cells to the anticancer drugs, while knocking down RNF-40 increased cell survival against the treatments. Therefore, adding detached cells to the expression proteomics analysis of drug-treated cells can significantly increase the analytical value of the approach. The data have been deposited to the ProteomeXchange with identifier PXD007686.
Collapse
Affiliation(s)
- Amir Ata Saei
- From the ‡Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelesväg 2, SE-17 177 Stockholm, Sweden
| | - Pierre Sabatier
- From the ‡Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelesväg 2, SE-17 177 Stockholm, Sweden
| | - Ülkü Güler Tokat
- From the ‡Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelesväg 2, SE-17 177 Stockholm, Sweden
| | - Alexey Chernobrovkin
- From the ‡Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelesväg 2, SE-17 177 Stockholm, Sweden
| | - Mohammad Pirmoradian
- From the ‡Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelesväg 2, SE-17 177 Stockholm, Sweden
| | - Roman A Zubarev
- From the ‡Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelesväg 2, SE-17 177 Stockholm, Sweden
| |
Collapse
|
47
|
UHRF1 depletion sensitizes retinoblastoma cells to chemotherapeutic drugs via downregulation of XRCC4. Cell Death Dis 2018; 9:164. [PMID: 29415984 PMCID: PMC5833858 DOI: 10.1038/s41419-017-0203-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
UHRF1 (ubiquitin-like with PHD and ring finger domains 1) is highly expressed in various human cancers including retinoblastoma, and associated with tumor-promoting effects such as inhibition of apoptosis and high proliferation. However, the molecular mechanisms underlying tumor-promoting functions of UHRF1 in retinoblastoma still remain elusive. Here, we show that stable knockdown of UHRF1 renders retinoblastoma cells sensitized to conventional chemotherapeutic drugs such as etoposide and camptothecin, resulting in enhanced DNA damage and apoptotic cell death. We found that UHRF1-depleted retinoblastoma cells can recognize DNA damages normally but have markedly low expression of XRCC4 (X-ray repair cross complementing 4) among the components of nonhomologous end-joining (NHEJ) repair complex. Conversely, overexpression of UHRF1 increased the XRCC4 expression and stable knockdown of XRCC4 sensitized retinoblastoma cells to etoposide treatment, suggesting that XRCC4 is a key mediator for the drug sensitivity upon UHRF1 depletion in retinoblastoma cells. Consistent with the findings, chromatin association of DNA ligase IV in response to acute DNA damage was found to be significantly reduced in UHRF1-depleted retinoblastoma cells and functional complementation for XRCC4 in UHRF1-depleted cells attenuated the drug sensitivity, demonstrating that XRCC4 downregulation in UHRF1-depleted cells impaired DNA repair and consequently induced robust apoptosis upon genotoxic drug treatment. In human primary retinoblastoma, high expression of UHRF1 and XRCC4 could be detected, and elevated XRCC4 expression correlated with reduced apoptosis markers, implying that UHRF1-mediated XRCC4 upregulation under pathophysiological conditions triggered by RB1 gene inactivation may confer protection against endogenous DNA damages that arise during retinoblastoma development. Taken together, these results present a new mechanistic insight into how UHRF1 mediates its tumor-promoting functions in retinoblastoma, and also provide a basis for UHRF1 targeting to improve the efficacy of current chemotherapy for retinoblastoma treatment.
Collapse
|
48
|
Abstract
The morbidity and mortality of lung cancer in Xuanwei, China, are the highest in the world. This study attempts to identify differentially expressed genes (DEGs) related to lung adenocarcinoma in Xuanwei. The expression profiles of eight paired lung adenocarcinoma tissues and corresponding nontumor tissues were acquired by microarrays. Functional annotations of DEGs were carried out by bioinformatics analysis. The results of the microarrays were further verified by real-time quantitative PCR (RTq-PCR). A total of 5290 genes were classified as DEGs in lung adenocarcinoma in Xuanwei; 3325 genes were upregulated and 1965 genes were downregulated, whereas the expression of the other 11 970 genes did not change. These DEGs are involved in a wide range of cancer-related processes, which include cell division, cell adhesion, cell proliferation, and DNA replication, and in many pathways such as the p53 signaling pathway, the MAPK pathway, the Jak-STAT signaling pathway, the hedgehog signaling pathway, and the non-small-cell lung cancer pathway. The tendency of changes in the expression of 12 selected DEGs (five downregulated genes, PIK3R1, RARB, HGF, MAPK11, and SESN1, and seven upregulated genes, PAK1, E2F1, CCNE1, EGF, CDC25A, PTTG1, and UHRF1) in RTq-PCR was consistent with the expression profiling data. Expression of PAK1 was significantly increased in the low differentiation group (P=0.031), whereas expression of HGF was significantly decreased in the low differentiation group (P=0.045). RARB and MAPK11 were significantly increased in the nonsmoker group (P=0.033 and 0.040, respectively). A large number of DEGs in lung adenocarcinoma in Xuanwei have been detected, which may enable us to understand the pathogenesis and lay an important foundation for the prevention and treatment of lung adenocarcinoma in Xuanwei.
Collapse
|
49
|
Effect of dihydroartemisinin on UHRF1 gene expression in human prostate cancer PC-3 cells. Anticancer Drugs 2017; 28:384-391. [PMID: 28059831 DOI: 10.1097/cad.0000000000000469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the second most common cancer in men around the world, prostate cancer is increasingly gaining more attention. Dihydroartemisinin (DHA) has been proven to be a promising anticancer agent in vitro as well as in vivo in accumulating data. However, the detailed mechanisms of how DHA action in human prostate cancer PC-3 cells remain elusive. This study aimed to investigate the effects of DHA, a novel anticancer agent, by inhibiting the expression of ubiquitin like containing PHD and ring finger 1 (UHRF1) in PC-3 cells. The apoptosis and cell-cycle distribution were detected by flow cytometry. Quantitative real-time PCR was performed to examine both UHRF1 and DNA methyltransferase 1 (DNMT1) expressions at mRNA levels, whereas the expressions of UHRF1, DNMT1, and p16 proteins at protein levels were detected by Western blotting. Methylation levels of p16 CpG islands were determined by bisulfite genomic sequencing. We showed that DHA induced the downregulation of UHRF1 and DNMT1, accompanied by an upregulation of p16 in PC-3 cells. Decreased p16 promoter methylation levels in DHA-treated groups were also observed in PC-3 cells. Furthermore, DHA significantly induced apoptosis and G1/S cell-cycle arrest in PC-3 cells. Our results suggested that downregulation of UHRF1/DNMT1 is upstream to many cellular events, including G1 cell arrest, demethylation of p16, and apoptosis. Together, our study provides new evidence that DHA may serve as a potential therapeutic agent in the treatment of prostate cancer.
Collapse
|
50
|
Ye J, Zhang Y, Liang W, Huang J, Wang L, Zhong X. UHRF1 is an Independent Prognostic Factor and a Potential Therapeutic Target of Esophageal Squamous Cell Carcinoma. J Cancer 2017; 8:4027-4039. [PMID: 29187878 PMCID: PMC5706005 DOI: 10.7150/jca.21256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022] Open
Abstract
Purpose: Ubiquitin-like with plant homeodomain and ring-finger domains 1 (UHRF1) plays an essential role in DNA methylation, and the overexpression of UHRF1 is associated with poor prognosis in various cancers. Esophageal squamous cell carcinoma (ESCC) accounts for approximately 90% of esophageal cancer cases in China, but the five-year survival rate for patients is less than 10% due to limited clinical approaches for early diagnosis and treatment. The present research aimed to investigate the expression of UHRF1 in ESCC and its biological role in ESCC development. Methods: UHRF1 expression in ESCC and normal esophageal tissues was examined using immunohistochemical staining, followed by analysis of the correlation between UHRF1 expression and clinical features. In addition, the effects of lentivirus-mediated RNA interference of UHRF1 on global DNA methylation, cell proliferation, cell cycle progression and apoptosis and were investigated in ESCC cells. Results: UHRF1 was overexpressed in ESCC tissues and was an independent prognostic factor for ESCC patients. In ESCC cells, knockdown of UHRF1 caused global DNA hypomethylation, inhibited cell proliferation and induced apoptosis. Furthermore, UHRF1 depletion induced cell cycle arrest at the G2/M phase, accompanied by activation of Wee1 and DNA damage response pathway. Conclusions: Our findings identify UHRF1 as a promising prognostic marker for ESCC and suggest that UHRF1 may be a potential therapy target for ESCC patients with elevated UHRF1 expression.
Collapse
Affiliation(s)
- Jiecheng Ye
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiye Liang
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Jianxian Huang
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Lihui Wang
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Xueyun Zhong
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|