1
|
Balach MM, Santander VS, Elisio EY, Rivelli JF, Muhlberger T, Campetelli AN, Casale CH, Monesterolo NE. Tubulin-mediated anatomical and functional changes caused by Ca 2+ in human erythrocytes. J Physiol Biochem 2023:10.1007/s13105-023-00946-4. [PMID: 36773113 DOI: 10.1007/s13105-023-00946-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/28/2023] [Indexed: 02/12/2023]
Abstract
In previous research, we observed that tubulin can be found in three fractions within erythrocytes, i.e., attached to the membrane, as a soluble fraction, or as part of a structure that can be sedimented by centrifugation. Given that its differential distribution within these fractions may alter several hemorheological properties, such as erythrocyte deformability, the present work studied how this distribution is in turn affected by Ca2+, another key player in the regulation of erythrocyte cytoskeleton stability. The effect of Ca2+ on some hemorheological parameters was also assessed. The results showed that when Ca2+ concentrations increased in the cell, whether by the addition of ionophore A23187, by specific plasma membrane Ca2 + _ATPase (PMCA) inhibition, or due to arterial hypertension, tubulin translocate to the membrane, erythrocyte deformability decreased, and phosphatidylserine exposure increased. Moreover, increased Ca2+ was associated with an inverse correlation in the distribution of tubulin and spectrin, another important cytoskeleton protein. Based on these findings, we propose the existence of a mechanism of action through which higher Ca2+ concentrations in erythrocytes trigger the migration of tubulin to the membrane, a phenomenon that results in alterations of rheological and molecular aspects of the membrane itself, as well as of the integrity of the cytoskeleton.
Collapse
Affiliation(s)
- Melisa M Balach
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Verónica S Santander
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Elida Y Elisio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Juan F Rivelli
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Tamara Muhlberger
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Alexis N Campetelli
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Cesar H Casale
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Noelia E Monesterolo
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina. .,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
2
|
Ning S, Hua L, Ji Z, Fan D, Meng X, Li Z, Wang Q, Guo Z. Protein 4.1 family and ion channel proteins interact to regulate the process of heart failure in rats. Acta Histochem 2021; 123:151748. [PMID: 34271280 DOI: 10.1016/j.acthis.2021.151748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is a major cause of death in cardiovascular diseases worldwide, and its molecular mechanisms and effective prevention strategies remain to be further studied. The myocardial cytoskeleton plays a pivotal role in many heart diseases. However, little is known about the function of the membrane cytoskeleton 4.1 protein family and related regulatory mechanisms in the pathogenesis of HF. In this study, we detected the localization and expression of the protein 4.1 family and ion channel proteins in a rat HF model induced by doxorubicin (DOX), and studied the interactions between them. Our results showed that compared with the control group, the HF group displayed an increased expression level of protein 4.1R and decreased levels of protein 4.1 G and 4.1 N. The Nav1.5 protein levels were significantly increased, while the SERCA2a and Cav1.2 protein levels were significantly decreased in the HF group. Furthermore, there is co-localization and interaction between protein 4.1R and Nav1.5, protein 4.1 G and SERCA2a, protein 4.1 N and Cav1.2, respectively. Taken together, the results indicated that the protein 4.1 family might be involved in the occurrence and development of HF through its interaction with ion channel proteins, suggesting that 4.1 proteins may serve as a novel therapeutic target for HF.
Collapse
Affiliation(s)
- Shuwei Ning
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Lei Hua
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Dandan Fan
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiangguang Meng
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Zhiying Li
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Qian Wang
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Zhikun Guo
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Wongdee K, Chanpaisaeng K, Teerapornpuntakit J, Charoenphandhu N. Intestinal Calcium Absorption. Compr Physiol 2021; 11:2047-2073. [PMID: 34058017 DOI: 10.1002/cphy.c200014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this article, we focus on mammalian calcium absorption across the intestinal epithelium in normal physiology. Intestinal calcium transport is essential for supplying calcium for metabolism and bone mineralization. Dietary calcium is transported across the mucosal epithelia via saturable transcellular and nonsaturable paracellular pathways, both of which are under the regulation of 1,25-dihydroxyvitamin D3 and several other endocrine and paracrine factors, such as parathyroid hormone, prolactin, 17β-estradiol, calcitonin, and fibroblast growth factor-23. Calcium absorption occurs in several segments of the small and large intestine with varying rates and capacities. Segmental heterogeneity also includes differential expression of calcium transporters/carriers (e.g., transient receptor potential cation channel and calbindin-D9k ) and the presence of favorable factors (e.g., pH, luminal contents, and gut motility). Other proteins and transporters (e.g., plasma membrane vitamin D receptor and voltage-dependent calcium channels), as well as vesicular calcium transport that probably contributes to intestinal calcium absorption, are also discussed. © 2021 American Physiological Society. Compr Physiol 11:1-27, 2021.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krittikan Chanpaisaeng
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
4
|
Chen L, Wang T, Ji X, Ding C, Liang T, Liu X, Lu J, Guo X, Kang Q, Ji Z. Cytoskeleton protein 4.1R suppresses murine keratinocyte cell hyperproliferation via activating the Akt/ERK pathway in an EGFR-dependent manner. Exp Cell Res 2019; 384:111648. [DOI: 10.1016/j.yexcr.2019.111648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/30/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023]
|
5
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
6
|
Flatt JF, Bruce LJ. The Molecular Basis for Altered Cation Permeability in Hereditary Stomatocytic Human Red Blood Cells. Front Physiol 2018; 9:367. [PMID: 29713289 PMCID: PMC5911802 DOI: 10.3389/fphys.2018.00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/27/2018] [Indexed: 11/20/2022] Open
Abstract
Normal human RBCs have a very low basal permeability (leak) to cations, which is continuously corrected by the Na,K-ATPase. The leak is temperature-dependent, and this temperature dependence has been evaluated in the presence of inhibitors to exclude the activity of the Na,K-ATPase and NaK2Cl transporter. The severity of the RBC cation leak is altered in various conditions, most notably the hereditary stomatocytosis group of conditions. Pedigrees within this group have been classified into distinct phenotypes according to various factors, including the severity and temperature-dependence of the cation leak. As recent breakthroughs have provided more information regarding the molecular basis of hereditary stomatocytosis, it has become clear that these phenotypes elegantly segregate with distinct genetic backgrounds. The cryohydrocytosis phenotype, including South-east Asian Ovalocytosis, results from mutations in SLC4A1, and the very rare condition, stomatin-deficient cryohydrocytosis, is caused by mutations in SLC2A1. Mutations in RHAG cause the very leaky condition over-hydrated stomatocytosis, and mutations in ABCB6 result in familial pseudohyperkalemia. All of the above are large multi-spanning membrane proteins and the mutations may either modify the structure of these proteins, resulting in formation of a cation pore, or otherwise disrupt the membrane to allow unregulated cation movement across the membrane. More recently mutations have been found in two RBC cation channels, PIEZO1 and KCNN4, which result in dehydrated stomatocytosis. These mutations alter the activation and deactivation kinetics of these channels, leading to increased opening and allowing greater cation fluxes than in wild type.
Collapse
Affiliation(s)
- Joanna F Flatt
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| |
Collapse
|
7
|
Azouzi S, Collec E, Mohandas N, An X, Colin Y, Le Van Kim C. The human Kell blood group binds the erythroid 4.1R protein: new insights into the 4.1R-dependent red cell membrane complex. Br J Haematol 2015; 171:862-71. [PMID: 26455906 DOI: 10.1111/bjh.13778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022]
Abstract
Protein 4.1R plays an important role in maintaining the mechanical properties of the erythrocyte membrane. We analysed the expression of Kell blood group protein in erythrocytes from a patient with hereditary elliptocytosis associated with complete 4.1R deficiency (4.1(-) HE). Flow cytometry and Western blot analyses revealed a severe reduction of Kell. In vitro pull down and co-immunoprecipitation experiments from erythrocyte membranes showed a direct interaction between Kell and 4.1R. Using different recombinant domains of 4.1R and the cytoplasmic domain of Kell, we demonstrated that the R(46) R motif in the juxta-membrane region of Kell binds to lobe B of the 4.1R FERM domain. We also observed that 4.1R deficiency is associated with a reduction of XK and DARC (also termed ACKR1) proteins, the absence of the glycosylated form of the urea transporter B and a slight decrease of band 3. The functional alteration of the 4.1(-) HE erythrocyte membranes was also determined by measuring various transport activities. We documented a slower rate of HCO3 (-) /Cl(-) exchange, but normal water and ammonia transport across erythrocyte membrane in the absence of 4.1. These findings provide novel insights into the structural organization of blood group antigen proteins into the 4.1R complex of the human red cell membrane.
Collapse
Affiliation(s)
- Slim Azouzi
- Institut National de la Transfusion Sanguine, Paris, France.,Inserm, UMR_S1134, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, New York, NY, USA
| | - Emmanuel Collec
- Institut National de la Transfusion Sanguine, Paris, France.,Inserm, UMR_S1134, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, New York, NY, USA
| | | | - Xiuli An
- New York Blood Center, New York, NY, USA
| | - Yves Colin
- Institut National de la Transfusion Sanguine, Paris, France.,Inserm, UMR_S1134, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, New York, NY, USA
| | - Caroline Le Van Kim
- Institut National de la Transfusion Sanguine, Paris, France.,Inserm, UMR_S1134, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, New York, NY, USA
| |
Collapse
|
8
|
Na+-H+ exchanger-1 (NHE1) regulation in kidney proximal tubule. Cell Mol Life Sci 2015; 72:2061-74. [PMID: 25680790 DOI: 10.1007/s00018-015-1848-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 01/17/2023]
Abstract
The ubiquitously expressed plasma membrane Na(+)-H(+) exchanger NHE1 is a 12 transmembrane-spanning protein that directs important cell functions such as homeostatic intracellular volume and pH control. The 315 amino acid cytosolic tail of NHE1 binds plasma membrane phospholipids and multiple proteins that regulate additional, ion-translocation independent functions. This review focuses on NHE1 structure/function relationships, as well as the role of NHE1 in kidney proximal tubule functions, including pH regulation, vectorial Na(+) transport, cell volume control and cell survival. The implications of these functions are particularly critical in the setting of progressive, albuminuric kidney diseases, where the accumulation of reabsorbed fatty acids leads to disruption of NHE1-membrane phospholipid interactions and tubular atrophy, which is a poor prognostic factor for progression to end stage renal disease. This review amplifies the vital role of the proximal tubule NHE1 Na(+)-H(+) exchanger as a kidney cell survival factor.
Collapse
|
9
|
Chen X, Guan X, Zhang H, Xie X, Wang H, Long J, Cai T, Li S, Liu Z, Zhang Y. DAL-1 attenuates epithelial-to mesenchymal transition in lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:3. [PMID: 25609022 PMCID: PMC4307741 DOI: 10.1186/s13046-014-0117-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epithelial-to mesenchymal transition (EMT) involves in metastasis, causing loss of epithelial polarity. Metastasis is the major cause of carcinoma-induced death, but mechanisms are poorly understood. Here we identify differentially expressed in adenocarcinoma of the lung-1 (DAL-1), a protein belongs to the membrane-associated cytoskeleton protein 4.1 family, as an efficient suppressor of EMT in lung cancer. METHODS The relationship between DAL-1 and EMT markers were analyzed by using immunohistochemistry in the clinical lung cancer tissues. Quantitative real-time PCR and western blot were used to characterize the expression of the EMT indicator mRNAs and proteins in DAL-1 overexpressed or knockdown cells. DAL-1 combined proteins were assessed by co-immunoprecipitation. RESULTS DAL-1 levels were strongly reduced even lost in lymph node metastasis and advanced pathological stage of human lung carcinomas. Overexpression of DAL-1 altered the expression of numerous EMT markers, such as E-cadherin, β-catenin Vimentin and N-cadherin expression, meanwhile changed the morphological shape of lung cancer cells, and whereas silencing DAL-1 had an opposite effect. DAL-1 directly combined with E-cadherin promoter and regulated its expression that could be the reason for impairing EMT and decreasing cell migration and invasion. Strikingly, HSPA5 was found as DAL-1 direct binding protein. CONCLUSIONS These results suggest that tumor suppressor DAL-1 could also attenuate EMT and be important for tumor metastasis in the early transformation process in lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yajie Zhang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, 195# Dongfeng West Road, Guangzhou 510180, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Bazzini C, Benedetti L, Civello D, Zanoni C, Rossetti V, Marchesi D, Garavaglia ML, Paulmichl M, Francolini M, Meyer G, Rodighiero S. ICln: a new regulator of non-erythroid 4.1R localisation and function. PLoS One 2014; 9:e108826. [PMID: 25295618 PMCID: PMC4189953 DOI: 10.1371/journal.pone.0108826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/27/2014] [Indexed: 01/12/2023] Open
Abstract
To optimise the efficiency of cell machinery, cells can use the same protein (often called a hub protein) to participate in different cell functions by simply changing its target molecules. There are large data sets describing protein-protein interactions (“interactome”) but they frequently fail to consider the functional significance of the interactions themselves. We studied the interaction between two potential hub proteins, ICln and 4.1R (in the form of its two splicing variants 4.1R80 and 4.1R135), which are involved in such crucial cell functions as proliferation, RNA processing, cytoskeleton organisation and volume regulation. The sub-cellular localisation and role of native and chimeric 4.1R over-expressed proteins in human embryonic kidney (HEK) 293 cells were examined. ICln interacts with both 4.1R80 and 4.1R135 and its over-expression displaces 4.1R from the membrane regions, thus affecting 4.1R interaction with ß-actin. It was found that 4.1R80 and 4.1R135 are differently involved in regulating the swelling activated anion current (ICl,swell) upon hypotonic shock, a condition under which both isoforms are dislocated from the membrane region and thus contribute to ICl,swell current regulation. Both 4.1R isoforms are also differently involved in regulating cell morphology, and ICln counteracts their effects. The findings of this study confirm that 4.1R plays a role in cell volume regulation and cell morphology and indicate that ICln is a new negative regulator of 4.1R functions.
Collapse
Affiliation(s)
- Claudia Bazzini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Lorena Benedetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Fondazione Filarete for Biosciences and Innovation, Milan, Italy
| | - Davide Civello
- Department of Biosciences, University of Milan, Milan, Italy
| | - Chiara Zanoni
- Pharmaceutical Sciences Department (DISFARM), University of Milan, Milan, Italy
| | | | - Davide Marchesi
- Fondazione Filarete for Biosciences and Innovation, Milan, Italy
| | | | - Markus Paulmichl
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Fondazione Filarete for Biosciences and Innovation, Milan, Italy
| | - Giuliano Meyer
- Department of Biosciences, University of Milan, Milan, Italy
| | - Simona Rodighiero
- Fondazione Filarete for Biosciences and Innovation, Milan, Italy
- * E-mail:
| |
Collapse
|
11
|
Baines AJ, Lu HC, Bennett PM. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:605-19. [PMID: 23747363 DOI: 10.1016/j.bbamem.2013.05.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 01/10/2023]
Abstract
Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and differential mRNA splicing. Finally, the spectrum of interactions of the 4.1 proteins overlaps with that of another membrane-cytoskeleton linker, ankyrin. Both ankyrin and 4.1 link to the actin cytoskeleton via spectrin, and we hypothesize that differential regulation of 4.1 proteins and ankyrins allows highly selective control of cell surface protein accumulation and, hence, function. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
| | - Hui-Chun Lu
- Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Pauline M Bennett
- Randall Division of Cell and Molecular Biophysics, King's College London, UK.
| |
Collapse
|
12
|
Hendus-Altenburger R, Kragelund BB, Pedersen SF. Structural dynamics and regulation of the mammalian SLC9A family of Na⁺/H⁺ exchangers. CURRENT TOPICS IN MEMBRANES 2014; 73:69-148. [PMID: 24745981 DOI: 10.1016/b978-0-12-800223-0.00002-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mammalian Na⁺/H⁺ exchangers of the SLC9A family are widely expressed and involved in numerous essential physiological processes. Their primary function is to mediate the 1:1 exchange of Na⁺ for H⁺ across the membrane in which they reside, and they play central roles in regulation of body, cellular, and organellar pH. Their function is tightly regulated through mechanisms involving interactions with multiple protein and lipid-binding partners, phosphorylations, and other posttranslational modifications. Biochemical and mutational analyses indicate that the SLC9As have a short intracellular N-terminus, 12 transmembrane (TM) helices necessary and sufficient for ion transport, and a C-terminal cytoplasmic tail region with essential regulatory roles. No high-resolution structures of the SLC9As exist; however, models based on crystal structures of the bacterial NhaAs support the 12 TM organization and suggest that TMIV and XI may form a central part of the ion-translocation pathway, whereas pH sensing may involve TMII, TMIX, and several intracellular loops. Similar to most ion transporters studied, SLC9As likely exist as coupled dimers in the membrane, and this appears to be important for the well-studied cooperativity of H⁺ binding. The aim of this work is to summarize and critically discuss the currently available evidence on the structural dynamics, regulation, and binding partner interactions of SLC9As, focusing in particular on the most widely studied isoform, SLC9A1/NHE1. Further, novel bioinformatic and structural analyses are provided that to some extent challenge the existing paradigm on how ions are transported by mammalian SLC9As.
Collapse
Affiliation(s)
- Ruth Hendus-Altenburger
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Wang J, Song J, An C, Dong W, Zhang J, Yin C, Hale J, Baines AJ, Mohandas N, An X. A 130-kDa protein 4.1B regulates cell adhesion, spreading, and migration of mouse embryo fibroblasts by influencing actin cytoskeleton organization. J Biol Chem 2013; 289:5925-37. [PMID: 24381168 DOI: 10.1074/jbc.m113.516617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protein 4.1B is a member of protein 4.1 family, adaptor proteins at the interface of membranes and the cytoskeleton. It is expressed in most mammalian tissues and is known to be required in formation of nervous and cardiac systems; it is also a tumor suppressor with a role in metastasis. Here, we explore functions of 4.1B using primary mouse embryonic fibroblasts (MEF) derived from wild type and 4.1B knock-out mice. MEF cells express two 4.1B isoforms: 130 and 60-kDa. 130-kDa 4.1B was absent from 4.1B knock-out MEF cells, but 60-kDa 4.1B remained, suggesting incomplete knock-out. Although the 130-kDa isoform was predominantly located at the plasma membrane, the 60-kDa isoform was enriched in nuclei. 130-kDa-deficient 4.1B MEF cells exhibited impaired cell adhesion, spreading, and migration; they also failed to form actin stress fibers. Impaired cell spreading and stress fiber formation were rescued by re-expression of the 130-kDa 4.1B but not the 60-kDa 4.1B. Our findings document novel, isoform-selective roles for 130-kDa 4.1B in adhesion, spreading, and migration of MEF cells by affecting actin organization, giving new insight into 4.1B functions in normal tissues as well as its role in cancer.
Collapse
Affiliation(s)
- Jie Wang
- From the Department of Biophysics, Peking University Health Science Center, Xueyuan Road, Haidian District, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Unique Structural Changes in Calcium-Bound Calmodulin Upon Interaction with Protein 4.1R FERM Domain: Novel Insights into the Calcium-dependent Regulation of 4.1R FERM Domain Binding to Membrane Proteins by Calmodulin. Cell Biochem Biophys 2013; 69:7-19. [PMID: 24081810 DOI: 10.1007/s12013-013-9758-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L. Calcium in red blood cells-a perilous balance. Int J Mol Sci 2013; 14:9848-72. [PMID: 23698771 PMCID: PMC3676817 DOI: 10.3390/ijms14059848] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 12/19/2022] Open
Abstract
Ca2+ is a universal signalling molecule involved in regulating cell cycle and fate, metabolism and structural integrity, motility and volume. Like other cells, red blood cells (RBCs) rely on Ca2+ dependent signalling during differentiation from precursor cells. Intracellular Ca2+ levels in the circulating human RBCs take part not only in controlling biophysical properties such as membrane composition, volume and rheological properties, but also physiological parameters such as metabolic activity, redox state and cell clearance. Extremely low basal permeability of the human RBC membrane to Ca2+ and a powerful Ca2+ pump maintains intracellular free Ca2+ levels between 30 and 60 nM, whereas blood plasma Ca2+ is approximately 1.8 mM. Thus, activation of Ca2+ uptake has an impressive impact on multiple processes in the cells rendering Ca2+ a master regulator in RBCs. Malfunction of Ca2+ transporters in human RBCs leads to excessive accumulation of Ca2+ within the cells. This is associated with a number of pathological states including sickle cell disease, thalassemia, phosphofructokinase deficiency and other forms of hereditary anaemia. Continuous progress in unravelling the molecular nature of Ca2+ transport pathways allows harnessing Ca2+ uptake, avoiding premature RBC clearance and thrombotic complications. This review summarizes our current knowledge of Ca2+ signalling in RBCs emphasizing the importance of this inorganic cation in RBC function and survival.
Collapse
Affiliation(s)
- Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich, Center for Integrative Human Physiology, University of Zürich, Zürich 8057, Switzerland; E-Mails: (A.B.); (A.M.)
| | - Asya Makhro
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich, Center for Integrative Human Physiology, University of Zürich, Zürich 8057, Switzerland; E-Mails: (A.B.); (A.M.)
| | - Jue Wang
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| | - Peter Lipp
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| | - Lars Kaestner
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| |
Collapse
|
16
|
Rivera A, Zee RYL, Alper SL, Peters LL, Brugnara C. Strain-specific variations in cation content and transport in mouse erythrocytes. Physiol Genomics 2013; 45:343-50. [PMID: 23482811 PMCID: PMC3656420 DOI: 10.1152/physiolgenomics.00143.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/06/2013] [Indexed: 11/22/2022] Open
Abstract
Studies of ion transport pathophysiology in hematological disorders and tests of possible new therapeutic agents for these disorders have been carried out in various mouse models because of close functional similarities between mouse and human red cells. We have explored strain-specific differences in erythrocyte membrane physiology in 10 inbred mouse strains by determining erythrocyte contents of Na(+), K(+), and Mg(2+), and erythrocyte transport of ions via the ouabain-sensitive Na-K pump, the amiloride-sensitive Na-H exchanger (NHE1), the volume and chloride-dependent K-Cl cotransporter (KCC), and the charybdotoxin-sensitive Gardos channel (KCNN4). Our data reveal substantial strain-specific and sex-specific differences in both ion content and trans-membrane ion transport in mouse erythrocytes. These differences demonstrate the feasibility of identifying specific quantitative trait loci for erythroid ion transport and content in genetically standardized inbred mouse strains.
Collapse
Affiliation(s)
- Alicia Rivera
- Department of Laboratory Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|