1
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Zhang YL, Kang M, Wu JC, Xie MY, Xue RY, Tang Q, Yang H, Li LC. Small activating RNA activation of ATOH1 promotes regeneration of human inner ear hair cells. Bioengineered 2022; 13:6729-6739. [PMID: 35246011 PMCID: PMC8974106 DOI: 10.1080/21655979.2022.2045835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The loss of inner ear hair cells leads to irreversible acoustic injury in mammals, and regeneration of inner ear hair cells to restore hearing loss is challenging. ATOH1 is a key gene in the development and regeneration of hair cells. Small activating RNAs (saRNAs) can target a gene to specifically upregulate its expression. This study aimed to explore whether small activating RNAs could induce the differentiation of human adipose-derived mesenchymal stem cells into hair cell-like cells with a combination of growth factors in vitro and thus provide a new strategy for hair cell regeneration and the treatment of sensorineural hearing loss. Fifteen small activating RNAs targeting the human ATOH1 gene were designed and screened in 293 T and human adipose-derived mesenchymal stem cells, and 3 of these candidates were found to be capable of effectively and stably activating ATOH1 gene expression. The selected small activating RNAs were then transfected into hair cell progenitor cells, and hair cell markers were examined 10 days after transfection. After transfection of the selected small activating RNAs, the expression of the characteristic markers of inner ear hair cells, POU class 4 homeobox 3 (POU4F3) and myosin VIIA (MYO7A), was detected. Human adipose-derived mesenchymal stem cells have the potential to differentiate into human hair cell progenitor cells. In vitro, small activating RNAs were able to induce the differentiation of hair cell progenitor cells into hair cell-like cells. Therefore, RNA activation technology has the potential to provide a new strategy for the regeneration of hair cells.
Collapse
Affiliation(s)
- Yong-Li Zhang
- Department of Otolaryngology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Moorim Kang
- Ractigen Therapeutics, Nantong, Jiangsu, China
| | | | - Meng-Yao Xie
- Department of Otolaryngology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Ruo-Yan Xue
- Department of Otolaryngology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Qi Tang
- Department of Otolaryngology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Hua Yang
- Department of Otolaryngology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Long-Cheng Li
- Ractigen Therapeutics, Nantong, Jiangsu, China.,Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Yang K, Shen J, Tan FQ, Zheng XY, Xie LP. Antitumor Activity of Small Activating RNAs Induced PAWR Gene Activation in Human Bladder Cancer Cells. Int J Med Sci 2021; 18:3039-3049. [PMID: 34220332 PMCID: PMC8241776 DOI: 10.7150/ijms.60399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/30/2021] [Indexed: 11/08/2022] Open
Abstract
Small double-stranded RNAs (dsRNAs) have been proved to effectively up-regulate the expression of particular genes by targeting their promoters. These small dsRNAs were also termed small activating RNAs (saRNAs). We previously reported that several small double-stranded RNAs (dsRNAs) targeting the PRKC apoptosis WT1 regulator (PAWR) promoter can up-regulate PAWR gene expression effectively in human cancer cells. The present study was conducted to evaluate the antitumor potential of PAWR gene induction by these saRNAs in bladder cancer. Promisingly, we found that up-regulation of PAWR by saRNA inhibited the growth of bladder cancer cells by inducing cell apoptosis and cell cycle arrest which was related to inhibition of anti‑apoptotic protein Bcl-2 and inactivation of the NF-κB and Akt pathways. The activation of the caspase cascade and the regulation of cell cycle related proteins also supported the efficacy of the treatment. Moreover, our study also showed that these saRNAs cooperated with cisplatin in the inhibition of bladder cancer cells. Overall, these data suggest that activation of PAWR by saRNA may have a therapeutic benefit for bladder cancer.
Collapse
Affiliation(s)
- Kai Yang
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jie Shen
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| | - Fu-Qing Tan
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiang-Yi Zheng
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Li-Ping Xie
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
4
|
Marayati R, Bownes LV, Stafman LL, Williams AP, Quinn CH, Atigadda V, Aye JM, Stewart JE, Yoon KJ, Beierle EA. 9-cis-UAB30, a novel rexinoid agonist, decreases tumorigenicity and cancer cell stemness of human neuroblastoma patient-derived xenografts. Transl Oncol 2020; 14:100893. [PMID: 33010553 PMCID: PMC7530346 DOI: 10.1016/j.tranon.2020.100893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022] Open
Abstract
Retinoic acid (RA) therapy has been utilized as maintenance therapy for high-risk neuroblastoma, but over half of patients treated with RA relapse. Neuroblastoma stem cell-like cancer cells (SCLCCs) are a subpopulation of cells characterized by the expression of the cell surface marker CD133 and are hypothesized to contribute to drug resistance and disease relapse. A novel rexinoid compound, 9-cis-UAB30 (UAB30), was developed having the same anti-tumor effects as RA but a more favorable toxicity profile. In the current study, we investigated the efficacy of UAB30 in neuroblastoma patient-derived xenografts (PDX). Two PDXs, COA3 and COA6, were utilized and alterations in the malignant phenotype were assessed following treatment with RA or UAB30. UAB30 significantly decreased proliferation, viability, and motility of both PDXs. UAB30 induced cell-cycle arrest as demonstrated by the significant increase in percentage of cells in G1 (COA6: 33.7 ± 0.7 vs. 43.3 ± 0.7%, control vs. UAB30) and decrease in percentage of cells in S phase (COA6: 44.7 ± 1.2 vs. 38.6 ± 1%, control vs. UAB30). UAB30 led to differentiation of PDX cells, as evidenced by the increase in neurite outgrowth and mRNA abundance of differentiation markers. CD133 expression was decreased by 40% in COA6 cells after UAB30. The ability to form tumorspheres and mRNA abundance of known stemness markers were also significantly decreased following treatment with UAB30, further indicating decreased cancer cell stemness. These results provide evidence that UAB30 decreased tumorigenicity and cancer cell stemness in neuroblastoma PDXs, warranting further exploration as therapy for high-risk neuroblastoma.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura L Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
5
|
Abstract
The phenomenon of RNA activation (RNAa) was initially discovered by Li and colleagues about a decade ago. Subsequently, gene activation by exogenously expressed small activating RNA has been demonstrated in different cellular contexts by a number of laboratories. Conceivably, endogenously expressed microRNAs may also utilize RNA activation as a cellular mechanism for gene regulation, which may be dysregulated in disease states such as cancer. RNA activation can be applied to gain-of-function studies and holds great promise for disease intervention. This chapter will discuss examples of promoter-targeting microRNAs discovered in recent years and their pathophysiological relevance. I will also briefly touch upon other novel classes of microRNAs with positive gene regulatory roles, including TATA-box-activating microRNAs and enhancer-associated microRNAs.
Collapse
Affiliation(s)
- Vera Huang
- Molecular Stethoscope, Inc., 10835 Road to the Cure, Suite 100, San Diego, CA, 92121, USA.
| |
Collapse
|
6
|
Ramchandran R, Chaluvally-Raghavan P. miRNA-Mediated RNA Activation in Mammalian Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 28639193 DOI: 10.1007/978-981-10-4310-9_6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNA (miRNA or miR) is a small noncoding RNA molecule ~22 nucleotides in size, which is found in plants, animals, and some viruses. miRNAs are thought to primarily down regulate gene expression by binding to 3' untranslated regions of target transcripts, thereby triggering mRNA cleavage or repression of translation. Recently, evidence has emerged that miRNAs can interact with the promoter and activate gene expression. This mechanism, called RNA activation (RNAa), is a process of transcriptional activation where the direct interaction of miRNA on the promoter triggers the recruitment of transcription factors and RNA-Polymerase-II on the promoter to activate gene transcription. To date, very little is known about the mechanism by which miRNA regulates RNA activation (RNAa) and their role in tumor progression. This is an emerging field in RNA biology. In this chapter, we describe the mechanisms utilized by miRNAs to activate transcription.
Collapse
Affiliation(s)
- Ramani Ramchandran
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Pradeep Chaluvally-Raghavan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
7
|
Yadav RP, Ghatak S, Chakraborty P, Lalrohlui F, Kannan R, Kumar R, Pautu JL, Zomingthanga J, Chenkual S, Muthukumaran R, Senthil Kumar N. Lifestyle chemical carcinogens associated with mutations in cell cycle regulatory genes increases the susceptibility to gastric cancer risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31691-31704. [PMID: 30209766 DOI: 10.1007/s11356-018-3080-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
In the present study, we correlated the various lifestyle habits and their associated mutations in cell cycle (P21 and MDM2) and DNA damage repair (MLH1) genes to investigate their role in gastric cancer (GC). Multifactor dimensionality reduction (MDR) analysis revealed the two-factor model of oral snuff and smoked meat as the significant model for GC risk. The interaction analysis between identified mutations and the significant demographic factors predicted that oral snuff is significantly associated with P21 3'UTR mutations. A total of five mutations in P21 gene, including three novel mutations in intron 2 (36651738G > A, 36651804A > T, 36651825G > T), were identified. In MLH1 gene, two variants were identified viz. one in exon 8 (37053568A > G; 219I > V) and a novel 37088831C > G in intron 16. Flow cytometric analysis predicted DNA aneuploidy in 07 (17.5%) and diploidy in 33 (82.5%) tumor samples. The G2/M phase was significantly arrested in aneuploid gastric tumor samples whereas high S-phase fraction was observed in all the gastric tumor samples. This study demonstrated that environmental chemical carcinogens along with alteration in cell cycle regulatory (P21) and mismatch repair (MLH1) genes may be stimulating the susceptibility of GC by altering the DNA content level abnormally in tumors in the Mizo ethic population.
Collapse
Affiliation(s)
- Ravi Prakash Yadav
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Souvik Ghatak
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Payel Chakraborty
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Freda Lalrohlui
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Ravi Kannan
- Cachar Cancer Hospital and Research Centre, Silchar, Assam 788015, India
| | - Rajeev Kumar
- Cachar Cancer Hospital and Research Centre, Silchar, Assam 788015, India
| | - Jeremy L Pautu
- Mizoram State Cancer Institute, Zemabawk, Aizawl, Mizoram, 796017, India
| | - John Zomingthanga
- Department of Pathology, Civil Hospital, Aizawl, Mizoram, 796001, India
| | - Saia Chenkual
- Department of Surgery, Civil Hospital, Aizawl, Mizoram, 796001, India
| | | | | |
Collapse
|
8
|
Laham-Karam N, Laitinen P, Turunen TA, Ylä-Herttuala S. Activating the Chromatin by Noncoding RNAs. Antioxid Redox Signal 2018; 29:813-831. [PMID: 28699365 DOI: 10.1089/ars.2017.7248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE The extent and breadth of transcription have recently been uncovered and this has revealed an extensive array of noncoding RNAs (ncRNAs). The biological role and significance of these ncRNAs have been realized and to date it appears that ncRNAs may have many important regulatory functions. ncRNAs are multifaceted and they induce a complexity of different types of transcriptional and posttranscriptional regulation, including gene activation. Recent Advances: Association of ncRNAs with gene activation is an important finding. Not only enhancer RNA (eRNA) but other types of ncRNAs, including small RNA (sRNA), long-noncoding RNA (lncRNA), microRNA (miRNA), and PIWI-associated RNA (piRNA), have also been implicated in gene activation. Interestingly, they often coincide with histone modifications that favor an open chromatin. In addition, these ncRNAs can recruit key factors important for transcription, including RNA polymerase II. They may directly bind the genomic DNA or act as scaffolds; alternatively, they may loop the chromatin to enhance transcription. CRITICAL ISSUES Although the role of small activating (sa)RNAs has been considerably studied, the roles of miRNAs and piRNAs in gene activation still need to be substantiated and issues of specificity require further studies. FUTURE DIRECTIONS The ncRNA field is coming out of its infancy and we are gaining a global picture of the importance of ncRNAs. However, detailed mechanisms of action of the different ncRNAs are still to be determined. This may reveal novel ways of transcriptional regulation, which will facilitate our ability to utilize these regulatory pathways for research and therapeutic purposes. Antioxid. Redox Signal. 29, 813-831.
Collapse
Affiliation(s)
- Nihay Laham-Karam
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Pia Laitinen
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Tiia A Turunen
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Seppo Ylä-Herttuala
- 1 A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland .,2 Heart Center, Kuopio University Hospital , Kuopio, Finland .,3 Gene Therapy Unit, Kuopio University Hospital , Kuopio, Finland
| |
Collapse
|
9
|
Wang J, Li H, Xie D, Li L, Wang J, Peng L, Zhou Y. The reactivation of P53 by saRNA affects the biological behavior in vitro in gastric cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3157-3164. [PMID: 31938445 PMCID: PMC6958090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 06/10/2023]
Abstract
This study sought to verify the reactivation effect of dsP53-285 that can up-regulate P53 expression in vitro. In addition, we explored the reactivation effect that dsP53-285 has on the biological behavior of gastric cancer cells. The specific small activating RNA (saRNA), dsP53-285, targeting the P53 gene promoter was synthesized. Also, a double strained control RNA (dsControl) was synthesized as a negative control, and then siP53 was synthesized to exclude the off-target effect. Both BGC-823 and MGC-803 cells were transfected with the corresponding microRNA, or just treated with lipofectamine2000. RT-qPCR and Western blot were adopted to detect P53 mRNA or the protein content of each group. CCK-8 was adopted to detect the proliferation of each group. The migration ability was assessed using the scratch-wound assay. The results of RT-qPCR and Western blot showed that dsP53-285 caused a significant up-regulation of the P53 gene (P<0.01), and the expression level of the P21 gene changed with the reactivation. The CCK-8 showed that, compared to the control group, the proliferation ability of the dsP53-285 group was inhibited significantly (P<0.01). The reactivation effect was in a time-course manner. The wound scratch assay proved that, compared to the control group, the migration ability of dsP53-285 group was inhibited significantly (P<0.01). This phenomenon provides a theoretical basis for the carcinostatic activity of small activating RNA (saRNA) and might indicate a new targeted treatment option for gastric cancer.
Collapse
Affiliation(s)
- Jing Wang
- Department of Human Anatomy, Qingdao University Medical CollegeShandong, China
| | - Han Li
- Department of General Surgery, Affiliated Hospital of Qingdao UniversityShandong, China
| | - Detian Xie
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineShandong, China
| | - Leping Li
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityShandong, China
| | - Jinshen Wang
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityShandong, China
| | - Lipan Peng
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityShandong, China
| | - Yanbing Zhou
- Department of General Surgery, Affiliated Hospital of Qingdao UniversityShandong, China
| |
Collapse
|
10
|
Choi S, Uehara H, Wu Y, Das S, Zhang X, Archer B, Carroll L, Ambati BK. RNA activating-double stranded RNA targeting flt-1 promoter inhibits endothelial cell proliferation through soluble FLT-1 upregulation. PLoS One 2018; 13:e0193590. [PMID: 29509796 PMCID: PMC5839558 DOI: 10.1371/journal.pone.0193590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
Short-activating RNA (saRNA), which targets gene promoters, has been shown to increase the target gene expression. In this study, we describe the use of an saRNA (Flt a-1) to target the flt-1 promoter, leading to upregulation of the soluble isoform of Flt-1 and inhibition of angiogenesis. We demonstrate that Flt a-1 increased sFlt-1 mRNA and protein levels, while reducing VEGF expression. This was associated with suppression of human umbilical vascular endothelial cell (HUVEC) proliferation and cell cycle arrest at the G0/G1 phase. HUVEC migration and tube formation were also suppressed by Flt a-1. An siRNA targeting Flt-1 blocked the effects of Flt a-1. Flt a-1 effects were not mediated via argonaute proteins. However, trichostatin A and 5'-deoxy-5'-(methylthio) adenosine inhibited Flt a-1 effects, indicating that histone acetylation and methylation are mechanistically involved in RNA activation of Flt-1. In conclusion, RNA activation of sFlt-1 can be used to inhibit angiogenesis.
Collapse
Affiliation(s)
- Susie Choi
- John A Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Hironori Uehara
- John A Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| | - Yuanyuan Wu
- John A Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Subrata Das
- Patanjali Research Institute, Haridwar, India
| | - Xiaohui Zhang
- John A Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Bonnie Archer
- John A Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Lara Carroll
- John A Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | | |
Collapse
|
11
|
Kang MR, Park KH, Lee CW, Lee MY, Han SB, Li LC, Kang JS. Small activating RNA induced expression of VHL gene in renal cell carcinoma. Int J Biochem Cell Biol 2018; 97:36-42. [PMID: 29425832 DOI: 10.1016/j.biocel.2018.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
Recent studies have reported that chemically synthesized double-stranded RNAs (dsRNAs), also known as small activating RNA (saRNAs), can specifically induce gene expression by targeting promoter sequences by a mechanism termed RNA activation (RNAa). In the present study, we designed 4 candidate saRNAs targeting the Von Hippel-Lindau (VHL) gene promoter. Among these saRNAs, dsVHL-821 significantly inhibited cell growth by up-regulating VHL at both the mRNA and protein levels in renal cell carcinoma 769-P cells. Functional analysis showed that dsVHL-821 induced apoptosis by increasing p53, decreasing Bcl-xL, activating caspase 3/7 and poly-ADP-ribose polymerase in a dose-dependent manner. Chromatin immunoprecipitation analysis revealed that dsVHL-821 increased the enrichment of Ago2 and RNA polymerase II at the dsVHL-821 target site. In addition, Ago2 depletion significantly suppressed dsVHL-821-induced up-regulation of VHL gene expression and related effects. Single transfection of dsVHL-821 caused long-lasting (14 days) VHL up-regulation. Furthermore, the activation of VHL by dsVHL-821 was accompanied by an increase in dimethylation of histone 3 at lysine 4 (H3K4me2) and acetylation of histone 4 (H4ac) and a decrease in dimethylation of histone 3 at lysine 9 (H3K9me2) and lysine 27 (H3K27me2) in the dsVHL-821 target region. Taken together, these results demonstrate that dsVHL-821, a novel saRNA for VHL, induces the expression of the VHL gene by epigenetic changes, leading to inhibition of cell growth and induction of apoptosis, and suggest that targeted activation of VHL by dsVHL-821 may be explored as a novel treatment of renal cell carcinoma.
Collapse
Affiliation(s)
- Moo Rim Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea; Ractigen Therapeutics, Nantong, Jiangsu, 226400, China
| | - Ki Hwan Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea
| | - Chang Woo Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea
| | - Myeong Youl Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 1 Chungdaero, Cheongju, 28644, Republic of Korea
| | - Long-Cheng Li
- Medical School of Nantong University, Nantong, Jiangsu, 226001, China; Ractigen Therapeutics, Nantong, Jiangsu, 226400, China
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
12
|
Zhou Q, Fan D, Huang K, Chen X, Chen Y, Mai Q. Activation of KLF4 expression by small activating RNA promotes migration and invasion in colorectal epithelial cells. Cell Biol Int 2018; 42:495-503. [PMID: 29274293 DOI: 10.1002/cbin.10926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/20/2017] [Indexed: 12/23/2022]
Abstract
RNA activation mediated by small double-stranded RNAs targeting promoter sequence named small activating RNAs (saRNAs) is one of the mechanisms for gene activation. Artificial regulation of gene expression through RNA activation does not affect the alteration of the genomic DNA sequences or exogenous plasmid DNA, therefore it is a relative manageable approach for gene perturbation. KLF4 is a member of zinc-finger transcription factors and its functions in colorectal cells are still controversial. In order to elucidate the functions of KLF4, we synthesized saRNAs that target the promoter regions of KLF4 and transfected into varied colorectal epithelial cell lines. We found the KLF4 gene expression is specifically increased in the human normal epithelial cell NCM460 and colorectal epithelial cancer cell Caco-2 and HCT116, but not in other human colorectal epithelial cell lines. In addition, we observed that saRNAs induced overexpression of KLF4 could promote cell migration/invasion in NCM460 and HCT116 cell lines. This effect is mediated partly by inducing EMT and facilitating nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Qinqin Zhou
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Dejun Fan
- Department of Gastrointestinal Endoscopy, the Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Kejun Huang
- The Center for Reproductive medicine, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou, 510080, China
| | - Xiuting Chen
- Department of Colorectal Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Yufeng Chen
- Department of Colorectal Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Qingyun Mai
- The Center for Reproductive medicine, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou, 510080, China
| |
Collapse
|
13
|
Setten RL, Lightfoot HL, Habib NA, Rossi JJ. Development of MTL-CEBPA: Small Activating RNA Drug for Hepatocellular Carcinoma. Curr Pharm Biotechnol 2018; 19:611-621. [PMID: 29886828 PMCID: PMC6204661 DOI: 10.2174/1389201019666180611093428] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Oligonucleotide drug development has revolutionised the drug discovery field. Within this field, 'small' or 'short' activating RNAs (saRNA) are a more recently discovered category of short double-stranded RNA with clinical potential. saRNAs promote transcription from target loci, a phenomenon widely observed in mammals known as RNA activation (RNAa). OBJECTIVE The ability to target a particular gene is dependent on the sequence of the saRNA. Hence, the potential clinical application of saRNAs is to increase target gene expression in a sequence-specific manner. saRNA-based therapeutics present opportunities for expanding the "druggable genome" with particular areas of interest including transcription factor activation and cases of haploinsufficiency. RESULTS AND CONCLUSION In this mini-review, we describe the pre-clinical development of the first saRNA drug to enter the clinic. This saRNA, referred to as MTL-CEBPA, induces increased expression of the transcription factor CCAAT/enhancer-binding protein alpha (CEBPα), a tumour suppressor and critical regulator of hepatocyte function. MTL-CEBPA is presently in Phase I clinical trials for hepatocellular carcinoma (HCC). The clinical development of MTL-CEBPA will demonstrate "proof of concept" that saRNAs can provide the basis for drugs which enhance target gene expression and consequently improve treatment outcome in patients.
Collapse
Affiliation(s)
| | | | | | - John J. Rossi
- Address correspondence to this author at the Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA; Tel: 626-218-7390; Fax: 626-301-8371; E-mail:
| |
Collapse
|
14
|
Voutila J, Reebye V, Roberts TC, Protopapa P, Andrikakou P, Blakey DC, Habib R, Huber H, Saetrom P, Rossi JJ, Habib NA. Development and Mechanism of Small Activating RNA Targeting CEBPA, a Novel Therapeutic in Clinical Trials for Liver Cancer. Mol Ther 2017; 25:2705-2714. [PMID: 28882451 PMCID: PMC5768526 DOI: 10.1016/j.ymthe.2017.07.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023] Open
Abstract
Small activating RNAs (saRNAs) are short double-stranded oligonucleotides that selectively increase gene transcription. Here, we describe the development of an saRNA that upregulates the transcription factor CCATT/enhancer binding protein alpha (CEBPA), investigate its mode of action, and describe its development into a clinical candidate. A bioinformatically directed nucleotide walk around the CEBPA gene identified an saRNA sequence that upregulates CEBPA mRNA 2.5-fold in human hepatocellular carcinoma cells. A nuclear run-on assay confirmed that this upregulation is a transcriptionally driven process. Mechanistic experiments demonstrate that Argonaute-2 (Ago2) is required for saRNA activity, with the guide strand of the saRNA shown to be associated with Ago2 and localized at the CEBPA genomic locus using RNA chromatin immunoprecipitation (ChIP) assays. The data support a sequence-specific on-target saRNA activity that leads to enhanced CEBPA mRNA transcription. Chemical modifications were introduced in the saRNA duplex to prevent activation of the innate immunity. This modified saRNA retains activation of CEBPA mRNA and downstream targets and inhibits growth of liver cancer cell lines in vitro. This novel drug has been encapsulated in a liposomal formulation for liver delivery, is currently in a phase I clinical trial for patients with liver cancer, and represents the first human study of an saRNA therapeutic.
Collapse
Affiliation(s)
| | - Vikash Reebye
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | | | | | | | | | - Hans Huber
- BioTD Strategies, LLC, Philadelphia, PA, USA
| | - Pal Saetrom
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Nagy A Habib
- Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
15
|
Li LC. Small RNA-Guided Transcriptional Gene Activation (RNAa) in Mammalian Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [DOI: 10.1007/978-981-10-4310-9_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Harris EA, Buzina A, Moffat J, McMillen DR. Design and Experimental Validation of Small Activating RNAs Targeting an Exogenous Promoter in Human Cells. ACS Synth Biol 2017; 6:628-637. [PMID: 28033709 DOI: 10.1021/acssynbio.6b00125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is increasingly practical to co-opt many native cellular components into use as elements of synthetic biological systems. We present the design and experimental investigation of the first exogenous genetic construct to be successfully targeted by RNA activation, a phenomenon whereby small double-stranded RNAs increase gene expression from sequence-similar promoters by a mechanism thought to be related to that of RNA interference. Our selection of activating RNA candidates was informed by a custom-written computer program designed to choose target sites in the promoter of interest according to a set of empirical optimality criteria drawn from prior research. Activating RNA candidates were assessed for activity against two exogenously derived target promoters, with successful candidates being subjected to further rounds of validation as a precaution against potential off-target effects. A genetic platform was assembled that allowed activating RNA candidates to be simultaneously screened both for positive activity on the target reporter gene and for possible nonspecific effects on cell metabolism. Several candidate sequences were tested to appraise the utility of this platform, with the most successful achieving a moderate activation level with minimal off-target effects.
Collapse
Affiliation(s)
- Edouard A. Harris
- Department
of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Impact
Centre, University of Toronto, 112 College Street, Toronto, Ontario M5G 1A7, Canada
| | - Alla Buzina
- Banting
and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5E 3E1, Canada
| | - Jason Moffat
- Department
of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - David R. McMillen
- Department
of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Impact
Centre, University of Toronto, 112 College Street, Toronto, Ontario M5G 1A7, Canada
| |
Collapse
|
17
|
Wu HL, Li SM, Hu J, Yu X, Xu H, Chen Z, Ye ZQ. Demystifying the mechanistic and functional aspects of p21 gene activation with double-stranded RNAs in human cancer cells. J Exp Clin Cancer Res 2016; 35:145. [PMID: 27639690 PMCID: PMC5027115 DOI: 10.1186/s13046-016-0423-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recently identified phenomenon of double-stranded RNA (dsRNA)-mediated gene activation (RNAa) has been studied extensively, as it is present in humans, mice, and Caenorhabditis elegans, suggesting that dsRNA-mediated RNAa is an evolutionarily conserved mechanism. Previous studies have shown that dsP21-322 can induce tumor suppressor gene p21 expression in several human cancer cells. Nonetheless, the role of dsRNAs in the activation of gene expression, including their target molecules and associated key factors, remains poorly understood. METHODS Oligonucleotides were used to overexpress dsRNAs and dsControl. Real-time PCR and Western blotting were used to detect corresponding mRNA and protein expression, respectively. Fluorescence microscopy was used to examine the kinetics of dsRNA subcellular distribution. Luciferase reporter assays were performed to verify dsRNA target molecules. Chromatin immunoprecipitation (ChIP) assays were carried out to determine whether histone modification and other associated key factors are involved in saRNA-mediated p21 expression. RESULTS We demonstrated that dsRNA-mediated p21 induction in human cell lines is a common phenomenon. This process occurs at the transcriptional level, and the complementary p21 promoter is the intended dsRNA target. Additionally, ChIP assays indicated that p21 activation was accompanied by an increased enrichment of AGO1 and the trimethylation of histone H3K4 at dsRNA-targeted genomic sites. CONCLUSION These data systematically reveal the mechanistic and functional aspects of ncRNA-mediated p21 activation in human cancer cells, which may be a useful tool to analyze gene function and aid in the development of novel drug targets for cancer therapeutics.
Collapse
Affiliation(s)
- Huan-Lei Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Sen-Mao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China. .,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Xiao Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhang-Qun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
18
|
RNA Activation of the Vascular Endothelial Growth Factor Gene (VEGF) Promoter by Double-Stranded RNA and Hypoxia: Role of Noncoding VEGF Promoter Transcripts. Mol Cell Biol 2016; 36:1480-93. [PMID: 26976645 DOI: 10.1128/mcb.01096-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
RNA activation (RNAa) is a gene regulation process in which promoter-targeted short double-stranded RNAs (dsRNAs) or microRNAs (miRs) induce target gene expression at the transcriptional level. Here, we investigate the presence of cryptic promoter transcripts within the VEGF promoter. Single-strand sense and antisense noncoding vascular endothelial growth factor (NcVEGF) promoter transcripts are identified, and their respective expression is studied in cells transfected with a VEGF promoter targeted dsRNA, namely, dsVEGF706, in hypoxic cells and in human malignant lung tissues. Interestingly, in dsVEGF706-transfected, as well as in hypoxic cells, NcVEGF expression levels increase coordinately with coding VEGF expression. Ago2 interaction with both sense and antisense NcVEGFs is increased in hypoxic cells, whereas in dsVEGF706-transfected cells, Ago2 and the antisense strand of the dsRNA interact specifically with the sense NcVEGF transcript. Furthermore, both dsVEGF706 and ectopic NcVEGF transcripts are able to activate the VEGF promoter endogenously present or in a reporter construct. Finally, using small interfering RNA targeting Ago2, we show that RNAa plays a role in the maintenance of increased VEGF and NcVEGF expression after hypoxia. Given the central role of VEGF in major human diseases, including cancer, this novel molecular mechanism is poised to reveal promising possibilities for therapeutic interventions.
Collapse
|
19
|
Wang B, Sun J, Shi J, Guo Q, Tong X, Zhang J, Hu N, Hu Y. Small-Activating RNA Can Change Nucleosome Positioning in Human Fibroblasts. ACTA ACUST UNITED AC 2016; 21:634-42. [PMID: 26993320 DOI: 10.1177/1087057116637562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/15/2016] [Indexed: 11/16/2022]
Abstract
RNA activation (RNAa) is a mechanism of positive gene expression regulation mediated by small-activating RNAs (saRNAs), which target gene promoters and have been used as tools to manipulate gene expression. Studies have shown that RNAa is associated with epigenetic modifications at promoter regions; however, it is unclear whether these modifications are the cause or a consequence of RNAa. In this study, we examined changes in nucleosome repositioning and the involvement of RNA polymerase II (RNAPII) in this process. We screened saRNAs for OCT4 (POU5F1), SOX2, and NANOG, and identified several novel saRNAs. We found that nucleosome positioning was altered after saRNA treatment and that the formation of nucleosome-depleted regions (NDRs) contributed to RNAa at sites of RNAPII binding, such as the TATA box, CpG islands (CGIs), proximal enhancers, and proximal promoters. Moreover, RNAPII appeared to be bound specifically to NDRs. These results suggested that changes in nucleosome positions resulted from RNAa. We thus propose a hypothesis that targeting promoter regions using exogenous saRNAs can induce the formation of NDRs, exposing regulatory binding sites to recruit RNAPII, a key component of preinitiation complex, and leading to increased initiation of transcription.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China Department of Biology, Kunming University, Kunming, China
| | - Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jiandong Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Qing Guo
- Department of Biology, Kunming University, Kunming, China
| | - Xiangrong Tong
- Department of Biology, Kunming University, Kunming, China
| | - Jin Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ningzhu Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - YunZhang Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
20
|
Portnoy V, Lin SHS, Li KH, Burlingame A, Hu ZH, Li H, Li LC. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription. Cell Res 2016; 26:320-35. [PMID: 26902284 PMCID: PMC4783471 DOI: 10.1038/cr.2016.22] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 01/12/2016] [Indexed: 12/21/2022] Open
Abstract
Small activating RNAs (saRNAs) targeting specific promoter regions are able to stimulate gene expression at the transcriptional level, a phenomenon known as RNA activation (RNAa). It is known that RNAa depends on Ago2 and is associated with epigenetic changes at the target promoters. However, the precise molecular mechanism of RNAa remains elusive. Using human CDKN1A (p21) as a model gene, we characterized the molecular nature of RNAa. We show that saRNAs guide Ago2 to and associate with target promoters. saRNA-loaded Ago2 facilitates the assembly of an RNA-induced transcriptional activation (RITA) complex, which, in addition to saRNA-Ago2 complex, includes RHA and CTR9, the latter being a component of the PAF1 complex. RITA interacts with RNA polymerase II to stimulate transcription initiation and productive elongation, accompanied by monoubiquitination of histone 2B. Our results establish the existence of a cellular RNA-guided genome-targeting and transcriptional activation mechanism and provide important new mechanistic insights into the RNAa process.
Collapse
Affiliation(s)
- Victoria Portnoy
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Szu Hua Sharon Lin
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zheng-Hui Hu
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Long-Cheng Li
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA.,Laboratory of Molecular Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
21
|
Meng X, Jiang Q, Chang N, Wang X, Liu C, Xiong J, Cao H, Liang Z. Small activating RNA binds to the genomic target site in a seed-region-dependent manner. Nucleic Acids Res 2016; 44:2274-82. [PMID: 26873922 PMCID: PMC4797303 DOI: 10.1093/nar/gkw076] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/29/2016] [Indexed: 01/27/2023] Open
Abstract
RNA activation (RNAa) is the upregulation of gene expression by small activating RNAs (saRNAs). In order to investigate the mechanism by which saRNAs act in RNAa, we used the progesterone receptor (PR) gene as a model, established a panel of effective saRNAs and assessed the involvement of the sense and antisense strands of saRNA in RNAa. All active saRNAs had their antisense strand effectively incorporated into Ago2, whereas such consistency did not occur for the sense strand. Using a distal hotspot for saRNA targeting at 1.6-kb upstream from the PR transcription start site, we further established that gene activation mediated by saRNA depended on the complementarity of the 5' region of the antisense strand, and that such activity was largely abolished by mutations in this region of the saRNA. We found markedly reduced RNAa effects when we created mutations in the genomic target site of saRNA PR-1611, thus providing evidence that RNAa depends on the integrity of the DNA target. We further demonstrated that this saRNA bound the target site on promoter DNA. These results demonstrated that saRNAs work via an on-site mechanism by binding to target genomic DNA in a seed-region-dependent manner, reminiscent of miRNA-like target recognition.
Collapse
Affiliation(s)
- Xing Meng
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Qian Jiang
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Nannan Chang
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Xiaoxia Wang
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Chujun Liu
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Jingwei Xiong
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Huiqing Cao
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China
| | - Zicai Liang
- Institute of Molecular Medicine, Peking University, Beijing 100871, PR China Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| |
Collapse
|
22
|
Yang K, Shen J, Chen SW, Qin J, Zheng XY, Xie LP. Upregulation of PAWR by small activating RNAs induces cell apoptosis in human prostate cancer cells. Oncol Rep 2016; 35:2487-93. [PMID: 26797252 DOI: 10.3892/or.2016.4582] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/07/2016] [Indexed: 11/06/2022] Open
Abstract
RNA activation (RNAa) is a promising discovery whereby expression of a particular gene can be induced by targeting its promoter using small double-stranded RNAs (dsRNAs) also termed small activating RNAs (saRNAs). We previously reported that several small dsRNAs targeting the PRKC apoptosis WT1 regulator (PAWR) promoter can upregulate PAWR gene expression effectively in human cancer cells. The present study was conducted to evaluate the antitumor potential of PAWR gene induction by these saRNAs in prostate cancer cells. Promisingly, we found that upregulation of PAWR by saRNA inhibited the growth of prostate cancer cells by inducing cell apoptosis which was related to inactivation of the NF-κB and Akt pathways. The decreased anti‑apoptotic protein Bcl-2 and activation of the caspase cascade and poly(ADP-ribose) polymerase (PARP) also supported the efficacy of the treatment. Overall, these data suggest that activation of PAWR by saRNA may have a therapeutic benefit for prostate and other types of cancer.
Collapse
Affiliation(s)
- Kai Yang
- Department of Urology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jie Shen
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| | - Shan-Wen Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jie Qin
- Department of Urology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiang-Yi Zheng
- Department of Urology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
23
|
Saitoh I, Inada E, Iwase Y, Noguchi H, Murakami T, Soda M, Kubota N, Hasegawa H, Akasaka E, Matsumoto Y, Oka K, Yamasaki Y, Hayasaki H, Sato M. Choice of Feeders Is Important When First Establishing iPSCs Derived From Primarily Cultured Human Deciduous Tooth Dental Pulp Cells. CELL MEDICINE 2015; 8:9-23. [PMID: 26858904 DOI: 10.3727/215517915x689038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Feeder cells are generally required to maintain embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs). Mouse embryonic fibroblasts (MEFs) isolated from fetuses and STO mouse stromal cell line are the most widely used feeder cells. The aim of this study was to determine which cells are suitable for establishing iPSCs from human deciduous tooth dental pulp cells (HDDPCs). Primary cultures of HDDPCs were cotransfected with three plasmids containing human OCT3/4, SOX2/KLF4, or LMYC/LIN28 and pmaxGFP by using a novel electroporation method, and then cultured in an ESC qualified medium for 15 days. Emerging colonies were reseeded onto mitomycin C-treated MEFs or STO cells. The colonies were serially passaged for up to 26 passages. During this period, colony morphology was assessed to determine whether cells exhibited ESC-like morphology and alkaline phosphatase activity to evaluate the state of cellular reprogramming. HDDPCs maintained on MEFs were successfully reprogrammed into iPSCs, whereas those maintained on STO cells were not. Once established, the iPSCs were maintained on STO cells without loss of pluripotency. Our results indicate that MEFs are better feeder cells than STO cells for establishing iPSCs. Feeder choice is a key factor enabling efficient generation of iPSCs.
Collapse
Affiliation(s)
- Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University , Gakkocho-dori, Chuo-ku, Niigata , Japan
| | - Emi Inada
- † Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences , Sakuragaoka, Kagoshima , Japan
| | - Yoko Iwase
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University , Gakkocho-dori, Chuo-ku, Niigata , Japan
| | - Hirofumi Noguchi
- ‡ Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Nishiharatyoaza, Uehara, Okinawa , Japan
| | - Tomoya Murakami
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University , Gakkocho-dori, Chuo-ku, Niigata , Japan
| | - Miki Soda
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University , Gakkocho-dori, Chuo-ku, Niigata , Japan
| | - Naoko Kubota
- † Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences , Sakuragaoka, Kagoshima , Japan
| | - Hiroko Hasegawa
- † Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences , Sakuragaoka, Kagoshima , Japan
| | - Eri Akasaka
- † Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences , Sakuragaoka, Kagoshima , Japan
| | - Yuko Matsumoto
- † Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences , Sakuragaoka, Kagoshima , Japan
| | - Kyoko Oka
- § Section of Pediatric Dentistry Department of Oral Growth and Development Fukuoka Dental College , Sawara-ku, Tamura Fukuoka-shi, Fukuoka , Japan
| | - Youichi Yamasaki
- † Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences , Sakuragaoka, Kagoshima , Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University , Gakkocho-dori, Chuo-ku, Niigata , Japan
| | - Masahiro Sato
- ¶ Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University , Sakuragaoka, Kagoshima , Japan
| |
Collapse
|
24
|
Krakowsky RHE, Tollefsbol TO. Impact of Nutrition on Non-Coding RNA Epigenetics in Breast and Gynecological Cancer. Front Nutr 2015; 2:16. [PMID: 26075205 PMCID: PMC4445322 DOI: 10.3389/fnut.2015.00016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/02/2015] [Indexed: 12/21/2022] Open
Abstract
Cancer is the second leading cause of death in females. According to the American Cancer Society, there are 327,660 new cases in breast and gynecological cancers estimated in 2014, placing emphasis on the need for cancer prevention and new cancer treatment strategies. One important approach to cancer prevention involves phytochemicals, biologically active compounds derived from plants. A variety of studies on the impact of dietary compounds found in cruciferous vegetables, green tea, and spices like curry and black pepper have revealed epigenetic changes in female cancers. Thus, an important emerging topic comprises epigenetic changes due to the modulation of non-coding RNA levels. Since it has been shown that non-coding RNAs such as microRNAs and long non-coding RNAs are aberrantly expressed in cancer, and furthermore are linked to distinct cancer phenotypes, understanding the effects of dietary compounds and supplements on the epigenetic modulator non-coding RNA is of great interest. This article reviews the current findings on nutrition-induced changes in breast and gynecological cancers at the non-coding RNA level.
Collapse
Affiliation(s)
- Rosanna H E Krakowsky
- Department of Biology, University of Alabama at Birmingham , Birmingham, AL , USA ; Department of Biochemistry, University of Leipzig , Leipzig , Germany
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham , Birmingham, AL , USA ; Comprehensive Center for Healthy Ageing, University of Alabama at Birmingham , Birmingham, AL , USA ; Comprehensive Cancer Center, University of Alabama at Birmingham , Birmingham, AL , USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham , Birmingham, AL , USA ; Comprehensive Diabetes Center, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
25
|
Wang J, Place RF, Portnoy V, Huang V, Kang MR, Kosaka M, Ho MKC, Li LC. Inducing gene expression by targeting promoter sequences using small activating RNAs. J Biol Methods 2015; 2. [PMID: 25839046 DOI: 10.14440/jbm.2015.39] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vector-based systems comprised of exogenous nucleic acid sequences remain the standard for ectopic expression of a particular gene. Such systems offer robust overexpression, but have inherent drawbacks such as the tedious process of construction, excluding sequences (e.g. introns and untranslated regions) important for gene function and potential insertional mutagenesis of host genome associated with the use of viral vectors. We and others have recently reported that short double-stranded RNAs (dsRNAs) can induce endogenous gene expression by targeting promoter sequences in a phenomenon referred to as RNA activation (RNAa) and such dsRNAs are termed small activating RNAs (saRNAs). To date, RNAa has been successfully utilized to induce the expression of different genes such as tumor suppressor genes. Here, we describe a detailed protocol for target selection and dsRNA design with associated experiments to facilitate RNAa in cultured cells. This technique may be applied to selectively activate endogenous gene expression for studying gene function, interrogating molecular pathways and reprogramming cell fate.
Collapse
Affiliation(s)
- Ji Wang
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Robert F Place
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Victoria Portnoy
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Vera Huang
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Moo Rim Kang
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mika Kosaka
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Maurice Kwok Chung Ho
- Biotechnology Research Institute and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Long-Cheng Li
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA.,Laboratory of Molecular Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Chen P, Chen JZ, Shao CY, Li CY, Zhang YD, Lu WJ, Fu Y, Gu P, Fan X. Treatment with retinoic acid and lens epithelial cell-conditioned medium in vitro directed the differentiation of pluripotent stem cells towards corneal endothelial cell-like cells. Exp Ther Med 2014; 9:351-360. [PMID: 25574197 PMCID: PMC4280952 DOI: 10.3892/etm.2014.2103] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 11/07/2014] [Indexed: 12/13/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have extensive self-renewal capacity and the potential to differentiate into all tissue-specific cell lineages, including corneal endothelial cells (CECs). They are a promising prospect for the future of regenerative medicine. The method of derivation of CECs from ESCs and iPSCs, however, remains to be elucidated. In this study, mouse ESCs and iPSCs were induced to differentiate into CECs using CEC embryonic development events as a guide. All-trans retinoic acid (RA) treatment during the embryoid body (EB) differentiation step was used to promote neural crest (NC) cell differentiation as first step and was followed by a second induction in CEC- or lens epithelial cell (LEC)-conditioned medium (CM) to ultimately generate CEC-like cells. During the corresponding differentiation stages, NC developmental markers and CEC differentiation markers were detected at the protein level using immunocytochemistry (ICC) and at the mRNA level by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). During the first stage, the data indicated that 4 days of treatment with 1 μM RA starting on day 4 of EB formation favored NC cell differentiation and that plating on gelatin-coated plates led to cell migration out of the EBs. The second-stage differentiation results showed that the CM, particularly the LEC-CM, enhanced the yield of polygonal cells with CEC-specific marker expression shown by ICC and RT-qPCR. This study demonstrates that mouse ESCs and iPSCs were induced and expressed CEC differentiation markers when subjected to a two-step inducement process, suggesting that they are a promising resource for corneal endothelium failure replacement therapy in the future.
Collapse
Affiliation(s)
- Ping Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China ; Department of Ophthalmology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Jun-Zhao Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Chun-Yi Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Chuan-Yin Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Yi-Dan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Wen-Juan Lu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
27
|
Zheng L, Wang L, Gan J, Zhang H. RNA activation: promise as a new weapon against cancer. Cancer Lett 2014; 355:18-24. [PMID: 25261049 DOI: 10.1016/j.canlet.2014.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 02/05/2023]
Abstract
RNA activation (RNAa) is a novel mechanism in which short RNA duplexes, referred to as small activating RNAs (saRNAs), enable sequence-specific gene activation capable of lasting up to 2 weeks. RNAa was named in contrast to RNA interference (RNAi). Although many mysteries remain, increasing evidence demonstrates that RNAa not only provides a novel mechanism for the study of gene function and regulation, but also holds exciting potential for clinical translation to therapeutic modality against cancers. In this review, we will focus on the potential applications of RNAa in cancer studies and therapeutics.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China; Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Lu Wang
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China; Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Jinfeng Gan
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Hao Zhang
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China; Cancer Research Center, Shantou University Medical College, Shantou, China; Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
28
|
Borna H, Imani S, Iman M, Azimzadeh Jamalkandi S. Therapeutic face of RNAi: in vivo challenges. Expert Opin Biol Ther 2014; 15:269-85. [PMID: 25399911 DOI: 10.1517/14712598.2015.983070] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION RNA interference is a sequence-specific gene silencing phenomenon in which small interfering RNAs (siRNAs) can trigger gene transcriptional and post-transcriptional silencing. This phenomenon represents an emerging therapeutic approach for in vivo studies by efficient delivery of specific synthetic siRNAs against diseases. Therefore, simultaneous development of synthetic siRNAs along with novel delivery techniques is considered as novel and interesting therapeutic challenges. AREAS COVERED This review provides a basic explanation to siRNA signaling pathways and their therapeutic challenges. Here, we provide a comprehensive explanation to failed and successful trials and their in vivo challenges. EXPERT OPINION Specific, efficient and targeted delivery of siRNAs is the major concern for their in vivo administrations. Also, anatomical barriers, drug stability and availability, immunoreactivity and existence of various delivery routes, different genetic backgrounds are major clinical challenges. However, successful administration of siRNA-based drugs is expected during foreseeable features. But, their systemic applications will depend on strong targeted drug delivery strategies.
Collapse
Affiliation(s)
- Hojat Borna
- Baqiyatallah University of Medical Sciences, Chemical Injuries Research Center , Tehran , Iran
| | | | | | | |
Collapse
|
29
|
Wang J, Huang V, Ye L, Bárcena A, Lin G, Lue TF, Li LC. Identification of small activating RNAs that enhance endogenous OCT4 expression in human mesenchymal stem cells. Stem Cells Dev 2014; 24:345-53. [PMID: 25232932 DOI: 10.1089/scd.2014.0290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ectopic overexpression of transcription factors has been used to reprogram cell fate. For example, virus-mediated overexpression of four transcription factors OCT4, SOX2, MYC, and KLF4, known as Yamanaka factors, can convert somatic cells to induced pluripotent stem (iPS) cells. However, gene-specific switch-on of endogenous gene production without the use of foreign DNA remains a challenge. The small RNA machinery that comprised small RNAs and Argonaute proteins is known to silence gene expression, but can be repurposed to activate gene expression when directed to gene promoters, a phenomenon known as RNA activation or RNAa. By screening of dsRNAs targeting OCT4 promoter, we identified a small activating RNA (saRNA) that activated OCT4 expression in several types of human mesenchymal stem cells (MSCs). We found that saRNA-induced OCT4 activation can be further enhanced by a histone deacetylase inhibitor, valproic acid. Furthermore, introducing OCT4 saRNA in combination with viruses encoding the remaining three Yamanaka factors (SOX2, MYC, and KLF4) into MSCs led to the derivation of partially reprogrammed iPS cells. Findings from this study suggest that, with further optimization, RNAa can be a powerful tool to reprogram cell fate by inducing the expression of endogenous genes.
Collapse
Affiliation(s)
- Ji Wang
- 1 Department of Urology, University of California , San Francisco, San Francisco, California
| | | | | | | | | | | | | |
Collapse
|
30
|
Ross JP, Kassir Z. The varied roles of nuclear argonaute-small RNA complexes and avenues for therapy. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e203. [PMID: 25313622 PMCID: PMC4217078 DOI: 10.1038/mtna.2014.54] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/22/2014] [Indexed: 12/14/2022]
Abstract
Argonautes are highly conserved proteins found in almost all eukaryotes and some bacteria and archaea. In humans, there are eight argonaute proteins evenly distributed across two clades, the Ago clade (AGO1-4) and the Piwi clade (PIWIL1-4). The function of Ago proteins is best characterized by their role in RNA interference (RNAi) and cytoplasmic post-transcriptional gene silencing (PTGS) – which involves the loading of siRNA or miRNA into argonaute to direct silencing of genes at the posttranscriptional or translational level. However, nuclear-localized, as opposed to cytoplasmic, argonaute-small RNA complexes may also orchestrate the mechanistically very different process of transcriptional gene silencing, which results in prevention of transcription from a gene locus by the formation of silent chromatin domains. More recently, the role of argonaute in other aspects of epigenetic regulation of chromatin, alternative splicing and DNA repair is emerging. This review focuses on the activity of nuclear-localized short RNA-argonaute complexes in a mammalian setting and discusses recent in vivo studies employing nuclear-directed sRNA for therapeutic interventions. These studies heed the potential development of RNA-based drugs which induce epigenetic changes in the cell.
Collapse
Affiliation(s)
- Jason P Ross
- CSIRO Food and Nutrition Flagship, Sydney, New South Wales, Australia
| | - Zena Kassir
- 1] CSIRO Food and Nutrition Flagship, Sydney, New South Wales, Australia [2] Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Yang B, Duan X, Wu W, Ji W, Wu W, Zhong W, Zhao Z, Li S, Liu Y, Zeng G. Induction of TRPV5 expression by small activating RNA targeting gene promoter as a novel approach to regulate cellular calcium transportation. Life Sci 2014; 114:70-6. [PMID: 25139832 DOI: 10.1016/j.lfs.2014.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
AIM Promoter-targeted small activating RNAs (saRNAs) have been shown to be able to induce target gene expression, a mechanism known as RNA activation (RNAa). The present study tested whether saRNA can induce the overexpression of TRPV5 in human cells derived from the kidney and subsequently manipulate cell calcium uptake. MAIN METHODS Three saRNAs complementary to the TRPV5 promoter were synthesized and transfected into cells. TRPV5 expression at the RNA and protein levels was analyzed by quantitative real-time PCR and Western blotting respectively. For functional study, transcellular Ca(2+) transportation was tested by fura-2 analysis. Dihydrotestosterone (DHT), a suppressor of cellular calcium transportation, was administered to challenge the activating effect of selected saRNA. KEY FINDINGS One of these synthesized saRNAs, ds-2939, significantly induced the expression of TRPV5 at both mRNA and protein levels. Fura-2 analysis revealed that the intracellular Ca(2+) concentration was elevated by ds-2939. DHT treatment reduced transmembrane Ca(2+) transport, which was partially antagonized by ds-2939. SIGNIFICANCE Our results suggest that a saRNA targeting TRPV5 promoter can be utilized to manipulate the transmembrane Ca(2+) transport by upregulating the expression of TRPV5 and may serve as an alternative for the treatment of Ca(2+) balance-related diseases.
Collapse
Affiliation(s)
- Bicheng Yang
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Wenzheng Wu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Weidong Ji
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Wenqi Wu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Wen Zhong
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Zhijian Zhao
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Shujue Li
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Yang Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China.
| |
Collapse
|
32
|
Human RNAi pathway: crosstalk with organelles and cells. Funct Integr Genomics 2013; 14:31-46. [PMID: 24197738 DOI: 10.1007/s10142-013-0344-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
Understanding gene regulation mechanisms has been a serious challenge in biology. As a novel mechanism, small non-coding RNAs are an alternative means of gene regulation in a specific and efficient manner. There are growing reports on regulatory roles of these RNAs including transcriptional gene silencing/activation and post-transcriptional gene silencing events. Also, there are several known small non-coding RNAs which all work through RNA interference pathway. Interestingly, these small RNAs are secreted from cells toward targeted cells presenting new communication approach in cell-cell or cell-organ signal transduction. In fact, understanding cellular and molecular basis of these pathways will strongly improve developing targeted therapies and potent and specific regulatory tools. This study will review some of the most recent findings in this subject and will introduce a super-pathway RNA interference-based small RNA silencing network.
Collapse
|
33
|
Abstract
The regulation of gene expression by non-coding RNAs (ncRNAs) has become a new paradigm in biology. RNA-mediated gene silencing pathways have been studied extensively, revealing diverse epigenetic and posttranscriptional mechanisms. In contrast, the roles of ncRNAs in activating gene expression remains poorly understood. In this review, we summarize the current knowledge of gene activation by small RNAs, long non-coding RNAs, and enhancer-derived RNAs, with an emphasis on epigenetic mechanisms.
Collapse
Affiliation(s)
- Alan L Jiao
- Department of Molecular, Cellular and Developmental Biology; Yale University; New Haven, CT USA
| | - Frank J Slack
- Department of Molecular, Cellular and Developmental Biology; Yale University; New Haven, CT USA
| |
Collapse
|
34
|
Li LC. Chromatin remodeling by the small RNA machinery in mammalian cells. Epigenetics 2013; 9:45-52. [PMID: 24149777 DOI: 10.4161/epi.26830] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chromatin states, quite different from changes in DNA sequence, can impact fundamental cellular processes such as determination of cell identity and development of disease. However, how chromatin states are established and regulated remain to be fully elucidated. In several lower eukaryotes, the small RNA machinery comprised of small RNA and its partners, the Argonaute proteins, is known to play important roles in the establishment of heterochromatin and silencing of repetitive sequences. In mammalian cells, however, the nuclear function of the small RNA machinery is largely unknown. Emerging evidence suggests that components of the small RNA pathway interact with chromatin to regulate nuclear events, including gene transcription and alternative splicing. In addition, these endogenous mechanisms are being exploited to target specific genomic loci for manipulation of gene expression and splicing events. In this review, I summarize current understanding of chromatin remodeling by small RNAs in mammalian cells and highlight recent efforts to map genome-wide interactions between RNAi-related factors and chromatin.
Collapse
Affiliation(s)
- Long-Cheng Li
- Department of Urology and Helen Diller Family Comprehensive Cancer Center; University of California; San Francisco, CA USA
| |
Collapse
|
35
|
Targeting neuroblastoma stem cells with retinoic acid and proteasome inhibitor. PLoS One 2013; 8:e76761. [PMID: 24116151 PMCID: PMC3792090 DOI: 10.1371/journal.pone.0076761] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/28/2013] [Indexed: 11/24/2022] Open
Abstract
Background Neuroblastma cell lines contain a side-population of cells which express stemness markers. These stem-like cells may represent the potential underlying mechanism for resistance to conventional therapy and recurrence of neuroblastoma in patients. Methodology/Principal Findings To develop novel strategies for targeting the side-population of neurobastomas, we analyzed the effects of 13-cis-retinoic acid (RA) combined with the proteasome inhibitor MG132. The short-term action of the treatment was compared with effects after a 5-day recovery period during which both chemicals were withdrawn. RA induced growth arrest and differentiation of SH-SY5Y and SK-N-BE(2) neuroblastoma cell lines. Inhibition of the proteasome caused apoptosis in both cell lines, thus, revealing the critical role of this pathway in the regulated degradation of proteins involved in neuroblastoma proliferation and survival. The combination of RA with MG132 induced apoptosis in a dose-dependent manner, in addition to promoting G2/M arrest in treated cultures. Interestingly, expression of stem cell markers such as Nestin, Sox2, and Oct4 were reduced after the recovery period of combined treatment as compared with untreated cells or treated cells with either compound alone. Consistent with this, neurosphere formation was significantly impaired by the combined treatment of RA and MG132. Conclusions Given that stem-like cells are associated with resistant to conventional therapy and are thought to be responsible for relapse, our results suggest that dual therapy of RA and proteasome inhibitor might be beneficial for targeting the side-population of cells associated residual disease in high-risk neuroblastoma.
Collapse
|
36
|
Ren S, Kang MR, Wang J, Huang V, Place RF, Sun Y, Li LC. Targeted induction of endogenous NKX3-1 by small activating RNA inhibits prostate tumor growth. Prostate 2013; 73:1591-601. [PMID: 23836514 DOI: 10.1002/pros.22709] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/15/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND RNA activation (RNAa) is a small RNA-mediated gene regulation mechanism by which expression of a particular gene can be induced by targeting its promoter using small double-stranded RNA also known as small activating RNA (saRNA). We used saRNA as a molecular tool to examine NKX3-1's role as a tumor suppressor and tested in vitro and in vivo antitumor effects of NKX3-1 induction by saRNA. MATERIALS AND METHODS NKX3-1 saRNA was transfected into human prostate cancer cells including LNCaP, CWR22R, PC-3, CWR22RV1, DuPro, LAPC4, and DU145. The transfected cells were used for analysis of gene expression by RT-PCR and immunoblotting, proliferation, apoptosis and cell cycle distribution. PC-3 xenograft models were established in immunocompromised mice and treated with NKX3-1 saRNA. RESULTS NKX3-1 saRNA induced NKX3-1 expression in different prostate cancer cell lines, resulting in inhibited cell proliferation and survival, cell cycle arrest and apoptotic cell death. These effects were partly mediated by NKX3-1's regulation of several downstream genes including the upregulation of p21 and p27, and the inhibition of VEGFC expression. Treatment of mouse xenograft prostate tumors with intratumoral delivery of NKX3-1 saRNA formulated in lipid nanoparticles significantly inhibited tumor growth and prolonged animal survival. CONCLUSIONS By revealing several important target genes of NKX3-1, our findings corroborated NKX3-1's role as a tumor suppressor gene through direct regulation of the cell cycle and growth/survival pathways. This study also validated the therapeutic potential of saRNA for the treatment of prostate cancer via targeted activation of tumor suppressor genes.
Collapse
Affiliation(s)
- Shancheng Ren
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Inactivation of tumor suppressor gene HIC1 in gastric cancer is reversed via small activating RNAs. Gene 2013; 527:102-8. [DOI: 10.1016/j.gene.2013.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/23/2013] [Accepted: 05/20/2013] [Indexed: 11/19/2022]
|
38
|
Yang K, Shen J, Xie YQ, Lin YW, Qin J, Mao QQ, Zheng XY, Xie LP. Promoter-targeted double-stranded small RNAs activate PAWR gene expression in human cancer cells. Int J Biochem Cell Biol 2013; 45:1338-46. [PMID: 23583662 DOI: 10.1016/j.biocel.2013.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 03/09/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
Abstract
RNA activation is a promising discovery that promoter-targeted double-stranded small RNAs, termed small activating RNAs (saRNAs), can induce gene expression, which represents a novel approach to gene over-expression without traditional vector-based systems. PAWR is a tumor suppressing gene essential for apoptosis and a cancer-selective target for cancer therapeutics. Here our study identified synthetic saRNAs that could activate the expression of PAWR in human cancer cells. Functional analysis of PAWR induction revealed that saRNA treatment induced growth inhibition and apoptosis of cancer cells, and predictably modulated the expression of known downstream target gene Bcl-2. New functional saRNAs can also be harvested by one or two-base shifting of the original target sites. Chromatin immunoprecipitation assays indicated that activation of PAWR is accompanied by reduced dimethylation at histone H3K9 and increased dimethylation at histone H3K4. Moreover, the existence of transcripts in PAWR promoter was detected but its relationship with RNA activation needs more lucubration. These data have enlarged the gene pool of RNAa and hold great promise as an alternative for PAWR-targeted therapeutics.
Collapse
Affiliation(s)
- Kai Yang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Promoter-associated small double-stranded RNA interacts with heterogeneous nuclear ribonucleoprotein A2/B1 to induce transcriptional activation. Biochem J 2012; 447:407-16. [PMID: 23035981 DOI: 10.1042/bj20120256] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several recent reports have demonstrated that small activating dsRNA [double-stranded RNA; saRNA (small activating dsRNA)] complementary to promoter regions can up-regulate gene expression in mammalian cells, a phenomenon termed RNAa (RNA activation). However, the mechanism of RNAa remains obscure with regard to what is the target molecule for promoter-targeted saRNA and what are the proteins involved in this process. p21Waf1/Cip1 (p21) [CDKN1A (cyclin-dependent kinase inhibitor 1A)], an important tumour suppressor gene, is among the genes that can be activated by RNAa in tumour cells. In the present study, we provide direct evidence that p21 promoter-targeted saRNA interact with its intended target on the p21 promoter to activate p21 expression. This process is associated with recruitment of RNA polymerase II and AGO2 (argonaute 2) protein to the saRNA-target site. Additionally, we found that several hnRNPs (heterogeneous nuclear ribonucleoproteins) (A1, A2/B1 and C1/C2) are associated with saRNA. Further studies show that hnRNPA2/B1 interacts with the saRNA in vivo and in vitro and is required for RNAa activity. These findings indicate that RNAa results from specific targeting of promoters and reveals additional mechanistic details of RNAa.
Collapse
|
40
|
Ozair MZ, Kintner C, Brivanlou AH. Neural induction and early patterning in vertebrates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:479-98. [PMID: 24014419 DOI: 10.1002/wdev.90] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vertebrates, the development of the nervous system is triggered by signals from a powerful 'organizing' region of the early embryo during gastrulation. This phenomenon--neural induction--was originally discovered and given conceptual definition by experimental embryologists working with amphibian embryos. Work on the molecular circuitry underlying neural induction, also in the same model system, demonstrated that elimination of ongoing transforming growth factor-β (TGFβ) signaling in the ectoderm is the hallmark of anterior neural-fate acquisition. This observation is the basis of the 'default' model of neural induction. Endogenous neural inducers are secreted proteins that act to inhibit TGFβ ligands in the dorsal ectoderm. In the ventral ectoderm, where the signaling ligands escape the inhibitors, a non-neural fate is induced. Inhibition of the TGFβ pathway has now been demonstrated to be sufficient to directly induce neural fate in mammalian embryos as well as pluripotent mouse and human embryonic stem cells. Hence the molecular process that delineates neural from non-neural ectoderm is conserved across a broad range of organisms in the evolutionary tree. The availability of embryonic stem cells from mouse, primates, and humans will facilitate further understanding of the role of signaling pathways and their downstream mediators in neural induction in vertebrate embryos.
Collapse
Affiliation(s)
- Mohammad Zeeshan Ozair
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
41
|
Kosaka M, Kang MR, Yang G, Li LC. Targeted p21WAF1/CIP1 activation by RNAa inhibits hepatocellular carcinoma cells. Nucleic Acid Ther 2012; 22:335-43. [PMID: 22909100 DOI: 10.1089/nat.2012.0354] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RNA activation (RNAa) is a mechanism of gene activation triggered by promoter-targeted small double-stranded RNA (dsRNA), also known as small activating RNA (saRNA). p21(WAF1/CIP1) (p21) is a putative tumor suppressor gene due to its role as a key negative regulator of the cell cycle and cell proliferation. It is frequently downregulated in cancer including hepatocellular carcinoma (HCC), but is rarely mutated or deleted, making it an ideal target for RNAa-based overexpression to restore its tumor suppressor function. In the present study, we investigated the antigrowth effects of p21 RNAa in HCC cells. Transfection of a p21 saRNA (dsP21-322) into HepG2 and Hep3B cells significantly induced the expression of p21 at both the mRNA and protein levels, and inhibited cell proliferation and survival. Further analysis of dsP21-322 transfected cells revealed that dsP21-322 arrested the cell cycle at the G(0)/G(1) phase in HepG2 cells but at G(2)/M phase in Hep3B cells which lack functional p53 and Rb genes, and induced both early and late stage apoptosis by activating caspase 3 in both cell lines. These results demonstrated that RNAa of p21 has in vitro antigrowth effects on HCC cells via impeding cell cycle progression and inducing apoptotic cell death. This study suggests that targeted activation of p21 by RNAa may be explored as a novel therapy for the treatment of HCC.
Collapse
Affiliation(s)
- Mika Kosaka
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|