1
|
Wang J, Jiang N, Liu F, Wang C, Zhou W. Uncovering the intricacies of O-GlcNAc modification in cognitive impairment: New insights from regulation to therapeutic targeting. Pharmacol Ther 2025; 266:108761. [PMID: 39603350 DOI: 10.1016/j.pharmthera.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) represents a post-translational modification that occurs on serine or threonine residues on various proteins. This conserved modification interacts with vital cellular pathways. Although O-GlcNAc is widely distributed throughout the body, it is particularly enriched in the brain, where most proteins are O-GlcNAcylated. Recent studies have established a causal link between O-GlcNAc regulation in the brain and alterations in neurophysiological function. Alterations in O-GlcNAc levels in the brain are associated with the pathogenesis of several neurogenic diseases that can lead to cognitive impairment. Remarkably, manipulation of O-GlcNAc levels demonstrated a protective effect on cognitive function. Although the precise molecular mechanism of O-GlcNAc modification in the nervous system remains elusive, its regulation is fundamental to multiple neural and cognitive functions, fluctuating levels during normal and pathological cognitive processes. In this review, we highlight the significant functional importance of O-GlcNAc modification in pathological cognitive impairments and the potential application of O-GlcNAc as a promising target for the intervention or amelioration of cognitive impairments.
Collapse
Affiliation(s)
- Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
2
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
3
|
Wang Y, Zhang P, Luo Z, Huang C. Insights into the role of glycosyltransferase in the targeted treatment of gastric cancer. Biomed Pharmacother 2024; 178:117194. [PMID: 39137647 DOI: 10.1016/j.biopha.2024.117194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Gastric cancer is a remarkably heterogeneous tumor. Despite some advances in the diagnosis and treatment of gastric cancer in recent years, the precise treatment and curative outcomes remain unsatisfactory. Poor prognosis continues to pose a major challenge in gastric cancer. Therefore, it is imperative to identify effective targets to improve the treatment and prognosis of gastric cancer patients. It should be noted that glycosylation, a novel form of posttranslational modification, is a process capable of regulating protein function and influencing cellular activities. Currently, numerous studies have shown that glycosylation plays vital roles in the occurrence and progression of gastric cancer. As crucial enzymes that regulate glycan synthesis in glycosylation processes, glycosyltransferases are potential targets for treating GC. Hence, investigating the regulation of glycosyltransferases and the expression of associated proteins in gastric cancer cells is highly important. In this review, the related glycosyltransferases and their related signaling pathways in gastric cancer, as well as the existing inhibitors of glycosyltransferases, provide more possibilities for targeted therapies for gastric cancer.
Collapse
Affiliation(s)
- Yueling Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pengshan Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
4
|
Zhao Y, Li R, Wang W, Zhang H, Zhang Q, Jiang J, Wang Y, Li Y, Guan F, Nie Y. O-GlcNAc signaling: Implications for stress-induced adaptive response pathway in the tumor microenvironment. Cancer Lett 2024; 598:217101. [PMID: 38969156 DOI: 10.1016/j.canlet.2024.217101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The tumor microenvironment (TME) consists of tumor cells, non-tumor cells, extracellular matrix, and signaling molecules, which can contribute to tumor initiation, progression, and therapy resistance. In response to starvation, hypoxia, and drug treatments, tumor cells undergo a variety of deleterious endogenous stresses, such as hypoxia, DNA damage, and oxidative stress. In this context, to survive the difficult situation, tumor cells evolve multiple conserved adaptive responses, including metabolic reprogramming, DNA damage checkpoints, homologous recombination, up-regulated antioxidant pathways, and activated unfolded protein responses. In the last decades, the protein O-GlcNAcylation has emerged as a crucial causative link between glucose metabolism and tumor progression. Here, we discuss the relevant pathways that regulate the above responses. These pathways are adaptive adjustments induced by endogenous stresses in cells. In addition, we systematically discuss the role of O-GlcNAcylation-regulated stress-induced adaptive response pathways (SARPs) in TME remodeling, tumor progression, and treatment resistance. We also emphasize targeting O-GlcNAcylation through compounds that modulate OGT or OGA activity to inhibit tumor progression. It seems that targeting O-GlcNAcylated proteins to intervene in TME may be a novel approach to improve tumor prognosis.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Renlong Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Weizhen Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Haohao Zhang
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China
| | - Qiujin Zhang
- Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jialu Jiang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yan Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Yongzhan Nie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Hintzen JCJ, Mecinović J. Peptide-based inhibitors of epigenetic proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:25-65. [PMID: 40122647 DOI: 10.1016/bs.pmbts.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Epigenetic drug discovery has become an integral part of medicinal chemistry in the past two decades. Targeting epigenetic proteins-enzymes that modify histone proteins and DNA (writers and erasers) and proteins that recognize such modifications (readers)-has been firmly established as a medicinal strategy for treatment of many human diseases, including cancer and neurological disorders. In this chapter, we systematically describe peptide-based inhibitors of structurally and functionally diverse classes of epigenetic proteins. We show that epigenetic writers, such as DNA methyltransferases, histone methyltransferases and histone acetyltransferases, can be efficiently inhibited by peptides possessing nonproteinogenic amino acids. Moreover, the activity of epigenetic erasers, including TET enzymes, histone demethylases, and histone deacetylases, can be selectively modulated by diverse linear and cyclic peptides. Furthermore, we discuss chromatin-binding epigenetic reader proteins that can be inhibited by histone-mimicking peptides. Overall, this chapter highlights that peptides provide an important molecular platform for epigenetic drug discovery programmes in academia and industry.
Collapse
Affiliation(s)
- Jordi C J Hintzen
- Department of Chemistry and Molecular Biology, Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden.
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
6
|
Balsollier C, Bijkerk S, de Smit A, van Eekelen K, Bozovičar K, Husstege D, Tomašič T, Anderluh M, Pieters RJ. Discovery of two non-UDP-mimic inhibitors of O-GlcNAc transferase by screening a DNA-encoded library. Bioorg Chem 2024; 147:107321. [PMID: 38604018 DOI: 10.1016/j.bioorg.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Finding potent inhibitors of O-GlcNAc transferase (OGT) has proven to be a challenge, especially because the diversity of published inhibitors is low. The large majority of available OGT inhibitors are uridine-based or uridine-like compounds that mimic the main interactions of glycosyl donor UDP-GlcNAc with the enzyme. Until recently, screening of DNA-encoded libraries for discovering hits against protein targets was dedicated to a few laboratories around the world, but has become accessible to wider public with the recent launch of the DELopen platform. Here we report the results and follow-up of a DNA-encoded library screening by using the DELopen platform. This led to the discovery of two new hits with structural features not resembling UDP. Small focused libraries bearing those two scaffolds were made, leading to low micromolar inhibition of OGT and elucidation of their structure-activity relationship.
Collapse
Affiliation(s)
- Cyril Balsollier
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Simon Bijkerk
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Arjan de Smit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Kevin van Eekelen
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Krištof Bozovičar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Dirk Husstege
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Tihomir Tomašič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands.
| |
Collapse
|
7
|
Chen L, Hu M, Chen L, Peng Y, Zhang C, Wang X, Li X, Yao Y, Song Q, Li J, Pei H. Targeting O-GlcNAcylation in cancer therapeutic resistance: The sugar Saga continues. Cancer Lett 2024; 588:216742. [PMID: 38401884 DOI: 10.1016/j.canlet.2024.216742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation), a dynamic post-translational modification (PTM), holds profound implications in controlling various cellular processes such as cell signaling, metabolism, and epigenetic regulation that influence cancer progression and therapeutic resistance. From the therapeutic perspective, O-GlcNAc modulates drug efflux, targeting and metabolism. By integrating signals from glucose, lipid, amino acid, and nucleotide metabolic pathways, O-GlcNAc acts as a nutrient sensor and transmits signals to exerts its function on genome stability, epithelial-mesenchymal transition (EMT), cell stemness, cell apoptosis, autophagy, cell cycle. O-GlcNAc also attends to tumor microenvironment (TME) and the immune response. At present, several strategies aiming at targeting O-GlcNAcylation are under mostly preclinical evaluation, where the newly developed O-GlcNAcylation inhibitors markedly enhance therapeutic efficacy. Here we systematically outline the mechanisms through which O-GlcNAcylation influences therapy resistance and deliberate on the prospects and challenges associated with targeting O-GlcNAcylation in future cancer treatments.
Collapse
Affiliation(s)
- Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Mengxue Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Luojun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yihan Peng
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Cai Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
8
|
Azevedo PHRDA, Peçanha BRDB, Flores-Junior LAP, Alves TF, Dias LRS, Muri EMF, Lima CHDS. In silico drug repurposing by combining machine learning classification model and molecular dynamics to identify a potential OGT inhibitor. J Biomol Struct Dyn 2024; 42:1417-1428. [PMID: 37054524 DOI: 10.1080/07391102.2023.2199868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/01/2023] [Indexed: 04/15/2023]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a unique intracellular post-translational glycosylation at the hydroxyl group of serine or threonine residues in nuclear, cytoplasmic and mitochondrial proteins. The enzyme O-GlcNAc transferase (OGT) is responsible for adding GlcNAc, and anomalies in this process can lead to the development of diseases associated with metabolic imbalance, such as diabetes and cancer. Repurposing approved drugs can be an attractive tool to discover new targets reducing time and costs in the drug design. This work focuses on drug repurposing to OGT targets by virtual screening of FDA-approved drugs through consensus machine learning (ML) models from an imbalanced dataset. We developed a classification model using docking scores and ligand descriptors. The SMOTE approach to resampling the dataset showed excellent statistical values in five of the seven ML algorithms to create models from the training set, with sensitivity, specificity and accuracy over 90% and Matthew's correlation coefficient greater than 0.8. The pose analysis obtained by molecular docking showed only H-bond interaction with the OGT C-Cat domain. The molecular dynamics simulation showed the lack of H-bond interactions with the C- and N-catalytic domains allowed the drug to exit the binding site. Our results showed that the non-steroidal anti-inflammatory celecoxib could be a potentially OGT inhibitor.
Collapse
Affiliation(s)
| | | | | | - Tatiana Fialho Alves
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luiza Rosaria Sousa Dias
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Estela Maris Freitas Muri
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | |
Collapse
|
9
|
Wu X, Wang M, Cao Y, Xu Y, Yang Z, Ding Y, Lu J, Zheng J, Luo C, Zhao K, Chen S. Discovery of a novel OGT inhibitor through high-throughput screening based on Homogeneous Time-Resolved Fluorescence (HTRF). Bioorg Chem 2023; 139:106726. [PMID: 37451145 DOI: 10.1016/j.bioorg.2023.106726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/28/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
O-GlcNAcylation is a specific type of post-translational glycosylation modification, which is regulated by two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Aberrant overexpression of OGT is associated with the development of many solid tumors. In this study, we have developed and optimized a sensitive Homogeneous Time-Resolved Fluorescence (HTRF) assay then identified a novel OGT inhibitor CDDO (also called Bardoxolone) through a high-throughput screening (HTS) based on HTRF assay. Further characterization suggested that CDDO is an effective OGT inhibitor with an IC50 value of 6.56 ± 1.69 μM. CPMG-NMR analysis confirmed that CDDO is a direct binder of OGT with a binding affinity (Kd) of approximately 1.7 μM determined by the MST analysis. Moreover, HDX-MS analysis indicated that CDDO binds to the TPR domain and N-Terminal domain of OGT, which was further confirmed by the enzymatic competition experiments as the binding of CDDO to OGT was not affected by the catalytic site binding inhibitor OSMI-4. Our docking modeling analysis further predicted the possible interactions between CDDO and OGT, providing informative molecular basis for further optimization of the inhibitor in the future. Together, our results suggested CDDO is a new inhibitor of OGT with a distinct binding pocket from the reported OGT inhibitors. Our work paved a new direction for developing OGT inhibitors driven by novel mechanisms.
Collapse
Affiliation(s)
- Xinyu Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingchen Wang
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Yu Cao
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Ying Xu
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; China Pharmaceutical University, Nanjing 210009, China
| | - Ziqun Yang
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiluan Ding
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jie Zheng
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Shijie Chen
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| |
Collapse
|
10
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
11
|
Balsollier C, Tomašič T, Yasini D, Bijkerk S, Anderluh M, Pieters RJ. Design of OSMI-4 Analogs Using Scaffold Hopping: Investigating the Importance of the Uridine Mimic in the Binding of OGT Inhibitors. ChemMedChem 2023; 18:e202300001. [PMID: 36752318 DOI: 10.1002/cmdc.202300001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2023]
Abstract
β-N-Acetylglucosamine transferase (OGT) inhibition is considered an important topic in medicinal chemistry. The involvement of O-GlcNAcylation in several important biological pathways is pointing to OGT as a potential therapeutic target. The field of OGT inhibitors drastically changed after the discovery of the 7-quinolone-4-carboxamide scaffold and its optimization to the first nanomolar OGT inhibitor: OSMI-4. While OSMI-4 is still the most potent inhibitor reported to date, its physicochemical properties are limiting its use as a potential drug candidate as well as a biological tool. In this study, we have introduced a simple modification (elongation) of the peptide part of OSMI-4 that limits the unwanted cyclisation during OSMI-4 synthesis while retaining OGT inhibitory potency. Secondly, we have kept this modified peptide unchanged while incorporating new sulfonamide UDP mimics to try to improve binding of newly designed OGT inhibitors in the UDP-binding site. With the use of computational methods, a small library of OSMI-4 derivatives was designed, prepared and evaluated that provided information about the OGT binding pocket and its specificity toward quinolone-4-carboxamides.
Collapse
Affiliation(s)
- Cyril Balsollier
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Daniel Yasini
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Simon Bijkerk
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
12
|
Lu Q, Zhang X, Liang T, Bai X. O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol Med 2022; 28:115. [PMID: 36104770 PMCID: PMC9476278 DOI: 10.1186/s10020-022-00544-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
O-linked β-d-N-acetylglucosamine (O-GlcNAc) is an important post-translational modification of serine or threonine residues on thousands of proteins in the nucleus and cytoplasm of all animals and plants. In eukaryotes, only two conserved enzymes are involved in this process. O-GlcNAc transferase is responsible for adding O-GlcNAc to proteins, while O-GlcNAcase is responsible for removing it. Aberrant O-GlcNAcylation is associated with a variety of human diseases, such as diabetes, cancer, neurodegenerative diseases, and cardiovascular diseases. Numerous studies have confirmed that O-GlcNAcylation is involved in the occurrence and progression of cancers in multiple systems throughout the body. It is also involved in regulating multiple cancer hallmarks, such as metabolic reprogramming, proliferation, invasion, metastasis, and angiogenesis. In this review, we first describe the process of O-GlcNAcylation and the structure and function of O-GlcNAc cycling enzymes. In addition, we detail the occurrence of O-GlcNAc in various cancers and the role it plays. Finally, we discuss the potential of O-GlcNAc as a promising biomarker and novel therapeutic target for cancer diagnosis, treatment, and prognosis.
Collapse
|
13
|
Yang R, Wang L, Wu Z, Yin Y, Jiang SW. How Nanotechniques Could Vitalize the O-GlcNAcylation-Targeting Approach for Cancer Therapy. Int J Nanomedicine 2022; 17:1829-1841. [PMID: 35498390 PMCID: PMC9049135 DOI: 10.2147/ijn.s360488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Accumulated data indicated that many types of cancers have increased protein O-GlcNAcylation at cell surface and inside cells. The aberrant O-GlcNAcylation is considered a potential therapeutic target. Although several types of compounds capable of inhibiting O-GlcNAcylation have been developed, their low solubility, poor permeability and delivery efficiency have impeded the application for in vivo and pre-clinical studies. Nanocarriers have the advantages of controllable drug release and active cancer-targeting capability. Moreover, nanoparticles can improve drug delivery efficiency and reduce the non-specific distribution in normal tissues by the enhanced permeability and retention (EPR) effect in cancer. Taking the advantage of O-GlcNAc-specific antibodies or lectins, nanoparticles could further improve their cancer-targeting capability. Although nanocarriers targeting the canonical N- and O-linked glycosylation have been extensively investigated for cancer detection and therapy, application of nanotechniques for the specific targeting of O-GlcNAcylation has not been actively pursued. This review summarizes the general features of GlcNAcylation and its alterations in cancers. Analyses are focused on the following areas: How the nanocarriers may improve the solubility and/or cell permeability of O-GlcNAc transferase (OGT) inhibitors; The modification of nanocarriers with lectins or antibodies for active targeting of O-GlcNAc; The nanocarriers-mediated co-delivery of OGT inhibitors and conventional drugs, which may lead to synergistic effects. Unsolved issues impeding the research progression on O-GlcNAcylation-targeting scheme are also discussed.
Collapse
Affiliation(s)
- Rui Yang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People’s Republic of China
| | - Leilei Wang
- Department of Medical Genetics, Lianyungang Maternal and Child Health Hospital Affiliated to Yangzhou University, Lianyungang, 222000, Jiangsu, People’s Republic of China
| | - Zhifeng Wu
- Department of Ophthalmology, The Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu, People’s Republic of China
| | - Yongxiang Yin
- Department of Pathology, The Affiliated Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People’s Republic of China
| | - Shi-Wen Jiang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People’s Republic of China
| |
Collapse
|
14
|
Discovery of a New Drug-Like Series of OGT Inhibitors by Virtual Screening. Molecules 2022; 27:molecules27061996. [PMID: 35335358 PMCID: PMC8950328 DOI: 10.3390/molecules27061996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is an essential post-translational modification installed by the enzyme O-β-N-acetyl-d-glucosaminyl transferase (OGT). Modulating this enzyme would be extremely valuable to better understand its role in the development of serious human pathologies, such as diabetes and cancer. However, the limited availability of potent and selective inhibitors hinders the validation of this potential therapeutic target. To explore new chemotypes that target the active site of OGT, we performed virtual screening of a large library of commercially available compounds with drug-like properties. We purchased samples of the most promising virtual hits and used enzyme assays to identify authentic leads. Structure-activity relationships of the best identified OGT inhibitor were explored by generating a small library of derivatives. Our best hit displays a novel uridine mimetic scaffold and inhibited the recombinant enzyme with an IC50 value of 7 µM. The current hit represents an excellent starting point for designing and developing a new set of OGT inhibitors that may prove useful for exploring the biology of OGT.
Collapse
|
15
|
Zhang N, Jiang H, Zhang K, Zhu J, Wang Z, Long Y, He Y, Feng F, Liu W, Ye F, Qu W. OGT as potential novel target: Structure, function and inhibitors. Chem Biol Interact 2022; 357:109886. [DOI: 10.1016/j.cbi.2022.109886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
|
16
|
Lee JB, Pyo KH, Kim HR. Role and Function of O-GlcNAcylation in Cancer. Cancers (Basel) 2021; 13:cancers13215365. [PMID: 34771527 PMCID: PMC8582477 DOI: 10.3390/cancers13215365] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Despite the rapid advancement in immunotherapy and targeted agents, many patients diagnosed with cancer have poor prognosis with dismal overall survival. One of the key hallmarks of cancer is the ability of cancer cells to reprogram their energy metabolism. O-GlcNAcylation is an emerging potential mechanism for cancer cells to induce proliferation and progression of tumor cells and resistance to chemotherapy. This review summarizes the mechanism behind O-GlcNAcylation and discusses the role of O-GlcNAcylation, including its function with receptor tyrosine kinase and chemo-resistance in cancer, and immune response to cancer and as a prognostic factor. Further pre-clinical studies on O-GlcNAcylation are warranted to assess the clinical efficacy of agents targeting O-GlcNAcylation. Abstract Cancer cells are able to reprogram their glucose metabolism and retain energy via glycolysis even under aerobic conditions. They activate the hexosamine biosynthetic pathway (HBP), and the complex interplay of O-linked N-acetylglucosaminylation (O-GlcNAcylation) via deprivation of nutrients or increase in cellular stress results in the proliferation, progression, and metastasis of cancer cells. Notably, cancer is one of the emerging diseases associated with O-GlcNAcylation. In this review, we summarize studies that delineate the role of O-GlcNAcylation in cancer, including its modulation in metastasis, function with receptor tyrosine kinases, and resistance to chemotherapeutic agents, such as cisplatin. In addition, we discuss the function of O-GlcNAcylation in eliciting immune responses associated with immune surveillance in the tumor microenvironment. O-GlcNAcylation is increasingly accepted as one of the key players involved in the activation and differentiation of T cells and macrophages. Finally, we discuss the prognostic role of O-GlcNAcylation and potential therapeutic agents such as O-linked β-N-acetylglucosamine-transferase inhibitors, which may help overcome the resistance mechanism associated with the reprogramming of glucose metabolism.
Collapse
Affiliation(s)
- Jii Bum Lee
- Division of Hemato-Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Kyoung-Ho Pyo
- Department of Medical Science, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: (K.-H.P.); (H.R.K.); Tel.: +82-2228-0869 (K.-H.P.); +82-2228-8125 (H.R.K.)
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: (K.-H.P.); (H.R.K.); Tel.: +82-2228-0869 (K.-H.P.); +82-2228-8125 (H.R.K.)
| |
Collapse
|
17
|
McLean JT, Benny A, Nolan MD, Swinand G, Scanlan EM. Cysteinyl radicals in chemical synthesis and in nature. Chem Soc Rev 2021; 50:10857-10894. [PMID: 34397045 DOI: 10.1039/d1cs00254f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nature harnesses the unique properties of cysteinyl radical intermediates for a diverse range of essential biological transformations including DNA biosynthesis and repair, metabolism, and biological photochemistry. In parallel, the synthetic accessibility and redox chemistry of cysteinyl radicals renders them versatile reactive intermediates for use in a vast array of synthetic applications such as lipidation, glycosylation and fluorescent labelling of proteins, peptide macrocyclization and stapling, desulfurisation of peptides and proteins, and development of novel therapeutics. This review provides the reader with an overview of the role of cysteinyl radical intermediates in both chemical synthesis and biological systems, with a critical focus on mechanistic details. Direct insights from biological systems, where applied to chemical synthesis, are highlighted and potential avenues from nature which are yet to be explored synthetically are presented.
Collapse
Affiliation(s)
- Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Mark D Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Glenna Swinand
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| |
Collapse
|
18
|
Saha A, Bello D, Fernández-Tejada A. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev 2021; 50:10451-10485. [PMID: 34338261 PMCID: PMC8451060 DOI: 10.1039/d0cs01275k] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 12/11/2022]
Abstract
The addition of O-linked-β-D-N-acetylglucosamine (O-GlcNAc) onto serine and threonine residues of nuclear and cytoplasmic proteins is an abundant, unique post-translational modification governing important biological processes. O-GlcNAc dysregulation underlies several metabolic disorders leading to human diseases, including cancer, neurodegeneration and diabetes. This review provides an extensive summary of the recent progress in probing O-GlcNAcylation using mainly chemical methods, with a special focus on discussing mechanistic insights and the structural role of O-GlcNAc at the molecular level. We highlight key aspects of the O-GlcNAc enzymes, including development of OGT and OGA small-molecule inhibitors, and describe a variety of chemoenzymatic and chemical biology approaches for the study of O-GlcNAcylation. Special emphasis is placed on the power of chemistry in the form of synthetic glycopeptide and glycoprotein tools for investigating the site-specific functional consequences of the modification. Finally, we discuss in detail the conformational effects of O-GlcNAc glycosylation on protein structure and stability, relevant O-GlcNAc-mediated protein interactions and its molecular recognition features by biological receptors. Future research in this field will provide novel, more effective chemical strategies and probes for the molecular interrogation of O-GlcNAcylation, elucidating new mechanisms and functional roles of O-GlcNAc with potential therapeutic applications in human health.
Collapse
Affiliation(s)
- Abhijit Saha
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Davide Bello
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
19
|
Balana AT, Moon SP, Pratt MR. O-GlcNAcylated peptides and proteins for structural and functional studies. Curr Opin Struct Biol 2021; 68:84-93. [PMID: 33434850 PMCID: PMC8222092 DOI: 10.1016/j.sbi.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022]
Abstract
O-GlcNAcylation is an enzymatic post-translational modification occurring in hundreds of protein substrates. This modification occurs through the addition of the monosaccharide N-acetylglucosamine to serine and threonine residues on intracellular proteins in the cytosol, nucleus, and mitochondria. As a highly dynamic form of modification, changes in O-GlcNAc levels coincide with alterations in metabolic state, the presence of stressors, and cellular health. At the protein level, the consequences of the sugar modification can vary, thus necessitating biochemical investigations on protein-specific and site-specific effects. To this end, enzymatic and chemical methods to 'encode' the modification have been developed and the utilization of these synthetic glycopeptides and glycoproteins has since been instrumental in the discovery of the mechanisms by which O-GlcNAcylation can affect a diverse array of biological processes.
Collapse
Affiliation(s)
- Aaron T Balana
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, United States
| | - Stuart P Moon
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, United States
| | - Matthew R Pratt
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, United States; Biological Sciences, University of Southern California, Los Angeles, CA, 90089, United States.
| |
Collapse
|
20
|
Weiss M, Loi EM, Sterle M, Balsollier C, Tomašič T, Pieters RJ, Gobec M, Anderluh M. New Quinolinone O-GlcNAc Transferase Inhibitors Based on Fragment Growth. Front Chem 2021; 9:666122. [PMID: 33937202 PMCID: PMC8079942 DOI: 10.3389/fchem.2021.666122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
O-GlcNAcylation is an important post-translational and metabolic process in cells that must be carefully regulated. O-GlcNAc transferase (OGT) is ubiquitously present in cells and is the only enzyme that catalyzes the transfer of O-GlcNAc to proteins. OGT is a promising target in various pathologies such as cancer, immune system diseases, or nervous impairment. In our previous work we identified the 2-oxo-1,2-dihydroquinoline-4-carboxamide derivatives as promising compounds by a fragment-based drug design approach. Herein, we report the extension of this first series with several new fragments. As the most potent fragment, we identified 3b with an IC50 value of 116.0 μM. If compared with the most potent inhibitor of the first series, F20 (IC50 = 117.6 μM), we can conclude that the new fragments did not improve OGT inhibition remarkably. Therefore, F20 was used as the basis for the design of a series of compounds with the elongation toward the O-GlcNAc binding pocket as the free carboxylate allows easy conjugation. Compound 6b with an IC50 value of 144.5 μM showed the most potent OGT inhibition among the elongated compounds, but it loses inhibition potency when compared to the UDP mimetic F20. We therefore assume that the binding of the compounds in the O-GlcNAc binding pocket is likely not crucial for OGT inhibition. Furthermore, evaluation of the compounds with two different assays revealed that some inhibitors most likely interfere with the commercially available UDP-Glo™ glycosyltransferase assay, leading to false positive results. This observation calls for caution, when evaluating UDP mimetic as OGT inhibitors with the UDP-Glo™ glycosyltransferase assay, as misinterpretations can occur.
Collapse
Affiliation(s)
- Matjaž Weiss
- The Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Elena M Loi
- The Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht, Netherlands
| | - Maša Sterle
- The Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Cyril Balsollier
- The Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht, Netherlands
| | - Tihomir Tomašič
- The Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht, Netherlands
| | - Martina Gobec
- The Chair of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Anderluh
- The Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Overview of the Assays to Probe O-Linked β- N-Acetylglucosamine Transferase Binding and Activity. Molecules 2021; 26:molecules26041037. [PMID: 33669256 PMCID: PMC7920051 DOI: 10.3390/molecules26041037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022] Open
Abstract
O-GlcNAcylation is a posttranslational modification that occurs at serine and threonine residues of protein substrates by the addition of O-linked β-d-N-acetylglucosamine (GlcNAc) moiety. Two enzymes are involved in this modification: O-GlcNac transferase (OGT), which attaches the GlcNAc residue to the protein substrate, and O-GlcNAcase (OGA), which removes it. This biological balance is important for many biological processes, such as protein expression, cell apoptosis, and regulation of enzyme activity. The extent of this modification has sparked interest in the medical community to explore OGA and OGT as therapeutic targets, particularly in degenerative diseases. While some OGA inhibitors are already in phase 1 clinical trials for the treatment of Alzheimer's disease, OGT inhibitors still have a long way to go. Due to complex expression and instability, the discovery of potent OGT inhibitors is challenging. Over the years, the field has grappled with this problem, and scientists have developed a number of techniques and assays. In this review, we aim to highlight assays and techniques for OGT inhibitor discovery, evaluate their strength for the field, and give us direction for future bioassay methods.
Collapse
|
22
|
Ryan P, Shi Y, von Itzstein M, Rudrawar S. Novel bisubstrate uridine-peptide analogues bearing a pyrophosphate bioisostere as inhibitors of human O-GlcNAc transferase. Bioorg Chem 2021; 110:104738. [PMID: 33667901 DOI: 10.1016/j.bioorg.2021.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
Protein O-linked β-D-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), an essential post-translational as well as cotranslational modification, is the attachment of β-D-N-acetylglucosamine to serine and threonine residues of nucleocytoplasmic proteins. An aberrant O-GlcNAc profile on certain proteins has been implicated in metabolic diseases such as diabetes and cancer. Inhibitors of O-GlcNAc transferase (OGT) are valuable tools to study the cell biology of protein O-GlcNAc modification. In this study we report novel uridine-peptide conjugate molecules composed of an acceptor peptide covalently linked to a catalytically inactive donor substrate analogue that bears a pyrophosphate bioisostere and explore their inhibitory activities against OGT by a radioactive hOGT assay. Further, we investigate the structural basis of their activities via molecular modelling, explaining their lack of potency towards OGT inhibition.
Collapse
Affiliation(s)
- Philip Ryan
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia; School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Santosh Rudrawar
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia; School of Chemistry, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
23
|
Monitoring and modulating O-GlcNAcylation: assays and inhibitors of O-GlcNAc processing enzymes. Curr Opin Struct Biol 2021; 68:157-165. [PMID: 33535148 DOI: 10.1016/j.sbi.2020.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is protein modification that is emerging as a regulator of diverse aspects of cellular physiology. Aberrant O-GlcNAcylation has been linked to several diseases, spurring the creation of methods to detect and perturb the activity of the two enzymes that govern this modification - O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Here we summarize assays used for these two enzymes. We also detail the latest structure-guided development of inhibitors of these two enzymes and touch on selected reports that underscore the utility of inhibitors as tools for uncovering the diverse roles of O-GlcNAc in cell function. Finally, we summarize recent reports on the potential therapeutic benefits of antagonizing these enzymes and comment on outstanding challenges within the field.
Collapse
|
24
|
Balogh B, Ivánczi M, Nizami B, Beke-Somfai T, Mándity IM. ConjuPepDB: a database of peptide-drug conjugates. Nucleic Acids Res 2021; 49:D1102-D1112. [PMID: 33125057 PMCID: PMC7778964 DOI: 10.1093/nar/gkaa950] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Peptide–drug conjugates are organic molecules composed of (i) a small drug molecule, (ii) a peptide and (iii) a linker. The drug molecule is mandatory for the biological action, however, its efficacy can be enhanced by targeted delivery, which often also reduces unwanted side effects. For site-specificity the peptide part is mainly responsible. The linker attaches chemically the drug to the peptide, but it could also be biodegradable which ensures controlled liberation of the small drug. Despite the importance of the field, there is no public comprehensive database on these species. Herein we describe ConjuPepBD, a freely available, fully annotated and manually curated database of peptide drug conjugates. ConjuPepDB contains basic information about the entries, e.g. CAS number. Furthermore, it also implies their biomedical application and the type of chemical conjugation employed. It covers more than 1600 conjugates from ∼230 publications. The web-interface is user-friendly, intuitive, and useable on several devices, e.g. phones, tablets, PCs. The webpage allows the user to search for content using numerous criteria, chemical structure and a help page is also provided. Besides giving quick insight for newcomers, ConjuPepDB is hoped to be also helpful for researchers from various related fields. The database is accessible at: https://conjupepdb.ttk.hu/.
Collapse
Affiliation(s)
- Balázs Balogh
- Institute of Organic Chemistry, Semmelweis University, H-1092 Budapest, Hőgyes Endre u. 7, Hungary
| | - Márton Ivánczi
- Institute of Organic Chemistry, Semmelweis University, H-1092 Budapest, Hőgyes Endre u. 7, Hungary
| | - Bilal Nizami
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar Tudósok krt. 2, Hungary
| | - Tamás Beke-Somfai
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar Tudósok krt. 2, Hungary
| | - István M Mándity
- Institute of Organic Chemistry, Semmelweis University, H-1092 Budapest, Hőgyes Endre u. 7, Hungary.,TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar Tudósok krt. 2, Hungary
| |
Collapse
|
25
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
26
|
Makwana V, Ryan P, Malde AK, Anoopkumar-Dukie S, Rudrawar S. Bisubstrate Ether-Linked Uridine-Peptide Conjugates as O-GlcNAc Transferase Inhibitors. ChemMedChem 2020; 16:477-483. [PMID: 32991074 DOI: 10.1002/cmdc.202000582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/24/2020] [Indexed: 12/22/2022]
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is a master regulator of installing O-GlcNAc onto serine or threonine residues on a multitude of target proteins. Numerous nuclear and cytosolic proteins of varying functional classes, including translational factors, transcription factors, signaling proteins, and kinases are OGT substrates. Aberrant O-GlcNAcylation of proteins is implicated in signaling in metabolic diseases such as diabetes and cancer. Selective and potent OGT inhibitors are valuable tools to study the role of OGT in modulating a wide range of effects on cellular functions. We report linear bisubstrate ether-linked uridine-peptide conjugates as OGT inhibitors with micromolar affinity. In vitro evaluation of the compounds revealed the importance of donor substrate, linker and acceptor substrate in the rational design of bisubstrate analogue inhibitors. Molecular dynamics simulations shed light on the binding of this novel class of inhibitors and rationalized the effect of amino acid truncation of acceptor peptide on OGT inhibition.
Collapse
Affiliation(s)
- Vivek Makwana
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Philip Ryan
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Alpeshkumar K Malde
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.,MaldE Scientific, Australia
| | - Shailendra Anoopkumar-Dukie
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Santosh Rudrawar
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
27
|
Estevez A, Zhu D, Blankenship C, Jiang J. Molecular Interrogation to Crack the Case of O-GlcNAc. Chemistry 2020; 26:12086-12100. [PMID: 32207184 PMCID: PMC7724648 DOI: 10.1002/chem.202000155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/28/2020] [Indexed: 12/25/2022]
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) modification, termed O-GlcNAcylation, is an essential and dynamic post-translational modification in cells. O-GlcNAc transferase (OGT) installs this modification on serine and threonine residues, whereas O-GlcNAcase (OGA) hydrolyzes it. O-GlcNAc modifications are found on thousands of intracellular proteins involved in diverse biological processes. Dysregulation of O-GlcNAcylation and O-GlcNAc cycling enzymes has been detected in many diseases, including cancer, diabetes, cardiovascular and neurodegenerative diseases. Here, recent advances in the development of molecular tools to investigate OGT and OGA functions and substrate recognition are discussed. New chemical approaches to study O-GlcNAc dynamics and its potential roles in the immune system are also highlighted. It is hoped that this minireview will encourage more research in these areas to advance the understanding of O-GlcNAc in biology and diseases.
Collapse
Affiliation(s)
- Arielis Estevez
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dongsheng Zhu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Connor Blankenship
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
28
|
Albuquerque SO, Barros TG, Dias LRS, Lima CHDS, Azevedo PHRDA, Flores-Junior LAP, Dos Santos EG, Loponte HF, Pinheiro S, Dias WB, Muri EMF, Todeschini AR. Biological evaluation and molecular modeling of peptidomimetic compounds as inhibitors for O-GlcNAc transferase (OGT). Eur J Pharm Sci 2020; 154:105510. [PMID: 32801002 DOI: 10.1016/j.ejps.2020.105510] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023]
Abstract
The vital enzyme O-linked β-N-acetylglucosamine transferase (OGT) catalyzes the O-GlcNAcylation of intracellular proteins coupling the metabolic status to cellular signaling and transcription pathways. Aberrant levels of O-GlcNAc and OGT have been linked to metabolic diseases as cancer and diabetes. Here, a new series of peptidomimetic OGT inhibitors was identified highlighting the compound LQMed 330, which presented better IC50 compared to the most potent inhibitors found in the literature. Molecular modeling study of selected inhibitors into the OGT binding site provided insight into the behavior by which these compounds interact with the enzyme. The results obtained in this study provided new perspectives on the design and synthesis of highly specific OGT inhibitors.
Collapse
Affiliation(s)
- Suraby O Albuquerque
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Thalita G Barros
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luiza R S Dias
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Camilo H da S Lima
- Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, RJ, Brazil
| | - Pedro H R de A Azevedo
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luiz A P Flores-Junior
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Eldio G Dos Santos
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Hector F Loponte
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Sergio Pinheiro
- Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Wagner B Dias
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Estela M F Muri
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Adriane R Todeschini
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
29
|
Intracellular Hydrolysis of Small-Molecule O-Linked N-Acetylglucosamine Transferase Inhibitors Differs among Cells and Is Not Required for Its Inhibition. Molecules 2020; 25:molecules25153381. [PMID: 32722493 PMCID: PMC7436030 DOI: 10.3390/molecules25153381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/17/2023] Open
Abstract
O-GlcNAcylation is an essential post-translational modification that occurs on nuclear and cytoplasmic proteins, regulating their function in response to cellular stress and altered nutrient availability. O-GlcNAc transferase (OGT) is the enzyme that catalyzes this reaction and represents a potential therapeutic target, whose biological role is still not fully understood. To support this research field, a series of cell-permeable, low-nanomolar OGT inhibitors were recently reported. In this study, we resynthesized the most potent OGT inhibitor of the library, OSMI-4, and we used it to investigate OGT inhibition in different human cell lines. The compound features an ethyl ester moiety that is supposed to be cleaved by carboxylesterases to generate its active metabolite. Our LC-HRMS analysis of the cell lysates shows that this is not always the case and that, even in the cell lines where hydrolysis does not occur, OGT activity is inhibited.
Collapse
|
30
|
Ju Kim E. O‐GlcNAc Transferase: Structural Characteristics, Catalytic Mechanism and Small‐Molecule Inhibitors. Chembiochem 2020; 21:3026-3035. [DOI: 10.1002/cbic.202000194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/07/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Eun Ju Kim
- Department of Science Education-Chemistry Major Daegu University Gyeongsan-si, GyeongBuk 712-714 South Korea
| |
Collapse
|
31
|
Park J, Lai MKP, Arumugam TV, Jo DG. O-GlcNAcylation as a Therapeutic Target for Alzheimer's Disease. Neuromolecular Med 2020; 22:171-193. [PMID: 31894464 DOI: 10.1007/s12017-019-08584-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and the number of elderly patients suffering from AD has been steadily increasing. Despite worldwide efforts to cope with this disease, little progress has been achieved with regard to identification of effective therapeutics. Thus, active research focusing on identification of new therapeutic targets of AD is ongoing. Among the new targets, post-translational modifications which modify the properties of mature proteins have gained attention. O-GlcNAcylation, a type of PTM that attaches O-linked β-N-acetylglucosamine (O-GlcNAc) to a protein, is being sought as a new target to treat AD pathologies. O-GlcNAcylation has been known to modify the two important components of AD pathological hallmarks, amyloid precursor protein, and tau protein. In addition, elevating O-GlcNAcylation levels in AD animal models has been shown to be effective in alleviating AD-associated pathology. Although studies investigating the precise mechanism of reversal of AD pathologies by targeting O-GlcNAcylation are not yet complete, it is clearly important to examine O-GlcNAcylation regulation as a target of AD therapeutics. This review highlights the mechanisms of O-GlcNAcylation and its role as a potential therapeutic target under physiological and pathological AD conditions.
Collapse
Affiliation(s)
- Jinsu Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
- Department of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Korea
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore, 117593, Singapore.
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia.
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
- Department of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
32
|
Worth M, Hu CW, Li H, Fan D, Estevez A, Zhu D, Wang A, Jiang J. Targeted covalent inhibition of O-GlcNAc transferase in cells. Chem Commun (Camb) 2019; 55:13291-13294. [PMID: 31626249 PMCID: PMC6823131 DOI: 10.1039/c9cc04560k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
O-GlcNAc transferase (OGT) glycosylates numerous proteins and is implicated in many diseases. To date, most OGT inhibitors lack either sufficient potency or characterized specificity in cells. We report the first targeted covalent inhibitor that predominantly reacts with OGT but does not affect other functionally similar enzymes. This study provides a new strategy to interrogate cellular OGT functions and to investigate other glycosyltransferases.
Collapse
Affiliation(s)
- Matthew Worth
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Chia-Wei Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | - Dacheng Fan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | - Arielis Estevez
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | - Dongsheng Zhu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | - Ao Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| |
Collapse
|
33
|
Li Y, Xie M, Men L, Du J. O-GlcNAcylation in immunity and inflammation: An intricate system (Review). Int J Mol Med 2019; 44:363-374. [PMID: 31198979 PMCID: PMC6605495 DOI: 10.3892/ijmm.2019.4238] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic, low‑grade inflammation associated with obesity and diabetes result from the infiltration of adipose and vascular tissue by immune cells and contributes to cardiovascular complications. Despite an incomplete understanding of the mechanistic underpinnings of immune cell differentiation and inflammation, O‑GlcNAcylation, the addition of O‑linked N‑acetylglucosamine (O‑GlcNAc) to cytoplasmic, nuclear and mitochondrial proteins by the two cycling enzymes, the O‑linked N‑acetylglucosamine transferase (OGT) and the O‑GlcNAcase (OGA), may contribute to fine‑tune immunity and inflammation in both physiological and pathological conditions. Early studies have indicated that O‑GlcNAcylation of proteins play a pro‑inflammatory role in diabetes and insulin resistance, whereas subsequent studies have demonstrated that this post‑translational modification could also be protective against acute injuries. These studies suggest that diverse types of insults result in dynamic changes to O‑GlcNAcylation patterns, which fluctuate with cellular metabolism to promote or inhibit inflammation. In this review, the current understanding of O‑GlcNAcylation and its adaptive modulation in immune and inflammatory responses is summarized.
Collapse
Affiliation(s)
- Yu Li
- Department of Endocrinology
| | - Mingzheng Xie
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | | | - Jianling Du
- Department of Endocrinology
- Correspondence to: Dr Jianling Du, Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning 116011, P.R. China, E-mail:
| |
Collapse
|
34
|
Pravata VM, Muha V, Gundogdu M, Ferenbach AT, Kakade PS, Vandadi V, Wilmes AC, Borodkin VS, Joss S, Stavridis MP, van Aalten DMF. Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proc Natl Acad Sci U S A 2019; 116:14961-14970. [PMID: 31296563 PMCID: PMC6660750 DOI: 10.1073/pnas.1900065116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein-protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T > A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.
Collapse
Affiliation(s)
- Veronica M Pravata
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Villo Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Mehmet Gundogdu
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Andrew T Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Poonam S Kakade
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Vasudha Vandadi
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Ariane C Wilmes
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Vladimir S Borodkin
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Shelagh Joss
- West of Scotland Genetic Service, Queen Elizabeth University Hospital, G51 4TF Glasgow, United Kingdom
| | - Marios P Stavridis
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom;
| |
Collapse
|
35
|
Makwana V, Ryan P, Patel B, Dukie SA, Rudrawar S. Essential role of O-GlcNAcylation in stabilization of oncogenic factors. Biochim Biophys Acta Gen Subj 2019; 1863:1302-1317. [PMID: 31034911 DOI: 10.1016/j.bbagen.2019.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
A reversible post-translational protein modification which involves addition of N-acetylglucosamine (GlcNAc) onto hydroxyl groups of serine and/or threonine residues which is known as O-GlcNAcylation, has emerged as a potent competitor of phosphorylation. This glycosyltransfer reaction is catalyzed by the enzyme O-linked β-N-acetylglucosamine transferase (OGT). This enzyme uses uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the end product of hexosamine biosynthetic pathway, to modify numerous nuclear and cytosolic proteins. O-GlcNAcylation influences cancer cell metabolism in such a way that hyper-O-GlcNAcylation is considered as a prominent trait of many cancers, and is proposed as a major factor enabling cancer cell proliferation and progression. Growing evidence supports a connection between O-GlcNAcylation and major oncogenic factors, including for example, c-MYC, HIF-1α, and NF-κB. A comprehensive study of the roles of O-GlcNAc modification of oncogenic factors is warranted as a thorough understanding may help drive advances in cancer diagnosis and therapy. The focus of this article is to highlight the interplay between oncogenic factors and O-GlcNAcylation along with OGT in cancer cell proliferation and survival. The prospects for OGT inhibitors will also be discussed.
Collapse
Affiliation(s)
- Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Shailendra-Anoopkumar Dukie
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia.
| | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia.
| |
Collapse
|
36
|
Shi J, Ruijtenbeek R, Pieters RJ. Demystifying O-GlcNAcylation: hints from peptide substrates. Glycobiology 2019; 28:814-824. [PMID: 29635275 DOI: 10.1093/glycob/cwy031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
O-GlcNAcylation, analogous to phosphorylation, is an essential post-translational modification of proteins at Ser/Thr residues with a single β-N-acetylglucosamine moiety. This dynamic protein modification regulates many fundamental cellular processes and its deregulation has been linked to chronic diseases such as cancer, diabetes and neurodegenerative disorders. Reversible attachment and removal of O-GlcNAc is governed only by O-GlcNAc transferase and O-GlcNAcase, respectively. Peptide substrates, derived from natural O-GlcNAcylation targets, function in the catalytic cores of these two enzymes by maintaining interactions between enzyme and substrate, which makes them ideal models for the study of O-GlcNAcylation and deglycosylation. These peptides provide valuable tools for a deeper understanding of O-GlcNAc processing enzymes. By taking advantage of peptide chemistry, recent progress in the study of activity and regulatory mechanisms of these two enzymes has advanced our understanding of their fundamental specificities as well as their potential as therapeutic targets. Hence, this review summarizes the recent achievements on this modification studied at the peptide level, focusing on enzyme activity, enzyme specificity, direct function, site-specific antibodies and peptide substrate-inspired inhibitors.
Collapse
Affiliation(s)
- Jie Shi
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands
| | - Rob Ruijtenbeek
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands.,PamGene International BV, HH's-Hertogenbosch, The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands
| |
Collapse
|
37
|
Affiliation(s)
- Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University
| |
Collapse
|
38
|
Rafie K, Raimi O, Ferenbach AT, Borodkin VS, Kapuria V, van Aalten DMF. Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats. Open Biol 2018; 7:rsob.170078. [PMID: 28659383 PMCID: PMC5493779 DOI: 10.1098/rsob.170078] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 12/23/2022] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is an essential and dynamic post-translational modification found on hundreds of nucleocytoplasmic proteins in metazoa. Although a single enzyme, O-GlcNAc transferase (OGT), generates the entire cytosolic O-GlcNAc proteome, it is not understood how it recognizes its protein substrates, targeting only a fraction of serines/threonines in the metazoan proteome for glycosylation. We describe a trapped complex of human OGT with the C-terminal domain of TAB1, a key innate immunity-signalling O-GlcNAc protein, revealing extensive interactions with the tetratricopeptide repeats of OGT. Confirmed by mutagenesis, this interaction suggests that glycosylation substrate specificity is achieved by recognition of a degenerate sequon in the active site combined with an extended conformation C-terminal of the O-GlcNAc target site.
Collapse
Affiliation(s)
- Karim Rafie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Olawale Raimi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Vladimir S Borodkin
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Vaibhav Kapuria
- Center for Integrative Genomics, University of Lausanne 1015, Switzerland
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
39
|
Borodkin VS, Rafie K, Selvan N, Aristotelous T, Navratilova I, Ferenbach AT, van Aalten DMF. O-GlcNAcase Fragment Discovery with Fluorescence Polarimetry. ACS Chem Biol 2018; 13:1353-1360. [PMID: 29641181 DOI: 10.1021/acschembio.8b00183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The attachment of the sugar N-acetyl-D-glucosamine (GlcNAc) to specific serine and threonine residues on proteins is referred to as protein O-GlcNAcylation. O-GlcNAc transferase (OGT) is the enzyme responsible for carrying out the modification, while O-GlcNAcase (OGA) reverses it. Protein O-GlcNAcylation has been implicated in a wide range of cellular processes including transcription, proteostasis, and stress response. Dysregulation of O-GlcNAc has been linked to diabetes, cancer, and neurodegenerative and cardiovascular disease. OGA has been proposed to be a drug target for the treatment of Alzheimer's and cardiovascular disease given that increased O-GlcNAc levels appear to exert a protective effect. The search for specific, potent, and drug-like OGA inhibitors with bioavailability in the brain is therefore a field of active research, requiring orthogonal high-throughput assay platforms. Here, we describe the synthesis of a novel probe for use in a fluorescence polarization based assay for the discovery of inhibitors of OGA. We show that the probe is suitable for use with both human OGA, as well as the orthologous bacterial counterpart from Clostridium perfringens, CpOGA, and the lysosomal hexosaminidases HexA/B. We structurally characterize CpOGA in complex with a ligand identified from a fragment library screen using this assay. The versatile synthesis procedure could be adapted for making fluorescent probes for the assay of other glycoside hydrolases.
Collapse
|
40
|
Rafie K, Gorelik A, Trapannone R, Borodkin VS, van Aalten DMF. Thio-Linked UDP-Peptide Conjugates as O-GlcNAc Transferase Inhibitors. Bioconjug Chem 2018; 29:1834-1840. [PMID: 29723473 PMCID: PMC6016062 DOI: 10.1021/acs.bioconjchem.8b00194] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
O-GlcNAc
transferase (OGT) is an essential glycosyltransferase
that installs the O-GlcNAc post-translational modification on the
nucleocytoplasmic proteome. We report the development of S-linked
UDP–peptide conjugates as potent bisubstrate OGT inhibitors.
These compounds were assembled in a modular fashion by photoinitiated
thiol–ene conjugation of allyl-UDP and optimal acceptor peptides
in which the acceptor serine was replaced with cysteine. The conjugate
VTPVC(S-propyl-UDP)TA (Ki = 1.3 μM)
inhibits the OGT activity in HeLa cell lysates. Linear fusions of
this conjugate with cell penetrating peptides were explored as prototypes
of cell-penetrant OGT inhibitors. A crystal structure of human OGT
with the inhibitor revealed mimicry of the interactions seen in the
pseudo-Michaelis complex. Furthermore, a fluorophore-tagged derivative
of the inhibitor works as a high affinity probe in a fluorescence
polarimetry hOGT assay.
Collapse
Affiliation(s)
- Karim Rafie
- Division of Gene Regulation and Expression, School of Life Sciences , University of Dundee , DD1 5EH Dundee , U.K
| | - Andrii Gorelik
- Division of Gene Regulation and Expression, School of Life Sciences , University of Dundee , DD1 5EH Dundee , U.K
| | - Riccardo Trapannone
- Division of Gene Regulation and Expression, School of Life Sciences , University of Dundee , DD1 5EH Dundee , U.K
| | - Vladimir S Borodkin
- Division of Gene Regulation and Expression, School of Life Sciences , University of Dundee , DD1 5EH Dundee , U.K
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences , University of Dundee , DD1 5EH Dundee , U.K
| |
Collapse
|
41
|
Zhang H, Tomašič T, Shi J, Weiss M, Ruijtenbeek R, Anderluh M, Pieters RJ. Inhibition of O-GlcNAc transferase (OGT) by peptidic hybrids. MEDCHEMCOMM 2018; 9:883-887. [PMID: 30108977 PMCID: PMC6072325 DOI: 10.1039/c8md00115d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/14/2018] [Indexed: 01/10/2023]
Abstract
O-GlcNAc transferase (OGT) attaches a GlcNAc moiety on specific substrate proteins using UDP-GlcNAc as the sugar donor. This modification can alter protein function by regulating cellular signaling and transcription pathways in response to altered nutrient availability and stress. Specific inhibitors of OGT would be valuable tools for biological studies and lead structures for therapeutics. The existing OGT inhibitors are mainly derived from the sugar donor substrate, but poor cell permeability and off-target effects limit their use. Here, we describe our progress on OGT inhibition based on substrate peptides identified by array screening. Subsequently, bisubstrate inhibitors were prepared by conjugating these peptides to uridine in various ways. In parallel, an in silico fragment screening was conducted to obtain small molecules targeting the UDP binding pocket. After evaluation of the initial hits, one of these small molecules was elaborated into a novel OGT hybrid inhibitor, as the replacement of uridine. The novel compounds inhibit OGT activity with IC50 values in the micromolar range.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082 , NL-3508 TB , Utrecht , The Netherlands .
| | - Tihomir Tomašič
- Faculty of Pharmacy , University of Ljubljana , Ljubljana , 1000 , Slovenia
| | - Jie Shi
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082 , NL-3508 TB , Utrecht , The Netherlands .
| | - Matjaž Weiss
- Faculty of Pharmacy , University of Ljubljana , Ljubljana , 1000 , Slovenia
| | - Rob Ruijtenbeek
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082 , NL-3508 TB , Utrecht , The Netherlands .
- PamGene International BV , 's-Hertogenbosch , 5211 HH , The Netherlands
| | - Marko Anderluh
- Faculty of Pharmacy , University of Ljubljana , Ljubljana , 1000 , Slovenia
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082 , NL-3508 TB , Utrecht , The Netherlands .
| |
Collapse
|
42
|
The O-GlcNAc Transferase Intellectual Disability Mutation L254F Distorts the TPR Helix. Cell Chem Biol 2018; 25:513-518.e4. [PMID: 29606577 PMCID: PMC5967971 DOI: 10.1016/j.chembiol.2018.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/28/2018] [Indexed: 01/18/2023]
Abstract
O-linked β-N-acetyl-D-glucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential post-translational modification that is abundant in the brain. Recently, OGT mutations have been associated with intellectual disability, although it is not understood how they affect OGT structure and function. Using a multi-disciplinary approach we show that the L254F OGT mutation leads to conformational changes of the tetratricopeptide repeats and reduced activity, revealing the molecular mechanisms contributing to pathogenesis. The intellectual disability L254F mutation in OGT affects activity The L254F mutation leads to shifts up to 12 Å in the OGT structure Thermal denaturing studies reveal reduction in TPR stability caused by L254F Simulations suggest the presence of alternate TPRL254F conformations
Collapse
|
43
|
Hwang H, Rhim H. Functional significance of O-GlcNAc modification in regulating neuronal properties. Pharmacol Res 2017; 129:295-307. [PMID: 29223644 DOI: 10.1016/j.phrs.2017.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022]
Abstract
Post-translational modifications (PTMs) covalently modify proteins and diversify protein functions. Along with protein phosphorylation, another common PTM is the addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and/or threonine residues. O-GlcNAc modification is similar to phosphorylation in that it occurs to serine and threonine residues and cycles on and off with a similar time scale. However, a striking difference is that the addition and removal of the O-GlcNAc moiety on all substrates are mediated by the two enzymes regardless of proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. O-GlcNAcylation can interact or potentially compete with phosphorylation on serine and threonine residues, and thus serves as an important molecular mechanism to modulate protein functions and activation. However, it has been challenging to address the role of O-GlcNAc modification in regulating protein functions at the molecular level due to the lack of convenient tools to determine the sites and degrees of O-GlcNAcylation. Studies in this field have only begun to expand significantly thanks to the recent advances in detection and manipulation methods such as quantitative proteomics and highly selective small-molecule inhibitors for OGT and OGA. Interestingly, multiple brain regions, especially hippocampus, express high levels of both OGT and OGA, and a number of neuron-specific proteins have been reported to undergo O-GlcNAcylation. This review aims to discuss the recent updates concerning the impacts of O-GlcNAc modification on neuronal functions at multiple levels ranging from intrinsic neuronal properties to synaptic plasticity and animal behaviors.
Collapse
Affiliation(s)
- Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
44
|
Liu Y, Ren Y, Cao Y, Huang H, Wu Q, Li W, Wu S, Zhang J. Discovery of a Low Toxicity O-GlcNAc Transferase (OGT) Inhibitor by Structure-based Virtual Screening of Natural Products. Sci Rep 2017; 7:12334. [PMID: 28951553 PMCID: PMC5615061 DOI: 10.1038/s41598-017-12522-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
Abstract
O-GlcNAc transferase (OGT) plays an important role in regulating numerous cellular processes through reversible post-translational modification of nuclear and cytoplasmic proteins. However, the function of O-GlcNAcylation is still not well understood. Cell permeable OGT inhibitors are needed to manipulate O-GlcNAcylation levels and clarify the regulatory mechanism of this modification. Here, we report a specific natural-product OGT inhibitor (L01), which was identified from a structure-based virtual screening analysis. L01 inhibited O-GlcNAcylation both in vitro and in cells without significantly altering cell surface glycans. Molecular dynamics and site-directed mutagenesis indicated a new binding mechanism in which L01 could interact with Asn557 near the UDP binding pocket of OGT. This residue may contribute to the specificity of L01. Furthermore, as a specific OGT inhibitor, L01 produced low toxicity in cellular and zebrafish models. The identification of L01 validates structure-based virtual screening approaches for the discovery of OGT inhibitors. L01 can also serve as a chemical tool to further characterize O-GlcNAcylation functions or a new molecular core for structure-activity relationship studies to optimize the biochemical potencies.
Collapse
Affiliation(s)
- Yubo Liu
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Yang Ren
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Yu Cao
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Huang Huang
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Qiong Wu
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Wenli Li
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China.,School of Life Science & Biotechnology, Dalian University of Technology, Dalian, China
| | - Sijin Wu
- School of Life Science & Biotechnology, Dalian University of Technology, Dalian, China
| | - Jianing Zhang
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China.
| |
Collapse
|
45
|
OGT: a short overview of an enzyme standing out from usual glycosyltransferases. Biochem Soc Trans 2017; 45:365-370. [PMID: 28408476 DOI: 10.1042/bst20160404] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/10/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
O-GlcNAcylation is a highly dynamic post-translational modification whose level depends on nutrient status. Only two enzymes regulate O-GlcNAcylation cycling, the glycosyltransferase OGT (O-GlcNAc transferase) and the glycoside hydrolase OGA (O-GlcNAcase), that add and remove the GlcNAc moiety to and from acceptor proteins, respectively. During the last 30 years, OGT has emerged as a master regulator of cell life with O-GlcNAcylation being found in viruses, bacteria, insects, protists and metazoans. The study of OGT in different biological systems opens new perspectives for understanding this enzyme in many kingdoms of life. In this review, we summarize recent and older findings regarding the distribution of OGT in living organisms.
Collapse
|
46
|
Abstract
O-GlcNAcylation is the modification of serine and threonine residues with β-N-acetylglucosamine (O-GlcNAc) on intracellular proteins. This dynamic modification is attached by O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA) and is a critical regulator of various cellular processes. Furthermore, O-GlcNAcylation is dysregulated in many diseases, such as diabetes, cancer, and Alzheimer's disease. However, the precise role of this modification and its cycling enzymes (OGT and OGA) in normal and disease states remains elusive. This is partially due to the difficulty in studying O-GlcNAcylation with traditional genetic and biochemical techniques. In this review, we will summarize recent progress in chemical approaches to overcome these obstacles. We will cover new inhibitors of OGT and OGA, advances in metabolic labeling and cellular imaging, synthetic approaches to access homogeneous O-GlcNAcylated proteins, and cross-linking methods to identify O-GlcNAc-protein interactions. We will also discuss remaining gaps in our toolbox for studying O-GlcNAcylation and questions of high interest that are yet to be answered.
Collapse
Affiliation(s)
- Matthew Worth
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
47
|
Ghirardello M, Delso I, Tejero T, Merino P. Synthesis of Amino-Acid-Nucleoside Conjugates. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mattia Ghirardello
- Departamento de Síntesis y Estructura de Biomoléculas; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza. CSIC; 50009 Zaragoza Aragón Spain
| | - Ignacio Delso
- Departamento de Síntesis y Estructura de Biomoléculas; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza. CSIC; 50009 Zaragoza Aragón Spain
- Servicio De Resonancia Magnética Nuclear; Centro de Química y Materiales de Aragón (CEQMA); Universidad de Zaragoza, CSIC; 50009 Zaragoza Aragón Spain
| | - Tomas Tejero
- Departamento de Síntesis y Estructura de Biomoléculas; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza. CSIC; 50009 Zaragoza Aragón Spain
| | - Pedro Merino
- Departamento de Síntesis y Estructura de Biomoléculas; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza. CSIC; 50009 Zaragoza Aragón Spain
| |
Collapse
|
48
|
Abstract
The O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification (O-GlcNAcylation) is the dynamic and reversible attachment of N-acetylglucosamine to serine and threonine residues of nucleocytoplasmic target proteins. It is abundant in metazoa, involving hundreds of proteins linked to a plethora of biological functions with implications in human diseases. The process is catalysed by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) that add and remove sugar moieties respectively. OGT knockout is embryonic lethal in a range of animal models, hampering the study of the biological role of O-GlcNAc and the dissection of catalytic compared with non-catalytic roles of OGT. Therefore, selective and potent chemical tools are necessary to inhibit OGT activity in the context of biological systems. The present review focuses on the available OGT inhibitors and summarizes advantages, limitations and future challenges.
Collapse
|
49
|
Merino P, Delso I, Tejero T, Ghirardello M, Juste-Navarro V. Nucleoside Diphosphate Sugar Analogues that Target Glycosyltransferases. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Pedro Merino
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Ignacio Delso
- NMR Service, Center of Chemistry and Materials of Aragon (CEQMA); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Tomás Tejero
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Mattia Ghirardello
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Verónica Juste-Navarro
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| |
Collapse
|
50
|
Kapuria V, Röhrig UF, Bhuiyan T, Borodkin VS, van Aalten DMF, Zoete V, Herr W. Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes. Genes Dev 2016; 30:960-72. [PMID: 27056667 PMCID: PMC4840301 DOI: 10.1101/gad.275925.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/10/2016] [Indexed: 12/12/2022]
Abstract
In this study, Kapuria et al. investigate the dual glycosyltransferase–protease activity (which occurs in the same active site) of OGT. They show that glycosylation and proteolysis occur through separable mechanisms and present a model for the evolution of HCF-1 proteolysis by OGT. In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc), O-linked-GlcNAc transferase (OGT) catalyzes Ser/Thr O-GlcNAcylation of many cellular proteins and proteolysis of the transcriptional coregulator HCF-1. Such a dual glycosyltransferase–protease activity, which occurs in the same active site, is unprecedented and integrates both reversible and irreversible forms of protein post-translational modification within one enzyme. Although occurring within the same active site, we show here that glycosylation and proteolysis occur through separable mechanisms. OGT consists of tetratricopeptide repeat (TPR) and catalytic domains, which, together with UDP-GlcNAc, are required for both glycosylation and proteolysis. Nevertheless, a specific TPR domain contact with the HCF-1 substrate is critical for proteolysis but not Ser/Thr glycosylation. In contrast, key catalytic domain residues and even a UDP-GlcNAc oxygen important for Ser/Thr glycosylation are irrelevant for proteolysis. Thus, from a dual glycosyltransferase–protease, essentially single-activity enzymes can be engineered both in vitro and in vivo. Curiously, whereas OGT-mediated HCF-1 proteolysis is limited to vertebrate species, invertebrate OGTs can cleave human HCF-1. We present a model for the evolution of HCF-1 proteolysis by OGT.
Collapse
Affiliation(s)
- Vaibhav Kapuria
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Tanja Bhuiyan
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Vladimir S Borodkin
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Daan M F van Aalten
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Winship Herr
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|