1
|
Le Coadou L, Berthelet J, Mechaly AE, Michail C, Bui LC, Dairou J, Haouz A, Dupret JM, Rodrigues Lima F. Structural and enzymatic evidence for the methylation of the ACK1 tyrosine kinase by the histone lysine methyltransferase SETD2. Biochem Biophys Res Commun 2024; 695:149400. [PMID: 38160530 DOI: 10.1016/j.bbrc.2023.149400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
SETD2 (SET-domain containing protein 2) is a histone methyltransferase (HMT) of the SET family responsible for the trimethylation of K36 of histone H3, thus producing the epigenetic mark H3K36me3. Recent studies have shown that certain SET family HMTs, such as SMYD2, SMYD3 or SETDB1 can also methylate protein kinases and therefore be involved in signaling pathways. Here we provide structural and enzymatic evidence showing that SETD2 methylates the protein tyrosine kinase ACK1 in vitro. ACK1 is recognized as a major integrator of signaling from various receptor tyrosine kinases. Using ACK1 peptides and recombinant proteins, we show that SETD2 methylates the K514 residue of ACK1 generating K514 mono, di or tri-methylation. Interestingly, K514 is found in a "H3K36-like" motif of ACK1 which is known to be post-translationally modified and to be involved in protein-protein interaction. The crystal structure of SETD2 catalytic domain in complex with an ACK1 peptide further provides the structural basis for the methylation of ACK1 K514 by SETD2. Our work therefore strongly suggests that ACK1 could be a novel non-histone substrate of SETD2 and further supports that SET HMTs, such as SETD2, could be involved in both epigenetic regulations and cell signaling.
Collapse
Affiliation(s)
- Louise Le Coadou
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, Unité Epigénétique et Destin Cellulaire, F-75013, Paris, France
| | - Ariel E Mechaly
- Institut Pasteur, Université Paris Cité, CNRS, Plateforme de Cristallographie-C2RT, F-75015, Paris, France
| | - Christina Michail
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Linh-Chi Bui
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Julien Dairou
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Université Paris Cité, CNRS, Plateforme de Cristallographie-C2RT, F-75015, Paris, France
| | - Jean-Marie Dupret
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Fernando Rodrigues Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| |
Collapse
|
2
|
Hayashi SY, Craddock BP, Miller WT. Phosphorylation of Ack1 by the Receptor Tyrosine Kinase Mer. KINASES AND PHOSPHATASES 2023; 1:167-180. [PMID: 37662484 PMCID: PMC10473914 DOI: 10.3390/kinasesphosphatases1030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Ack1 is a nonreceptor tyrosine kinase that is associated with cellular proliferation and survival. The receptor tyrosine kinase Mer, a member of the TAM family of receptors, has previously been reported to be an upstream activator of Ack1 kinase. The mechanism linking the two kinases, however, has not been investigated. We confirmed that Ack1 and Mer interact by co-immunoprecipitation experiments and found that Mer expression led to increased Ack1 activity. The effect on Ack1 was dependent on the kinase activity of Mer, whereas mutation of the Mer C-terminal tyrosines Y867 and Y924 did not significantly decrease the ability of Mer to activate Ack1. Ack1 possesses a Mig6 Homology Region (MHR) that contains adjacent regulatory tyrosines (Y859 and Y860). Using synthetic peptides, we showed that Mer preferentially binds and phosphorylates the MHR sequence containing phosphorylated pY860, as compared to the pY859 sequence. This suggested the possibility of sequential phosphorylation within the MHR of Ack1, as has been observed previously for other kinases. In cells co-expressing Mer and Ack1 MHR mutants, the Y859F mutant had higher activity than the Y860F mutant, consistent with this model. The interaction between Mer and Ack1 could play a role in immune cell signaling in normal physiology and could also contribute to the hyperactivation of Ack1 in prostate cancer and other tumors.
Collapse
Affiliation(s)
- Samantha Y. Hayashi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Barbara P. Craddock
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Veterans Affairs Medical Center, Northport, NY 11768, USA
| |
Collapse
|
3
|
Kan Y, Paung Y, Seeliger MA, Miller WT. Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Cells 2023; 12:900. [PMID: 36980241 PMCID: PMC10047419 DOI: 10.3390/cells12060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The nonreceptor tyrosine kinase (NRTK) Ack1 comprises a distinct arrangement of non-catalytic modules. Its SH3 domain has a C-terminal to the kinase domain (SH1), in contrast to the typical SH3-SH2-SH1 layout in NRTKs. The Ack1 is the only protein that shares a region of high homology to the tumor suppressor protein Mig6, a modulator of EGFR. The vertebrate Acks make up the only tyrosine kinase (TK) family known to carry a UBA domain. The GTPase binding and SAM domains are also uncommon in the NRTKs. In addition to being a downstream effector of receptor tyrosine kinases (RTKs) and integrins, Ack1 can act as an epigenetic regulator, modulate the degradation of the epidermal growth factor receptor (EGFR), confer drug resistance, and mediate the progression of hormone-sensitive tumors. In this review, we discuss the domain architecture of Ack1 in relation to other protein kinases that possess such defined regulatory domains.
Collapse
Affiliation(s)
- Yagmur Kan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - YiTing Paung
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Markus A. Seeliger
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
- Department of Veterans Affairs Medical Center, Northport, NY 11768-2200, USA
| |
Collapse
|
4
|
Kan Y, Miller WT. Activity of the nonreceptor tyrosine kinase Ack1 is regulated by tyrosine phosphorylation of its Mig6 homology region. FEBS Lett 2022; 596:2808-2820. [PMID: 36178070 PMCID: PMC9879303 DOI: 10.1002/1873-3468.14505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 01/28/2023]
Abstract
Ack1 is a proto-oncogenic tyrosine kinase with homology to the tumour suppressor Mig6, an inhibitor of the epidermal growth factor receptor (EGFR). The residues critical for binding of Mig6 to EGFR are conserved within the Mig6 homology region (MHR) of Ack1. We tested whether intramolecular interactions between the Ack1 MHR and kinase domain (KD) are regulated by phosphorylation. We identified two Src phosphorylation sites within the MHR (Y859, Y860). Addition of Src-phosphorylated MHR to the Ack1 KD enhanced enzymatic activity. Co-expression of Src in cells led to increased Ack1 activity; mutation of Y859/Y860 blocked this increase. Collectively, the data suggest that phosphorylation of the Ack1 MHR regulates its kinase activity. Phosphorylation of Y859/Y860 occurs in cancers of the brain, breast, colon, and prostate, where genomic amplification or somatic mutations of Ack1 play a role in disease progression. Our findings suggest that MHR phosphorylation could contribute to Ack1 dysregulation in tumours.
Collapse
Affiliation(s)
- Yağmur Kan
- Department of Physiology and Biophysics, School of Medicine Stony Brook University NY USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine Stony Brook University NY USA
| |
Collapse
|
5
|
Lee HW, Choi Y, Lee AR, Yoon CH, Kim KH, Choi BS, Park YK. Hepatocyte Growth Factor-Dependent Antiviral Activity of Activated cdc42-Associated Kinase 1 Against Hepatitis B Virus. Front Microbiol 2022; 12:800935. [PMID: 35003030 PMCID: PMC8733702 DOI: 10.3389/fmicb.2021.800935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
Activated cdc42-associated kinase 1 (ACK1) is a well-known non-receptor tyrosine kinase that regulates cell proliferation and growth through activation of cellular signaling pathways, including mitogen-activated protein kinase (MAPK). However, the anti-HBV activity of ACK1 has not been elucidated. This study aimed to investigate the role of ACK1 in the HBV life cycle and the mechanism underlying the anti-HBV activity of ACK1. To examine the antiviral activity of ACK1, we established HepG2-ACK1 cells stably overexpressing ACK1. The HBV life cycle, including HBeAg/HBsAg secretion, HBV DNA/transcription, and enhancer activity, was analyzed in HepG2 and HepG2-ACK1 cells with HBV replication-competent HBV 1.2mer (HBV 1.2). Finally, the anti-HBV activity of ACK1 was examined in an HBV infection system. ACK1 suppressed HBV gene expression and transcription in HepG2 and HepG2-ACK1 cells. Furthermore, ACK1 inhibited HBV replication by decreasing viral enhancer activity. ACK1 exhibited its anti-HBV activity via activation of Erk1/2, which consequently downregulated the expression of HNF4α binding to HBV enhancers. Furthermore, hepatocyte growth factor (HGF) induced ACK1 expression at an early stage. Finally, ACK1 mediated the antiviral effect of HGF in the HBV infection system. These results indicated that ACK1 induced by HGF inhibited HBV replication at the transcriptional level by activating the MAPK-HNF signaling pathway. Our findings suggest that ACK1 is a potentially novel upstream molecule of MAPK-mediated anti-HBV activity.
Collapse
Affiliation(s)
- Hye Won Lee
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, National Institute of Infectious Disease, National Institute of Health, Cheongju, South Korea
| | - Yongwook Choi
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, National Institute of Infectious Disease, National Institute of Health, Cheongju, South Korea
| | - Ah Ram Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, South Korea
| | - Cheol-Hee Yoon
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, National Institute of Infectious Disease, National Institute of Health, Cheongju, South Korea
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, South Korea
| | - Byeong-Sun Choi
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, National Institute of Infectious Disease, National Institute of Health, Cheongju, South Korea
| | - Yong Kwang Park
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, National Institute of Infectious Disease, National Institute of Health, Cheongju, South Korea
| |
Collapse
|
6
|
Tahir R, Madugundu AK, Udainiya S, Cutler JA, Renuse S, Wang L, Pearson NA, Mitchell CJ, Mahajan N, Pandey A, Wu X. Proximity-Dependent Biotinylation to Elucidate the Interactome of TNK2 Nonreceptor Tyrosine Kinase. J Proteome Res 2021; 20:4566-4577. [PMID: 34428048 DOI: 10.1021/acs.jproteome.1c00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonreceptor tyrosine kinases (NRTKs) represent an important class of signaling molecules driving diverse cellular pathways. Aberrant expression and hyperphosphorylation of TNK2, an NRTK, have been implicated in multiple cancers. However, the exact proteins and cellular events that mediate phenotypic changes downstream of TNK2 are unclear. Biological systems that employ proximity-dependent biotinylation methods, such as BioID, are being increasingly used to map protein-protein interactions, as they provide increased sensitivity in discovering interaction partners. In this study, we employed stable isotope labeling with amino acids in cell culture and BioID coupled to the biotinylation site identification technology (BioSITe) method that we recently developed to quantitatively explore the interactome of TNK2. By performing a controlled comparative analysis between full-length TNK2 and its truncated counterpart, we were able to not only identify site-level biotinylation of previously well-established TNK2 binders and substrates including NCK1, NCK2, CTTN, and STAT3, but also discover several novel TNK2 interacting partners. We also performed co-immunoprecipitation and immunofluorescence analysis to validate the interaction between TNK2 and CLINT1, a novel TNK2 interacting protein. Overall, this work reveals the power of the BioSITe method coupled to BioID and highlights several molecules that warrant further exploration to assess their functional significance in TNK2-mediated signaling.
Collapse
Affiliation(s)
- Raiha Tahir
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Ginkgo Bioworks, Boston, Massachusetts 02210, United States
| | - Anil K Madugundu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Savita Udainiya
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jevon A Cutler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Pre-Doctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Li Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Nicole A Pearson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | | | - Nupam Mahajan
- Siteman Cancer Center, Washington University, St. Louis, Missouri 63110, United States
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Xinyan Wu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
7
|
Wu X, Wang L, Pearson NA, Renuse S, Cheng R, Liang Y, Mun DG, Madugundu AK, Xu Y, Gill PS, Pandey A. Quantitative Tyrosine Phosphoproteome Profiling of AXL Receptor Tyrosine Kinase Signaling Network. Cancers (Basel) 2021; 13:cancers13164234. [PMID: 34439388 PMCID: PMC8394654 DOI: 10.3390/cancers13164234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/15/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary AXL is a receptor tyrosine kinase belonging to the TAM (Tyro3, Axl and Mer) family. The AXL protein plays an important role in promoting cancer development, such as proliferation, migration, invasion and survival of cancer cells. In this study, we used mass spectrometry-based proteomics to quantify the cancer signaling regulated by AXL activation. Our study identified more than 1000 phosphotyrosine sites and discovered that activation of AXL can upregulate multiple cancer-promoting and cell migration/invasion-related signaling pathways. We also observed significant crosstalk as evidenced by rapid phosphorylation of multiple receptor tyrosine kinases and protein tyrosine phosphatases, including PTPN11 and PTPRA, upon GAS6 stimulation. These discoveries should serve as a potentially useful resource for studying AXL functions as well as for the development of effective therapeutic options to target AXL. Abstract Overexpression and amplification of AXL receptor tyrosine kinase (RTK) has been found in several hematologic and solid malignancies. Activation of AXL can enhance tumor-promoting processes such as cancer cell proliferation, migration, invasion and survival. Despite the important role of AXL in cancer development, a deep and quantitative mapping of its temporal dynamic signaling transduction has not yet been reported. Here, we used a TMT labeling-based quantitative proteomics approach to characterize the temporal dynamics of the phosphotyrosine proteome induced by AXL activation. We identified >1100 phosphotyrosine sites and observed a widespread upregulation of tyrosine phosphorylation induced by GAS6 stimulation. We also detected several tyrosine sites whose phosphorylation levels were reduced upon AXL activation. Gene set enrichment-based pathway analysis indicated the activation of several cancer-promoting and cell migration/invasion-related signaling pathways, including RAS, EGFR, focal adhesion, VEGFR and cytoskeletal rearrangement pathways. We also observed a rapid induction of phosphorylation of protein tyrosine phosphatases, including PTPN11 and PTPRA, upon GAS6 stimulation. The novel molecules downstream of AXL identified in this study along with the detailed global quantitative map elucidating the temporal dynamics of AXL activation should not only help understand the oncogenic role of AXL, but also aid in developing therapeutic options to effectively target AXL.
Collapse
Affiliation(s)
- Xinyan Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
- Correspondence: (X.W.); (A.P.); Tel.: +1-507-293-9614 (X.W.); +1-507-773-9564 (A.P.)
| | - Li Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Nicole A. Pearson
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Santosh Renuse
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ran Cheng
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ye Liang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
| | - Anil K. Madugundu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Yaoyu Xu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
| | - Parkash S. Gill
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA;
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.W.); (S.R.); (R.C.); (D.-G.M.); (A.K.M.); (Y.X.)
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India
- Correspondence: (X.W.); (A.P.); Tel.: +1-507-293-9614 (X.W.); +1-507-773-9564 (A.P.)
| |
Collapse
|
8
|
Tahir R, Renuse S, Udainiya S, Madugundu AK, Cutler JA, Nirujogi RS, Na CH, Xu Y, Wu X, Pandey A. Mutation-Specific and Common Phosphotyrosine Signatures of KRAS G12D and G13D Alleles. J Proteome Res 2020; 20:670-683. [PMID: 32986951 DOI: 10.1021/acs.jproteome.0c00587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
KRAS is one of the most frequently mutated genes across all cancer subtypes. Two of the most frequent oncogenic KRAS mutations observed in patients result in glycine to aspartic acid substitution at either codon 12 (G12D) or 13 (G13D). Although the biochemical differences between these two predominant mutations are not fully understood, distinct clinical features of the resulting tumors suggest involvement of disparate signaling mechanisms. When we compared the global phosphotyrosine proteomic profiles of isogenic colorectal cancer cell lines bearing either G12D or G13D KRAS mutation, we observed both shared as well as unique signaling events induced by the two KRAS mutations. Remarkably, while the G12D mutation led to an increase in membrane proximal and adherens junction signaling, the G13D mutation led to activation of signaling molecules such as nonreceptor tyrosine kinases, MAPK kinases, and regulators of metabolic processes. The importance of one of the cell surface molecules, MPZL1, which was found to be hyperphosphorylated in G12D cells, was confirmed by cellular assays as its knockdown led to a decrease in proliferation of G12D but not G13D expressing cells. Overall, our study reveals important signaling differences across two common KRAS mutations and highlights the utility of our approach to systematically dissect subtle differences between related oncogenic mutants and potentially lead to individualized treatments.
Collapse
Affiliation(s)
- Raiha Tahir
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Savita Udainiya
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.,Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Anil K Madugundu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Jevon A Cutler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Pre-Doctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Raja Sekhar Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Chan Hyun Na
- Department of Neurology, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Yaoyu Xu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Xinyan Wu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.,Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
The non-receptor tyrosine kinase ACK: regulatory mechanisms, signalling pathways and opportunities for attACKing cancer. Biochem Soc Trans 2020; 47:1715-1731. [PMID: 31845724 DOI: 10.1042/bst20190176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Activated Cdc42-associated kinase or ACK, is a non-receptor tyrosine kinase and an effector protein for the small G protein Cdc42. A substantial body of evidence has accumulated in the past few years heavily implicating ACK as a driver of oncogenic processes. Concomitantly, more is also being revealed regarding the signalling pathways involving ACK and molecular details of its modes of action. Some details are also available regarding the regulatory mechanisms of this kinase, including activation and regulation of its catalytic activity, however, a full understanding of these aspects remains elusive. This review considers the current knowledge base concerning ACK and summarizes efforts and future prospects to target ACK therapeutically in cancer.
Collapse
|
10
|
He L, Lin Y, Ge ZH, He SY, Zhao BB, Shen D, He JG, Lu YJ. The Legionella pneumophila effector WipA disrupts host F-actin polymerisation by hijacking phosphotyrosine signalling. Cell Microbiol 2019; 21:e13014. [PMID: 30702192 DOI: 10.1111/cmi.13014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 11/29/2022]
Abstract
The major virulence determinant of Legionella pneumophila is the type IVB secretion system (T4BSS), which delivers approximately 330 effector proteins into the host cell to modulate various cellular processes. However, the functions of most effector proteins remain unclear. WipA, an effector, was the first phosphotyrosine phosphatase of Legionella with unknown function. In this study, we found that WipA induced relatively strong growth defects in yeast in a phosphatase activity-dependent manner. Phosphoproteomics data showed that WipA was likely involved into endocytosis, FcγR-mediated phagocytosis, tight junction, and regulation of actin cytoskeleton pathways. Western blotting further confirmed WipA dephosphorylates several proteins associated with actin polymerisation, such as p-N-WASP, p-ARP3, p-ACK1, and p-NCK1. Thus, we hypothesised that WipA targets N-WASP/ARP2/3 complex signalling pathway, leading to disturbance of actin polymerisation. Indeed, we demonstrated that WipA inhibits host F-actin polymerisation by reducing the G-actin to F-actin transition during L. penumophila infection. Furthermore, the intracellular proliferation of wipA/legK2 double mutant was significantly impaired at the late stage of infection, although the absence of WipA does not confer any further effect on actin polymerisation to the legK2 mutant. Collectively, this study provides unique insights into the WipA-mediated regulation of host actin polymerisation and assists us to elucidate the pathogenic mechanisms of L. pnuemophila infection.
Collapse
Affiliation(s)
- Lei He
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Yun Lin
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Zhen-Huang Ge
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Shi-Yu He
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Bei-Bei Zhao
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Dong Shen
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Jian-Guo He
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Yong-Jun Lu
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Jenkins C, Luty SB, Maxson JE, Eide CA, Abel ML, Togiai C, Nemecek ER, Bottomly D, McWeeney SK, Wilmot B, Loriaux M, Chang BH, Tyner JW. Synthetic lethality of TNK2 inhibition in PTPN11-mutant leukemia. Sci Signal 2018; 11:eaao5617. [PMID: 30018082 PMCID: PMC6168748 DOI: 10.1126/scisignal.aao5617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protein tyrosine phosphatase PTPN11 is implicated in the pathogenesis of juvenile myelomonocytic leukemia (JMML), acute myeloid leukemia (AML), and other malignancies. Activating mutations in PTPN11 increase downstream proliferative signaling and cell survival. We investigated the signaling upstream of PTPN11 in JMML and AML cells and found that PTPN11 was activated by the nonreceptor tyrosine/serine/threonine kinase TNK2 and that PTPN11-mutant JMML and AML cells were sensitive to TNK2 inhibition. In cultured human cell-based assays, PTPN11 and TNK2 interacted directly, enabling TNK2 to phosphorylate PTPN11, which subsequently dephosphorylated TNK2 in a negative feedback loop. Mutations in PTPN11 did not affect this physical interaction but increased the basal activity of PTPN11 such that TNK2-mediated activation was additive. Consequently, coexpression of TNK2 and mutant PTPN11 synergistically increased mitogen-activated protein kinase (MAPK) signaling and enhanced colony formation in bone marrow cells from mice. Chemical inhibition of TNK2 blocked MAPK signaling and colony formation in vitro and decreased disease burden in a patient with PTPN11-mutant JMML who was treated with the multikinase (including TNK2) inhibitor dasatinib. Together, these data suggest that TNK2 is a promising therapeutic target for PTPN11-mutant leukemias.
Collapse
MESH Headings
- Animals
- Child
- Dasatinib/pharmacology
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myelomonocytic, Juvenile/drug therapy
- Leukemia, Myelomonocytic, Juvenile/enzymology
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/pathology
- Male
- Mice
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Signal Transduction
- Survival Rate
- Synthetic Lethal Mutations
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Chelsea Jenkins
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samuel B Luty
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julia E Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa L Abel
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Corinne Togiai
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eneida R Nemecek
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel Bottomly
- Oregon Clinical and Translational Research Institute, Portland, OR 97239, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Oregon Clinical and Translational Research Institute, Portland, OR 97239, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Beth Wilmot
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Oregon Clinical and Translational Research Institute, Portland, OR 97239, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marc Loriaux
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bill H Chang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
12
|
Abstract
Many fundamental biological discoveries have been made in Caenorhabditis elegans. The discovery of Orsay virus has enabled studies of host-virus interactions in this model organism. To identify host factors critical for Orsay virus infection, we designed a forward genetic screen that utilizes a virally induced green fluorescent protein (GFP) reporter. Following chemical mutagenesis, two Viro (virus induced reporter off) mutants that failed to express GFP were mapped to sid-3, a nonreceptor tyrosine kinase, and B0280.13 (renamed viro-2), an ortholog of human Wiskott-Aldrich syndrome protein (WASP). Both mutants yielded Orsay virus RNA levels comparable to that of the residual input virus, suggesting that they are not permissive for Orsay virus replication. In addition, we demonstrated that both genes affect an early prereplication stage of Orsay virus infection. Furthermore, it is known that the human ortholog of SID-3, activated CDC42-associated kinase (ACK1/TNK2), is capable of phosphorylating human WASP, suggesting that VIRO-2 may be a substrate for SID-3 in C. elegans. A targeted RNA interference (RNAi) knockdown screen further identified the C. elegans gene nck-1, which has a human ortholog that interacts with TNK2 and WASP, as required for Orsay virus infection. Thus, genetic screening in C. elegans identified critical roles in virus infection for evolutionarily conserved genes in a known human pathway. Orsay virus is the only known virus capable of naturally infecting the model organism Caenorhabditis elegans, which shares many evolutionarily conserved genes with humans. We exploited the robust genetic tractability of C. elegans to identify three host genes, sid-3, viro-2, and nck-1, which are essential for Orsay virus infection. Mutant animals that lack these three genes are highly defective in viral replication. Strikingly, the human orthologs of these three genes, activated CDC42-associated kinase (TNK2), Wiskott-Aldrich syndrome protein (WASP), and noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) are part of a known signaling pathway in mammals. These results suggest that TNK2, WASP, and NCK1 may play important roles in mammalian virus infection.
Collapse
|
13
|
Maxson JE, Abel ML, Wang J, Deng X, Reckel S, Luty SB, Sun H, Gorenstein J, Hughes SB, Bottomly D, Wilmot B, McWeeney SK, Radich J, Hantschel O, Middleton RE, Gray NS, Druker BJ, Tyner JW. Identification and Characterization of Tyrosine Kinase Nonreceptor 2 Mutations in Leukemia through Integration of Kinase Inhibitor Screening and Genomic Analysis. Cancer Res 2015; 76:127-38. [PMID: 26677978 DOI: 10.1158/0008-5472.can-15-0817] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/07/2015] [Indexed: 01/22/2023]
Abstract
The amount of genomic information about leukemia cells currently far exceeds our overall understanding of the precise genetic events that ultimately drive disease development and progression. Effective implementation of personalized medicine will require tools to distinguish actionable genetic alterations within the complex genetic landscape of leukemia. In this study, we performed kinase inhibitor screens to predict functional gene targets in primary specimens from patients with acute myeloid leukemia and chronic myelomonocytic leukemia. Deep sequencing of the same patient specimens identified genetic alterations that were then integrated with the functionally important targets using the HitWalker algorithm to prioritize the mutant genes that most likely explain the observed drug sensitivity patterns. Through this process, we identified tyrosine kinase nonreceptor 2 (TNK2) point mutations that exhibited oncogenic capacity. Importantly, the integration of functional and genomic data using HitWalker allowed for prioritization of rare oncogenic mutations that may have been missed through genomic analysis alone. These mutations were sensitive to the multikinase inhibitor dasatinib, which antagonizes TNK2 kinase activity, as well as novel TNK2 inhibitors, XMD8-87 and XMD16-5, with greater target specificity. We also identified activating truncation mutations in other tumor types that were sensitive to XMD8-87 and XMD16-5, exemplifying the potential utility of these compounds across tumor types dependent on TNK2. Collectively, our findings highlight a more sensitive approach for identifying actionable genomic lesions that may be infrequently mutated or overlooked and provide a new method for the prioritization of candidate genetic mutations.
Collapse
Affiliation(s)
- Julia E Maxson
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Melissa L Abel
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Jinhua Wang
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Xianming Deng
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Sina Reckel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Samuel B Luty
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Huahang Sun
- Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Julie Gorenstein
- Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Seamus B Hughes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon
| | - Beth Wilmot
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon. Division of Bioinformatics and Computational Biology, Oregon Health and Science University, Portland, Oregon
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon. Division of Bioinformatics and Computational Biology, Oregon Health and Science University, Portland, Oregon
| | - Jerald Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Richard E Middleton
- Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Nathanael S Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon. Howard Hughes Medical Institute, Portland, Oregon
| | - Jeffrey W Tyner
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon. Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
14
|
Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition. Oncotarget 2015; 5:7328-41. [PMID: 25193862 PMCID: PMC4202126 DOI: 10.18632/oncotarget.2397] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a key process in embryonic development and has been associated with cancer metastasis and drug resistance. For example, in EGFR mutated non-small cell lung cancers (NSCLC), EMT has been associated with acquired resistance to the EGFR inhibitor erlotinib. Moreover, “EGFR-addicted” cancer cell lines induced to undergo EMT become erlotinib-resistant in vitro. To identify potential therapeutic vulnerabilities specifically within these mesenchymal, erlotinib-resistant cells, we performed a small molecule screen of ~200 established anti-cancer agents using the EGFR mutant NSCLC HCC827 cell line and a corresponding mesenchymal derivative line. The mesenchymal cells were more resistant to most tested agents; however, a small number of agents showed selective growth inhibitory activity against the mesenchymal cells, with the most potent being the Abl/Src inhibitor, dasatinib. Analysis of the tyrosine phospho-proteome revealed several Src/FAK pathway kinases that were differentially phosphorylated in the mesenchymal cells, and RNAi depletion of the core Src/FAK pathway components in these mesenchymal cells caused apoptosis. These findings reveal a novel role for Src/FAK pathway kinases in drug resistance and identify dasatinib as a potential therapeutic for treatment of erlotinib resistance associated with EMT.
Collapse
|
15
|
Rudd ML, Mohamed H, Price JC, O'Hara AJ, Le Gallo M, Urick ME, Cruz P, Zhang S, Hansen NF, Godwin AK, Sgroi DC, Wolfsberg TG, Mullikin JC, Merino MJ, Bell DW. Mutational analysis of the tyrosine kinome in serous and clear cell endometrial cancer uncovers rare somatic mutations in TNK2 and DDR1. BMC Cancer 2014; 14:884. [PMID: 25427824 PMCID: PMC4258955 DOI: 10.1186/1471-2407-14-884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 11/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endometrial cancer (EC) is the 8th leading cause of cancer death amongst American women. Most ECs are endometrioid, serous, or clear cell carcinomas, or an admixture of histologies. Serous and clear ECs are clinically aggressive tumors for which alternative therapeutic approaches are needed. The purpose of this study was to search for somatic mutations in the tyrosine kinome of serous and clear cell ECs, because mutated kinases can point to potential therapeutic targets. METHODS In a mutation discovery screen, we PCR amplified and Sanger sequenced the exons encoding the catalytic domains of 86 tyrosine kinases from 24 serous, 11 clear cell, and 5 mixed histology ECs. For somatically mutated genes, we next sequenced the remaining coding exons from the 40 discovery screen tumors and sequenced all coding exons from another 72 ECs (10 clear cell, 21 serous, 41 endometrioid). We assessed the copy number of mutated kinases in this cohort of 112 tumors using quantitative real time PCR, and we used immunoblotting to measure expression of these kinases in endometrial cancer cell lines. RESULTS Overall, we identified somatic mutations in TNK2 (tyrosine kinase non-receptor, 2) and DDR1 (discoidin domain receptor tyrosine kinase 1) in 5.3% (6 of 112) and 2.7% (3 of 112) of ECs. Copy number gains of TNK2 and DDR1 were identified in another 4.5% and 0.9% of 112 cases respectively. Immunoblotting confirmed TNK2 and DDR1 expression in endometrial cancer cell lines. Three of five missense mutations in TNK2 and one of two missense mutations in DDR1 are predicted to impact protein function by two or more in silico algorithms. The TNK2(P761Rfs*72) frameshift mutation was recurrent in EC, and the DDR1(R570Q) missense mutation was recurrent across tumor types. CONCLUSIONS This is the first study to systematically search for mutations in the tyrosine kinome in clear cell endometrial tumors. Our findings indicate that high-frequency somatic mutations in the catalytic domains of the tyrosine kinome are rare in clear cell ECs. We uncovered ten new mutations in TNK2 and DDR1 within serous and endometrioid ECs, thus providing novel insights into the mutation spectrum of each gene in EC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Daphne W Bell
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD 20892, USA.
| |
Collapse
|
16
|
Gocek E, Moulas AN, Studzinski GP. Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Crit Rev Clin Lab Sci 2014; 51:125-37. [PMID: 24446827 DOI: 10.3109/10408363.2013.874403] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein tyrosine kinases (PTKs) are enzymes that transfer phosphate groups to tyrosine residues on protein substrates. Phosphorylation of proteins causes changes in their function and/or enzymatic activity resulting in specific biological responses. There are two classes of PTKs: the transmembrane receptor PTKs and the cytoplasmic non-receptor PTKs (NRTKs). NRTKs are involved in transduction of signals originating from extracellular clues, which often interact with transmembrane receptors. Thus, they are important components of signaling pathways which regulate fundamental cellular functions such as cell differentiation, apoptosis, survival, and proliferation. The activity of NRTKs is tightly regulated, and de-regulation and/or overexpression of NRTKs has been implicated in malignant transformation and carcinogenesis. Research on NRTKs has shed light on the mechanisms of a number of cellular processes including those involved in carcinogenesis. Not surprisingly, several tyrosine kinase inhibitors are in use as treatment for a number of malignancies, and more are under investigation. This review deals with the structure, function, and signaling pathways of nine main families of NRTKs in normal and cancer cells.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw , Wroclaw , Poland
| | | | | |
Collapse
|
17
|
Fukuda I, Hirabayashi-Ishioka Y, Sakikawa I, Ota T, Yokoyama M, Uchiumi T, Morita A. Optimization of Enrichment Conditions on TiO2 Chromatography Using Glycerol As an Additive Reagent for Effective Phosphoproteomic Analysis. J Proteome Res 2013; 12:5587-97. [DOI: 10.1021/pr400546u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Isao Fukuda
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Yoshino Hirabayashi-Ishioka
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Ikue Sakikawa
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Takeshi Ota
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Mari Yokoyama
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Takaoki Uchiumi
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Atsushi Morita
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| |
Collapse
|
18
|
Walls CD, Iliuk A, Bai Y, Wang M, Tao WA, Zhang ZY. Phosphatase of regenerating liver 3 (PRL3) provokes a tyrosine phosphoproteome to drive prometastatic signal transduction. Mol Cell Proteomics 2013; 12:3759-77. [PMID: 24030100 DOI: 10.1074/mcp.m113.028886] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphatase of regenerating liver 3 (PRL3) is suspected to be a causative factor toward cellular metastasis when in excess. To date, the molecular basis for PRL3 function remains an enigma, making efforts at distilling a concerted mechanism for PRL3-mediated metastatic dissemination very difficult. We previously discovered that PRL3 expressing cells exhibit a pronounced increase in protein tyrosine phosphorylation. Here we take an unbiased mass spectrometry-based approach toward identifying the phosphoproteins exhibiting enhanced levels of tyrosine phosphorylation with a goal to define the "PRL3-mediated signaling network." Phosphoproteomic data support intracellular activation of an extensive signaling network normally governed by extracellular ligand-activated transmembrane growth factor, cytokine, and integrin receptors in the PRL3 cells. Additionally, data implicate the Src tyrosine kinase as the major intracellular kinase responsible for "hijacking" this network and provide strong evidence that aberrant Src activation is a major consequence of PRL3 overexpression. Importantly, the data support a PDGF(α/β)-, Eph (A2/B3/B4)-, and Integrin (β1/β5)-receptor array as being the predominant network coordinator in the PRL3 cells, corroborating a PRL3-induced mesenchymal-state. Within this network, we find that tyrosine phosphorylation is increased on a multitude of signaling effectors responsible for Rho-family GTPase, PI3K-Akt, STAT, and ERK activation, linking observations made by the field as a whole under Src as a primary signal transducer. Our phosphoproteomic data paint the most comprehensive picture to date of how PRL3 drives prometastatic molecular events through Src activation.
Collapse
Affiliation(s)
- Chad D Walls
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | | | | | | | | | | |
Collapse
|
19
|
Gajiwala KS, Maegley K, Ferre R, He YA, Yu X. Ack1: activation and regulation by allostery. PLoS One 2013; 8:e53994. [PMID: 23342057 PMCID: PMC3544672 DOI: 10.1371/journal.pone.0053994] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 12/07/2012] [Indexed: 01/14/2023] Open
Abstract
The non-receptor tyrosine kinase Ack1 belongs to a unique multi-domain protein kinase family, Ack. Ack is the only family of SH3 domain containing kinases to have an SH3 domain following the kinase domain; others have their SH3 domains preceding the kinase domain. Previous reports have suggested that Ack1 does not require phosphorylation for activation and the enzyme activity of the isolated kinase domain is low relative to other kinases. It has been shown to dimerize in the cellular environment, which augments its enzyme activity. The molecular mechanism of activation, however, remains unknown. Here we present structural and biochemical data on Ack1 kinase domain, and kinase domain+SH3 domain that suggest that Ack1 in its monomeric state is autoinhibited, like EGFR and CDK. The activation of the kinase domain may require N-lobe mediated symmetric dimerization, which may be facilitated by the N-terminal SAM domain. Results presented here show that SH3 domain, unlike in Src family tyrosine kinases, does not directly control the activation state of the enzyme. Instead we speculate that the SH3 domain may play a regulatory role by facilitating binding of the MIG6 homologous region to the kinase domain. We postulate that features of Ack1 activation and regulation parallel those of receptor tyrosine kinase EGFR with some interesting differences.
Collapse
Affiliation(s)
- Ketan S Gajiwala
- Cancer Structural Biology within Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, San Diego, California, United States of America.
| | | | | | | | | |
Collapse
|
20
|
The activation mechanism of ACK1 (activated Cdc42-associated tyrosine kinase 1). Biochem J 2012; 445:255-64. [PMID: 22553920 DOI: 10.1042/bj20111575] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ACK [activated Cdc42 (cell division cycle 42)-associated tyrosine kinase; also called TNK2 (tyrosine kinase, non-receptor, 2)] is activated in response to multiple cellular signals, including cell adhesion, growth factor receptors and heterotrimeric G-protein-coupled receptor signalling. However, the molecular mechanism underlying activation of ACK remains largely unclear. In the present study, we demonstrated that interaction of the SH3 (Src homology 3) domain with the EBD [EGFR (epidermal growth factor receptor)-binding domain] in ACK1 forms an auto-inhibition of the kinase activity. Release of this auto-inhibition is a key step for activation of ACK1. Mutation of the SH3 domain caused activation of ACK1, independent of cell adhesion, suggesting that cell adhesion-mediated activation of ACK1 is through releasing the auto-inhibition. A region at the N-terminus of ACK1 (Leu10-Leu14) is essential for cell adhesion-mediated activation. In the activation of ACK1 by EGFR signalling, Grb2 (growth-factor-receptor-bound protein 2) mediates the interaction of ACK1 with EGFR through binding to the EBD and activates ACK1 by releasing the auto-inhibition. Furthermore, we found that mutation of Ser445 to proline caused constitutive activation of ACK1. Taken together, our studies have revealed a novel molecular mechanism underlying activation of ACK1.
Collapse
|
21
|
Kelley LC, Weed SA. Cortactin is a substrate of activated Cdc42-associated kinase 1 (ACK1) during ligand-induced epidermal growth factor receptor downregulation. PLoS One 2012; 7:e44363. [PMID: 22952966 PMCID: PMC3431376 DOI: 10.1371/journal.pone.0044363] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/06/2012] [Indexed: 12/11/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) internalization following ligand binding controls EGFR downstream pathway signaling activity. Internalized EGFR is poly-ubiquitinated by Cbl to promote lysosome-mediated degradation and signal downregulation. ACK1 is a non-receptor tyrosine kinase that interacts with ubiquitinated EGFR to facilitate EGFR degradation. Dynamic reorganization of the cortical actin cytoskeleton controlled by the actin related protein (Arp)2/3 complex is important in regulating EGFR endocytosis and vesicle trafficking. How ACK1-mediated EGFR internalization cooperates with Arp2/3-based actin dynamics during EGFR downregulation is unclear. Methodology/Principal Findings Here we show that ACK1 directly binds and phosphorylates the Arp2/3 regulatory protein cortactin, potentially providing a direct link to Arp2/3-based actin dynamics during EGFR degradation. Co-immunoprecipitation analysis indicates that the cortactin SH3 domain is responsible for binding to ACK1. In vitro kinase assays demonstrate that ACK1 phosphorylates cortactin on key tyrosine residues that create docking sites for adaptor proteins responsible for enhancing Arp2/3 nucleation. Analysis with phosphorylation-specific antibodies determined that EGFR-induced cortactin tyrosine phosphorylation is diminished coincident with EGFR degradation, whereas ERK1/2 cortactin phosphorylation utilized in promoting activation of the Arp2/3 regulator N-WASp is sustained during EGFR downregulation. Cortactin and ACK1 localize to internalized vesicles containing EGF bound to EGFR visualized by confocal microscopy. RNA interference and rescue studies indicate that ACK1 and the cortactin SH3 domain are essential for ligand-mediated EGFR internalization. Conclusions/Significance Cortactin is a direct binding partner and novel substrate of ACK1. Tyrosine phosphorylation of cortactin by ACK1 creates an additional means to amplify Arp2/3 dynamics through N-WASp activation, potentially contributing to the overall necessary tensile and/or propulsive forces utilized during EGFR endocytic internalization and trafficking involved in receptor degradation.
Collapse
Affiliation(s)
- Laura C. Kelley
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Scott A. Weed
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Gfeller D. Uncovering new aspects of protein interactions through analysis of specificity landscapes in peptide recognition domains. FEBS Lett 2012; 586:2764-72. [PMID: 22710167 DOI: 10.1016/j.febslet.2012.03.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 12/20/2022]
Abstract
Protein interactions underlie all biological processes. An important class of protein interactions, often observed in signaling pathways, consists of peptide recognition domains binding short protein segments on the surface of their target proteins. Recent developments in experimental techniques have uncovered many such interactions and shed new lights on their specificity. To analyze these data, novel computational methods have been introduced that can accurately describe the specificity landscape of peptide recognition domains and predict new interactions. Combining large-scale analysis of binding specificity data with structure-based modeling can further reveal new biological insights into the molecular recognition events underlying signaling pathways.
Collapse
Affiliation(s)
- David Gfeller
- Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|