1
|
Ronzoni R, Ferrarotti I, D’Acunto E, Balderacchi AM, Ottaviani S, Lomas DA, Irving JA, Miranda E, Fra A. The Importance of N186 in the Alpha-1-Antitrypsin Shutter Region Is Revealed by the Novel Bologna Deficiency Variant. Int J Mol Sci 2021; 22:5668. [PMID: 34073489 PMCID: PMC8198886 DOI: 10.3390/ijms22115668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Alpha-1-antitrypsin (AAT) deficiency causes pulmonary disease due to decreased levels of circulating AAT and consequently unbalanced protease activity in the lungs. Deposition of specific AAT variants, such as the common Z AAT, within hepatocytes may also result in liver disease. These deposits are comprised of ordered polymers of AAT formed by an inter-molecular domain swap. The discovery and characterization of rare variants of AAT and other serpins have historically played a crucial role in the dissection of the structural mechanisms leading to AAT polymer formation. Here, we report a severely deficient shutter region variant, Bologna AAT (N186Y), which was identified in five unrelated subjects with different geographical origins. We characterized the new variant by expression in cellular models in comparison with known polymerogenic AAT variants. Bologna AAT showed secretion deficiency and intracellular accumulation as detergent-insoluble polymers. Extracellular polymers were detected in both the culture media of cells expressing Bologna AAT and in the plasma of a patient homozygous for this variant. Structural modelling revealed that the mutation disrupts the hydrogen bonding network in the AAT shutter region. These data support a crucial coordinating role for asparagine 186 and the importance of this network in promoting formation of the native structure.
Collapse
Affiliation(s)
- Riccardo Ronzoni
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK; (D.A.L.); (J.A.I.)
| | - Ilaria Ferrarotti
- Pneumology Unit, Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy; (I.F.); (A.M.B.); (S.O.)
| | - Emanuela D’Acunto
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy; (E.D.); (E.M.)
| | - Alice M. Balderacchi
- Pneumology Unit, Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy; (I.F.); (A.M.B.); (S.O.)
| | - Stefania Ottaviani
- Pneumology Unit, Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy; (I.F.); (A.M.B.); (S.O.)
| | - David A. Lomas
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK; (D.A.L.); (J.A.I.)
| | - James A. Irving
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK; (D.A.L.); (J.A.I.)
| | - Elena Miranda
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy; (E.D.); (E.M.)
- Italian Pasteur Institute—Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Annamaria Fra
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
2
|
Raccosta S, Librizzi F, Jagger AM, Noto R, Martorana V, Lomas DA, Irving JA, Manno M. Scaling Concepts in Serpin Polymer Physics. MATERIALS 2021; 14:ma14102577. [PMID: 34063488 PMCID: PMC8156723 DOI: 10.3390/ma14102577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 01/29/2023]
Abstract
α1-Antitrypsin is a protease inhibitor belonging to the serpin family. Serpin polymerisation is at the core of a class of genetic conformational diseases called serpinopathies. These polymers are known to be unbranched, flexible, and heterogeneous in size with a beads-on-a-string appearance viewed by negative stain electron microscopy. Here, we use atomic force microscopy and time-lapse dynamic light scattering to measure polymer size and shape for wild-type (M) and Glu342→Lys (Z) α1-antitrypsin, the most common variant that leads to severe pathological deficiency. Our data for small polymers deposited onto mica and in solution reveal a power law relation between the polymer size, namely the end-to-end distance or the hydrodynamic radius, and the polymer mass, proportional to the contour length. We use the scaling concepts of polymer physics to assess that α1-antitrypsin polymers are random linear chains with a low persistence length.
Collapse
Affiliation(s)
- Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, via Ugo La Malfa 153, 90146 Palermo, Italy; (S.R.); (F.L.); (R.N.); (V.M.)
| | - Fabio Librizzi
- Institute of Biophysics, National Research Council of Italy, via Ugo La Malfa 153, 90146 Palermo, Italy; (S.R.); (F.L.); (R.N.); (V.M.)
| | - Alistair M. Jagger
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK; (A.M.J.); (D.A.L.); (J.A.I.)
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BN, UK
| | - Rosina Noto
- Institute of Biophysics, National Research Council of Italy, via Ugo La Malfa 153, 90146 Palermo, Italy; (S.R.); (F.L.); (R.N.); (V.M.)
| | - Vincenzo Martorana
- Institute of Biophysics, National Research Council of Italy, via Ugo La Malfa 153, 90146 Palermo, Italy; (S.R.); (F.L.); (R.N.); (V.M.)
| | - David A. Lomas
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK; (A.M.J.); (D.A.L.); (J.A.I.)
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BN, UK
| | - James A. Irving
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK; (A.M.J.); (D.A.L.); (J.A.I.)
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BN, UK
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, via Ugo La Malfa 153, 90146 Palermo, Italy; (S.R.); (F.L.); (R.N.); (V.M.)
- Correspondence:
| |
Collapse
|
3
|
Ronzoni R, Heyer‐Chauhan N, Fra A, Pearce AC, Rüdiger M, Miranda E, Irving JA, Lomas DA. The molecular species responsible for α 1 -antitrypsin deficiency are suppressed by a small molecule chaperone. FEBS J 2021; 288:2222-2237. [PMID: 33058391 PMCID: PMC8436759 DOI: 10.1111/febs.15597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/28/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
The formation of ordered Z (Glu342Lys) α1 -antitrypsin polymers in hepatocytes is central to liver disease in α1 -antitrypsin deficiency. In vitro experiments have identified an intermediate conformational state (M*) that precedes polymer formation, but this has yet to be identified in vivo. Moreover, the mechanism of polymer formation and their fate in cells have been incompletely characterised. We have used cell models of disease in conjunction with conformation-selective monoclonal antibodies and a small molecule inhibitor of polymerisation to define the dynamics of polymer formation, accumulation and secretion. Pulse-chase experiments demonstrate that Z α1 -antitrypsin accumulates as short-chain polymers that partition with soluble cellular components and are partially secreted by cells. These precede the formation of larger, insoluble polymers with a longer half-life (10.9 ± 1.7 h and 20.9 ± 7.4 h for soluble and insoluble polymers, respectively). The M* intermediate (or a by-product thereof) was identified in the cells by a conformation-specific monoclonal antibody. This was completely abrogated by treatment with the small molecule, which also blocked the formation of intracellular polymers. These data allow us to conclude that the M* conformation is central to polymerisation of Z α1 -antitrypsin in vivo; preventing its accumulation represents a tractable approach for pharmacological treatment of this condition; polymers are partially secreted; and polymers exist as two distinct populations in cells whose different dynamics have likely consequences for the aetiology of the disease.
Collapse
Affiliation(s)
| | | | - Annamaria Fra
- Department of Molecular and Translational MedicineUniversity of BresciaItaly
| | | | | | - Elena Miranda
- Department of Biology and Biotechnologies‘Charles Darwin’ and Pasteur Institute – Cenci‐Bolognetti FoundationSapienza University of RomeItaly
| | - James A. Irving
- UCL RespiratoryDivision of MedicineUniversity College LondonUK
| | - David A. Lomas
- UCL RespiratoryDivision of MedicineUniversity College LondonUK
| |
Collapse
|
4
|
Lomas DA, Irving JA, Arico‐Muendel C, Belyanskaya S, Brewster A, Brown M, Chung C, Dave H, Denis A, Dodic N, Dossang A, Eddershaw P, Klimaszewska D, Haq I, Holmes DS, Hutchinson JP, Jagger AM, Jakhria T, Jigorel E, Liddle J, Lind K, Marciniak SJ, Messer J, Neu M, Olszewski A, Ordonez A, Ronzoni R, Rowedder J, Rüdiger M, Skinner S, Smith KJ, Terry R, Trottet L, Uings I, Wilson S, Zhu Z, Pearce AC. Development of a small molecule that corrects misfolding and increases secretion of Z α 1 -antitrypsin. EMBO Mol Med 2021; 13:e13167. [PMID: 33512066 PMCID: PMC7933930 DOI: 10.15252/emmm.202013167] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/23/2023] Open
Abstract
Severe α1 -antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α1 -antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA-encoded chemical library to undertake a high-throughput screen to identify small molecules that bind to, and stabilise Z α1 -antitrypsin. The lead compound blocks Z α1 -antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α1 -antitrypsin threefold in an iPSC model of disease. Crystallographic and biophysical analyses demonstrate that GSK716 and related molecules bind to a cryptic binding pocket, negate the local effects of the Z mutation and stabilise the bound state against progression along the polymerisation pathway. Oral dosing of transgenic mice at 100 mg/kg three times a day for 20 days increased the secretion of Z α1 -antitrypsin into the plasma by sevenfold. There was no observable clearance of hepatic inclusions with respect to controls over the same time period. This study provides proof of principle that "mutation ameliorating" small molecules can block the aberrant polymerisation that underlies Z α1 -antitrypsin deficiency.
Collapse
Affiliation(s)
- David A Lomas
- UCL RespiratoryRayne InstituteUniversity College LondonLondonUK
| | - James A Irving
- UCL RespiratoryRayne InstituteUniversity College LondonLondonUK
| | | | | | | | | | | | | | | | | | | | | | | | - Imran Haq
- UCL RespiratoryRayne InstituteUniversity College LondonLondonUK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Malaei F, Rasaee MJ, Paknejad M, Latifi AM, Rahbarizadeh F. Production and Characterization of Monoclonal and Polyclonal Antibodies Against Truncated Recombinant Dickkopf-1 as a Candidate Biomarker. Monoclon Antib Immunodiagn Immunother 2018; 37:257-264. [PMID: 30592704 DOI: 10.1089/mab.2018.0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several studies have reported an increased serum level of Dickkopf (DKK-1) protein in a variety of cancers, including multiple myeloma, lung, colorectal, bone loss, and Alzheimer's disease. This protein has potential to be used as a biomarker for the diagnosis of some cancers, especially bone loss in multiple myeloma. In the present study, to measure the concentration level of DKK-1 protein, rabbit polyclonal antibody (pAb) and mouse monoclonal antibodies (mAbs) were produced against this protein. New Zealand white rabbits and BALB/c mice were immunized with the chimeric recombinant DKK-1 antigen. Immunized mouse spleen cells were fused with SP2/0 cells to generate anti-rDKK-1 antibody-producing hybridoma cells. Antibodies were purified by protein A affinity chromatography and assessed using sodium dodecyl sulfate polyacrylamide gel, western blotting and enzyme-linked immunosorbent assay. These results implied that the pAb and mAb were produced against the DKK-1 protein. The Kd value of 5 × 10-9 M was recorded for the mAb MR6F3 toward native DKK-1, and the Ig isotype was identified as IgG2b. No cross-reactivity was shown with DKK-2 by MR6F3. Collectively, our results revealed that the produced pAb and mAb could be used in the measurement of DKK-1 protein.
Collapse
Affiliation(s)
- Fatemeh Malaei
- 1 Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Mohammad Javad Rasaee
- 1 Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Maliheh Paknejad
- 2 Department of Medical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Ali Mohammad Latifi
- 3 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran, Iran
| | - Fatemeh Rahbarizadeh
- 1 Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| |
Collapse
|
6
|
In Vitro Approaches for the Assessment of Serpin Polymerization. Methods Mol Biol 2018. [PMID: 30194595 DOI: 10.1007/978-1-4939-8645-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Serpin polymerization is the result of end-to-end ordered aggregation of serpin monomers into linear unbranched chains. This change in molecular state represents the basis of several conformational diseases with pathological gain-of-function and loss-of-function phenotypes, termed serpinopathies. Tools that enable quantification and characterization of polymer formation are therefore important to the study of serpin behavior in this pathophysiological context. Such methods rely on different manifestations of molecular change: polymerization-the generation of molecules with increasing molecular weight-is accompanied by concomitant structural rearrangements in the constituent subunits. Different approaches may be appropriate dependent on whether measurements are made on static samples, such as tissue or cell culture extracts, or in time-resolved experiments, often undertaken using polymers artificially induced under in vitro destabilizing conditions. In the former category, we describe the application of polyacrylamide electrophoresis, Western blot, ELISA, and negative-stain electron microscopy and in the latter category, Förster resonance energy transfer and fluorescence spectroscopy using environment-sensitive probes.
Collapse
|
7
|
Lomas DA. New Therapeutic Targets for Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2018; 5:233-243. [PMID: 30723781 DOI: 10.15326/jcopdf.5.4.2017.0165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alpha-1antitrypsin deficiency (AATD) results from the intracellular polymerization and retention of mutant alpha-1antitrypsin (AAT) within the endoplasmic reticulum of hepatocytes. This causes cirrhosis whilst the deficiency of circulating AAT predisposes to early onset emphysema. This is an exciting time for researchers in the field with the development of novel therapies based on understanding the pathobiology of disease. I review here augmentation therapy to prevent the progression of lung disease and a range of approaches to treat the liver disease associated with the accumulation of mutant AAT: modifying proteostasis networks that are activated by Z AAT polymers, stimulating autophagy, small interfering RNA and small molecules to block intracellular polymerization, and stem cell technology to correct the genetic defect that underlies AATD.
Collapse
Affiliation(s)
- David A Lomas
- UCL Respiratory, Division of Medicine, University College London, United Kingdom
| |
Collapse
|
8
|
Faull SV, Brown AE, Haq I, Irving JA. Electrophoresis- and FRET-Based Measures of Serpin Polymerization. Methods Mol Biol 2017; 1639:235-248. [PMID: 28752464 DOI: 10.1007/978-1-4939-7163-3_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many serpinopathies, including alpha-1 antitrypsin (A1AT) deficiency, are associated with the formation of unbranched polymer chains of mutant serpins. In vivo, this deficiency is the result of mutations that cause kinetic or thermodynamic destabilization of the molecule. However, polymerization can also be induced in vitro from mutant or wild-type serpins under destabilizing conditions. The characteristics of the resulting polymers are dependent upon induction conditions. Due to their relationship to disease, serpin polymers, mainly those formed from A1AT, have been widely studied. Here, we describe Förster resonance energy transfer (FRET) and gel-based approaches for their characterization.
Collapse
Affiliation(s)
- Sarah V Faull
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Anwen E Brown
- UCL Respiratory, University College London, London, WC1E 6JF, UK
| | - Imran Haq
- UCL Respiratory, University College London, London, WC1E 6JF, UK
| | - James A Irving
- UCL Respiratory, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
9
|
Mysling S, Kristensen KK, Larsson M, Kovrov O, Bensadouen A, Jørgensen TJ, Olivecrona G, Young SG, Ploug M. The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding. eLife 2016; 5. [PMID: 27929370 PMCID: PMC5148603 DOI: 10.7554/elife.20958] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023] Open
Abstract
Lipoprotein lipase (LPL) undergoes spontaneous inactivation via global unfolding and this unfolding is prevented by GPIHBP1 (Mysling et al., 2016). We now show: (1) that ANGPTL4 inactivates LPL by catalyzing the unfolding of its hydrolase domain; (2) that binding to GPIHBP1 renders LPL largely refractory to this inhibition; and (3) that both the LU domain and the intrinsically disordered acidic domain of GPIHBP1 are required for this protective effect. Genetic studies have found that a common polymorphic variant in ANGPTL4 results in lower plasma triglyceride levels. We now report: (1) that this ANGPTL4 variant is less efficient in catalyzing the unfolding of LPL; and (2) that its Glu-to-Lys substitution destabilizes its N-terminal α-helix. Our work elucidates the molecular basis for regulation of LPL activity by ANGPTL4, highlights the physiological relevance of the inherent instability of LPL, and sheds light on the molecular defects in a clinically relevant variant of ANGPTL4. DOI:http://dx.doi.org/10.7554/eLife.20958.001
Collapse
Affiliation(s)
- Simon Mysling
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Larsson
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Oleg Kovrov
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - André Bensadouen
- Division of Nutritional Science, Cornell University, Ithaca, United States
| | - Thomas Jd Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Motamedi-Shad N, Jagger AM, Liedtke M, Faull SV, Nanda AS, Salvadori E, Wort JL, Kay CW, Heyer-Chauhan N, Miranda E, Perez J, Ordóñez A, Haq I, Irving JA, Lomas DA. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour. Biochem J 2016; 473:3269-90. [PMID: 27407165 PMCID: PMC5264506 DOI: 10.1042/bcj20160159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/30/2022]
Abstract
Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered β-sheet A - on the opposite face of the molecule - more liable to adopt an 'open' state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin-enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the β-sheet A equilibrium towards the 'open' state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation.
Collapse
Affiliation(s)
- Neda Motamedi-Shad
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Alistair M. Jagger
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Maximilian Liedtke
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
| | - Sarah V. Faull
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Arjun Scott Nanda
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Enrico Salvadori
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, U.K
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Joshua L. Wort
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Christopher W.M. Kay
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, U.K
| | - Narinder Heyer-Chauhan
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Elena Miranda
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, Rome 00185, Italy
| | - Juan Perez
- Departamento de Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Campus Teatinos, Universidad de Malaga, Malaga 29071, Spain
| | - Adriana Ordóñez
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Imran Haq
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - James A. Irving
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - David A. Lomas
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| |
Collapse
|
11
|
Lomas DA, Hurst JR, Gooptu B. Update on alpha-1 antitrypsin deficiency: New therapies. J Hepatol 2016; 65:413-24. [PMID: 27034252 DOI: 10.1016/j.jhep.2016.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 02/07/2023]
Abstract
α1-Antitrypsin deficiency is characterised by the misfolding and intracellular polymerisation of mutant α1-antitrypsin within the endoplasmic reticulum of hepatocytes. The retention of mutant protein causes hepatic damage and cirrhosis whilst the lack of an important circulating protease inhibitor predisposes the individuals with severe α1-antitrypsin deficiency to early onset emphysema. Our work over the past 25years has led to new paradigms for the liver and lung disease associated with α1-antitrypsin deficiency. We review here the molecular pathology of the cirrhosis and emphysema associated with α1-antitrypsin deficiency and show how an understanding of this condition provided the paradigm for a wider group of disorders that we have termed the serpinopathies. The detailed understanding of the pathobiology of α1-antitrypsin deficiency has identified important disease mechanisms to target. As a result, several novel parallel and complementary therapeutic approaches are in development with some now in clinical trials. We provide an overview of these new therapies for the liver and lung disease associated with α1-antitrypsin deficiency.
Collapse
Affiliation(s)
- David A Lomas
- UCL Respiratory, Division of Medicine, Rayne Building, University College London, UK; The London Alpha-1-Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK; Institute of Structural and Molecular Biology, UCL/Birkbeck College, University of London, London WC1E 7HX, UK.
| | - John R Hurst
- UCL Respiratory, Division of Medicine, Rayne Building, University College London, UK; The London Alpha-1-Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK
| | - Bibek Gooptu
- The London Alpha-1-Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK; Institute of Structural and Molecular Biology, UCL/Birkbeck College, University of London, London WC1E 7HX, UK; Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital, 5th Floor, Tower Wing, London, UK
| |
Collapse
|
12
|
Abstract
Although proteins generally fold to their thermodynamically most stable state, some metastable proteins populate higher free energy states. Conformational changes from metastable higher free energy states to lower free energy states with greater stability can then generate the work required to perform physiologically important functions. However, how metastable proteins fold to these higher free energy states in the cell and avoid more stable but inactive conformations is poorly understood. The serpin family of metastable protease inhibitors uses large conformational changes that are downhill in free energy to inhibit target proteases by pulling apart the protease active site. The serpin antithrombin III (ATIII) targets thrombin and other proteases involved in blood coagulation, and ATIII misfolding can thus lead to thrombosis and other diseases. ATIII has three disulfide bonds, two near the N terminus and one near the C terminus. Our studies of ATIII in-cell folding reveal a surprising, biased order of disulfide bond formation, with early formation of the C-terminal disulfide, before formation of the N-terminal disulfides, critical for folding to the active, metastable state. Early folding of the predominantly β-sheet ATIII domain in this two-domain protein constrains the reactive center loop (RCL), which contains the protease-binding site, ensuring that the RCL remains accessible. N-linked glycans and carbohydrate-binding molecular chaperones contribute to the efficient folding and secretion of functional ATIII. The inability of a number of disease-associated ATIII variants to navigate the folding reaction helps to explain their disease phenotypes.
Collapse
|
13
|
Haq I, Irving JA, Saleh AD, Dron L, Regan-Mochrie GL, Motamedi-Shad N, Hurst JR, Gooptu B, Lomas DA. Deficiency Mutations of Alpha-1 Antitrypsin. Effects on Folding, Function, and Polymerization. Am J Respir Cell Mol Biol 2016; 54:71-80. [PMID: 26091018 DOI: 10.1165/rcmb.2015-0154oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Misfolding, polymerization, and defective secretion of functional alpha-1 antitrypsin underlies the predisposition to severe liver and lung disease in alpha-1 antitrypsin deficiency. We have identified a novel (Ala336Pro, Baghdad) deficiency variant and characterized it relative to the wild-type (M) and Glu342Lys (Z) alleles. The index case is a homozygous individual of consanguineous parentage, with levels of circulating alpha-1 antitrypsin in the moderate deficiency range, but is a biochemical phenotype that could not be classified by standard methods. The majority of the protein was present as functionally inactive polymer, and the remaining monomer was 37% active relative to the wild-type protein. These factors combined indicate an 85 to 95% functional deficiency, similar to that seen with ZZ homozygotes. Biochemical, biophysical, and computational studies further defined the molecular basis of this deficiency. These studies demonstrated that native Ala336Pro alpha-1 antitrypsin could populate the polymerogenic intermediate-and therefore polymerize-more readily than either wild-type alpha-1 antitrypsin or the Z variant. In contrast, folding was far less impaired in Ala336Pro alpha-1 antitrypsin than in the Z variant. The data are consistent with a disparate contribution by the "breach" region and "shutter" region of strand 5A to folding and polymerization mechanisms. Moreover, the findings demonstrate that, in these variants, folding efficiency does not correlate directly with the tendency to polymerize in vitro or in vivo. They therefore differentiate generalized misfolding from polymerization tendencies in missense variants of alpha-1 antitrypsin. Clinically, they further support the need to quantify loss-of-function in alpha-1 antitrypsin deficiency to individualize patient care.
Collapse
Affiliation(s)
- Imran Haq
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.,2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom
| | - James A Irving
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.,2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom
| | - Aarash D Saleh
- 3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and
| | - Louis Dron
- 3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and
| | - Gemma L Regan-Mochrie
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Neda Motamedi-Shad
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.,2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom
| | - John R Hurst
- 3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and
| | - Bibek Gooptu
- 2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom.,3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and.,4 Division of Asthma, Allergy and Lung Biology, King's College London, London, United Kingdom
| | - David A Lomas
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.,2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom.,3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and
| |
Collapse
|
14
|
Zhang Y, Bao H, Miao F, Peng Y, Shen Y, Gu W, Meng Q, Wang W, Zhang J. Production and application of polyclonal and monoclonal antibodies against Spiroplasma eriocheiris. Sci Rep 2015; 5:17871. [PMID: 26639364 PMCID: PMC4671143 DOI: 10.1038/srep17871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/06/2015] [Indexed: 11/09/2022] Open
Abstract
A new species of spiroplasma, Spiroplasma eriocheiris (S. eriocheiris), was identified as a lethal pathogen of tremor disease (TD) in Chinese mitten crab recently. In order to acquire appropriate biological and diagnostic tools for characterizing this newly discovered pathogen, 5 monoclonal antibodies (mAbs) and a polyclonal antibody (pAb) against S. eriocheiris were produced. Among the mAbs, 6F5, 7C8 and 12H5 lead to the deformation of S. eriocheiris. A peptide sequence, YMRDMQSGLPRY was identified as a mimic motif of MreB that is the cell shape determining protein of S. eriocheiris interacting with 3 mAbs. Furthermore, a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for detection of S. eriocheiris was established using the mAb and pAb we prepared. It detected as low as 0.1 μg/mL of S. eriocheiris. No cross-reaction was observed with three other common bacteria (Pseudomonas aeruginosa, Escherichia coli, and Bacillus subtilis) and the hemolymph samples of healthy Eriocheir sinensis. Collectively, our results indicated that the mAbs and pAb we prepared could be used in the analysis of S. eriocheiris membrane proteins mimotope and development of a diagnostic kit for S. eriocheiris infections.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Haixun Bao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Fengqin Miao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yaqin Peng
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuqing Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| |
Collapse
|