1
|
Zheng H, Lin Z, Wang D, Zhang J, Zeng T, Shen J, Li JD, Yang M. BMAL1-depletion remodels ceramide metabolism to regulate ferroptosis and sorafenib chemosensitivity in acute myeloid leukemia. iScience 2025; 28:112054. [PMID: 40241743 PMCID: PMC12002609 DOI: 10.1016/j.isci.2025.112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/17/2024] [Accepted: 02/13/2025] [Indexed: 04/18/2025] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy with a poor prognosis. We discovered that BMAL1 is a ferroptosis suppressor. Furthermore, it was also found to be overexpressed in AML patients, affecting the cell cycle and promoting tumor cell growth and progression. In this study, we further validated the association of BMAL1 with the progression and survival outcomes of AML. Lipidomic revealed that the levels of ceramide increased in AML cells following the depletion of BMAL1. Ceramide facilitated ferroptosis in AML cells. ASAH2 played a key role in this process. BMAL1 could not directly regulate ASAH2 but instead through IKZF2. Elevated levels of ceramide promoted the degradation of the ferroptosis protection molecule GPX4, ultimately promoting ferroptosis. Furthermore, ceramide treatment has been demonstrated to enhance the responsiveness of AML cells to sorafenib. In summary, this study elucidates that BMAL1 depletion remodels ceramide metabolism to regulate the sensitivity of AML cells to ferroptosis and targeted drug sorafenib.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Department of Pediatrics, The Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Dan Wang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jing Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Ting Zeng
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Department of Pediatrics, The Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jie Shen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
2
|
Yan K, Zhang W, Song H, Xu X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis 2024; 29:1860-1878. [PMID: 39068623 DOI: 10.1007/s10495-024-02002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases. SPs regulate various forms of programmed cell death in tumors, including apoptosis, necroptosis, ferroptosis, and more. This review will delve into the mechanisms by which different types of SPs modulate various forms of programmed cell death in MM, such as their regulation of cell membrane permeability and signaling pathways, and how they influence the survival and death fate of MM cells. An in-depth exploration of the role of SPs in programmed cell death in MM aids in unraveling the molecular mechanisms of melanoma development and holds significant importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Yan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Hao Song
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| | - Xiulian Xu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
3
|
Zou W, Li M, Wan S, Ma J, Lian L, Luo G, Zhou Y, Li J, Zhou B. Discovery of PRMT3 Degrader for the Treatment of Acute Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405963. [PMID: 39120042 PMCID: PMC11481256 DOI: 10.1002/advs.202405963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Protein arginine methyltransferase 3 (PRMT3) plays an important role in gene regulation and a variety of cellular functions, thus, being a long sought-after therapeutic target for human cancers. Although a few PRMT3 inhibitors are developed to prevent the catalytic activity of PRMT3, there is little success in removing the cellular levels of PRMT3-deposited ω-NG,NG-asymmetric dimethylarginine (ADMA) with small molecules. Moreover, the non-enzymatic functions of PRMT3 remain required to be clarified. Here, the development of a first-in-class MDM2-based PRMT3-targeted Proteolysis Targeting Chimeras (PROTACs) 11 that selectively reduced both PRMT3 protein and ADMA is reported. Importantly, 11 inhibited acute leukemia cell growth and is more effective than PRMT3 inhibitor SGC707. Mechanism study shows that 11 induced global gene expression changes, including the activation of intrinsic apoptosis and endoplasmic reticulum stress signaling pathways, and the downregulation of E2F, MYC, oxidative phosphorylation pathways. Significantly, the combination of 11 and glycolysis inhibitor 2-DG has a notable synergistic antiproliferative effect by further reducing ATP production and inducing intrinsic apoptosis, thus further highlighting the potential therapeutic value of targeted PRMT3 degradation. These data clearly demonstrated that degrader 11 is a powerful chemical tool for investigating PRMT3 protein functions.
Collapse
Affiliation(s)
- Wanyi Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Mengna Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shili Wan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Jingkun Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Linan Lian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanghao Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
4
|
Chen Q, Kovilakath A, Allegood J, Thompson J, Hu Y, Cowart LA, Lesnefsky EJ. Endoplasmic reticulum stress and mitochondrial dysfunction during aging: Role of sphingolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159366. [PMID: 37473835 PMCID: PMC11154090 DOI: 10.1016/j.bbalip.2023.159366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
The endoplasmic reticulum (ER) plays a key role in the regulation of protein folding, lipid synthesis, calcium homeostasis, and serves as a primary site of sphingolipid biosynthesis. ER stress (ER dysfunction) participates in the development of mitochondrial dysfunction during aging. Mitochondria are in close contact with the ER through shared mitochondria associated membranes (MAM). Alteration of sphingolipids contributes to mitochondria-driven cell injury. Cardiolipin is a phospholipid that is critical to maintain enzyme activity in the electron transport chain. The aim of the current study was to characterize the changes in sphingolipids and cardiolipin in ER, MAM, and mitochondria during the progression of aging in young (3 mo.), middle (18 mo.), and aged (24 mo.) C57Bl/6 mouse hearts. ER stress increased in hearts from 18 mo. mice and mice exhibited mitochondrial dysfunction by 24 mo. Hearts were pooled to isolate ER, MAM, and subsarcolemmal mitochondria (SSM). LC-MS/MS quantification of lipid content showed that aging increased ceramide content in ER and MAM. In addition, the contents of sphingomyelin and monohexosylceramides are also increased in the ER from aged mice. Aging increased the total cardiolipin content in the ER. Aging did not alter the total cardiolipin content in mitochondria or MAM yet altered the composition of cardiolipin with aging in line with increased oxidative stress compared to young mice. These results indicate that alteration of sphingolipids can contribute to the ER stress and mitochondrial dysfunction that occurs during aging.
Collapse
Affiliation(s)
- Qun Chen
- Department of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Anna Kovilakath
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Jeremy Thompson
- Department of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Ying Hu
- Department of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Richmond Department of Veterans Affairs Medical Center, Richmond, VA 23249, United States of America
| | - Edward J Lesnefsky
- Department of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, United States of America; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Richmond Department of Veterans Affairs Medical Center, Richmond, VA 23249, United States of America.
| |
Collapse
|
5
|
Issleny BM, Jamjoum R, Majumder S, Stiban J. Sphingolipids: From structural components to signaling hubs. Enzymes 2023; 54:171-201. [PMID: 37945171 DOI: 10.1016/bs.enz.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In late November 2019, Prof. Lina M. Obeid passed away from cancer, a disease she spent her life researching and studying its intricate molecular underpinnings. Along with her husband, Prof. Yusuf A. Hannun, Obeid laid down the foundations of sphingolipid biochemistry and oversaw its remarkable evolution over the years. Lipids are a class of macromolecules that are primarily associated with cellular architecture. In fact, lipids constitute the perimeter of the cell in such a way that without them, there cannot be cells. Hence, much of the early research on lipids identified the function of this class of biological molecules as merely structural. Nevertheless, unlike proteins, carbohydrates, and nucleic acids, lipids are elaborately diverse as they are not made up of monomers in polymeric forms. This diversity in structure is clearly mirrored by functional pleiotropy. In this chapter, we focus on a major subset of lipids, sphingolipids, and explore their historic rise from merely inert structural components of plasma membranes to lively and necessary signaling molecules that transmit various signals and control many cellular processes. We will emphasize the works of Lina Obeid since she was an integral pillar of the sphingolipid research world.
Collapse
Affiliation(s)
- Batoul M Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | | | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
6
|
Surendran S, Poothakulath Krishnan R, Ramani P, Ramalingam K, Jayaraman S. Role of Ceramide Synthase 1 in Oral Leukoplakia and Oral Squamous Cell Carcinoma: A Potential Linchpin for Tumorigenesis. Cureus 2023; 15:e42308. [PMID: 37614280 PMCID: PMC10442516 DOI: 10.7759/cureus.42308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023] Open
Abstract
Background Ceramide (CER), known as a "tumor suppressor lipid," plays a crucial role in promoting apoptosis in cancer cells. Ceramide synthase 1 (CERS1), an enzyme responsible for CER synthesis, holds immense importance. Notably, studies have highlighted that reduced levels of CERS1 confer protection to oral squamous cell carcinoma (OSCC) cells against chemotherapeutic agents like cisplatin. However, there is a scarcity of literature exploring the precise role of CERS1 in OSCC. Further investigation is warranted to unravel the intricate relationship of CERS1 in malignant transformation. Aim To compare the salivary CERS1 levels in OSCC, oral leukoplakia (OLK), and healthy individuals. Materials and methods Salivary samples from 15 healthy individuals, OLK patients, and OSCC patients each were obtained and an enzyme-linked immunosorbent assay (ELISA) (MyBioSource, Inc., San Diego, CA) was performed to evaluate salivary CERS1 enzyme levels. Descriptive statistics and Kruskal-Wallis analysis were done using SPSS v23.0 software (IBM Corp., Armonk, NY). Results There was a significant decrease in salivary CERS1 enzyme levels in OSCC (2.08 +/- 0.36 ng/dl) compared to healthy individuals (6.42 +/- 0.42 ng/dl) and OLK patients (4.73 +/- 0.93 ng/dl) (p = 0.05). Conclusion In this study, it was found that CERS1 shows a steady decrease in OLK and OSCC. Further cohort studies with larger sample sizes are needed to provide a basis for the role of CERS1 in OLK and its malignant transformation to OSCC.
Collapse
Affiliation(s)
- Sangamithra Surendran
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Reshma Poothakulath Krishnan
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pratibha Ramani
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
7
|
Wöhner M, Pinter T, Bönelt P, Hagelkruys A, Kostanova-Poliakova D, Stadlmann J, Konieczny SF, Fischer M, Jaritz M, Busslinger M. The Xbp1-regulated transcription factor Mist1 restricts antibody secretion by restraining Blimp1 expression in plasma cells. Front Immunol 2022; 13:859598. [PMID: 36618345 PMCID: PMC9811352 DOI: 10.3389/fimmu.2022.859598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Antibody secretion by plasma cells provides acute and long-term protection against pathogens. The high secretion potential of plasma cells depends on the unfolded protein response, which is controlled by the transcription factor Xbp1. Here, we analyzed the Xbp1-dependent gene expression program of plasma cells and identified Bhlha15 (Mist1) as the most strongly activated Xbp1 target gene. As Mist1 plays an important role in other secretory cell types, we analyzed in detail the phenotype of Mist1-deficient plasma cells in Cd23-Cre Bhlha15 fl/fl mice under steady-state condition or upon NP-KLH immunization. Under both conditions, Mist1-deficient plasma cells were 1.4-fold reduced in number and exhibited increased IgM production and antibody secretion compared to control plasma cells. At the molecular level, Mist1 regulated a largely different set of target genes compared with Xbp1. Notably, expression of the Blimp1 protein, which is known to activate immunoglobulin gene expression and to contribute to antibody secretion, was 1.3-fold upregulated in Mist1-deficient plasma cells, which led to a moderate downregulation of most Blimp1-repressed target genes in the absence of Mist1. Importantly, a 2-fold reduction of Blimp1 (Prdm1) expression was sufficient to restore the cell number and antibody expression of plasma cells in Prdm1 Gfp/+ Cd23-Cre Bhlha15 fl/fl mice to the same level seen in control mice. Together, these data indicate that Mist1 restricts antibody secretion by restraining Blimp1 expression, which likely contributes to the viability of plasma cells.
Collapse
Affiliation(s)
- Miriam Wöhner
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Theresa Pinter
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Peter Bönelt
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | | | - Johannes Stadlmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Stephen F. Konieczny
- Department of Biological Science, Purdue University, West Lafayette, IN, United States
| | - Maria Fischer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria,*Correspondence: Meinrad Busslinger,
| |
Collapse
|
8
|
Linzer RW, Guida DL, Aminov J, Snider JM, Khalife G, Buyukbayraktar AB, Alhaddad C, Resnick AE, Wang P, Pan CH, Allopenna JJ, Clarke CJ. Dihydroceramide desaturase 1 (DES1) promotes anchorage-independent survival downstream of HER2-driven glucose uptake and metabolism. FASEB J 2022; 36:e22558. [PMID: 36165222 PMCID: PMC9597949 DOI: 10.1096/fj.202200748r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/11/2022]
Abstract
Oncogenic reprogramming of cellular metabolism is a hallmark of many cancers, but our mechanistic understanding of how such dysregulation is linked to tumor behavior remains poor. In this study, we have identified dihydroceramide desaturase (DES1)-which catalyzes the last step in de novo sphingolipid synthesis-as necessary for the acquisition of anchorage-independent survival (AIS), a key cancer enabling biology, and establish DES1 as a downstream effector of HER2-driven glucose uptake and metabolism. We further show that DES1 is sufficient to drive AIS and in vitro tumorigenicity and that increased DES1 levels-found in a third of HER2+ breast cancers-are associated with worse survival outcomes. Taken together, our findings reveal a novel pro-tumor role for DES1 as a transducer of HER2-driven glucose metabolic signals and provide evidence that targeting DES1 is an effective approach for overcoming AIS. Results further suggest that DES1 may have utility as a biomarker of aggressive and metastasis-prone HER2+ breast cancer.
Collapse
Affiliation(s)
- Ryan W Linzer
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Danielle L Guida
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Jonathan Aminov
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Justin M Snider
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Gabrielle Khalife
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - A Burak Buyukbayraktar
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Charbel Alhaddad
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Andrew E Resnick
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Pule Wang
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chun-Hao Pan
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Janet J Allopenna
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
9
|
Simoes M, Saleh A, Choi YM, Airola MV, Haley JD, Coant N. Measurement of neutral ceramidase activity in vitro and in vivo. Anal Biochem 2022; 643:114577. [PMID: 35134389 PMCID: PMC11787886 DOI: 10.1016/j.ab.2022.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 11/01/2022]
Abstract
Neutral ceramidase is a hydrolase of ceramide that has been implicated in multiple biologic processes, including inflammation and oncogenesis. Ceramides and other sphingolipids, belong to a family of N-acyl linked lipids that are biologically active in signaling, despite their limited structural functions. Ceramides are generally pro-apoptotic, while sphingosine and sphingosine-1-phosphate (S1P) exert proliferative and pro-oncogenic effects. Ceramidases are important regulators of ceramide levels that hydrolyze ceramide to sphingosine. Thus, ceramidase inhibition significantly increases the quantities of ceramide and its associated signaling. To better understand the function of ceramide, biochemical and cellular assays for enzymatic activity were developed and validated to identify inhibitors of human neutral ceramidase (nCDase). Here we review the measurement of nCDase activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Michael Simoes
- Department of Pathology and Stony Brook Cancer Center, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794, USA
| | - Amalia Saleh
- Department of Pathology and Stony Brook Cancer Center, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794, USA
| | - Yong-Mi Choi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - John D Haley
- Department of Pathology and Stony Brook Cancer Center, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794, USA
| | - Nicolas Coant
- Department of Pathology and Stony Brook Cancer Center, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794, USA.
| |
Collapse
|
10
|
Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury. Int J Mol Sci 2022; 23:ijms23074010. [PMID: 35409370 PMCID: PMC9000186 DOI: 10.3390/ijms23074010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) modulate sphingolipid metabolism, including enzymes that generate ceramide and sphingosine-1-phosphate (S1P), and a ROS-antioxidant rheostat determines the metabolism of ceramide-S1P. ROS induce ceramide production by activating ceramide-producing enzymes, leading to apoptosis, while they inhibit S1P production, which promotes survival by suppressing sphingosine kinases (SphKs). A ceramide-S1P rheostat regulates ROS-induced mitochondrial dysfunction, apoptotic/anti-apoptotic Bcl-2 family proteins and signaling pathways, leading to apoptosis, survival, cell proliferation, inflammation and fibrosis in the kidney. Ceramide inhibits the mitochondrial respiration chain and induces ceramide channel formation and the closure of voltage-dependent anion channels, leading to mitochondrial dysfunction, altered Bcl-2 family protein expression, ROS generation and disturbed calcium homeostasis. This activates ceramide-induced signaling pathways, leading to apoptosis. These events are mitigated by S1P/S1P receptors (S1PRs) that restore mitochondrial function and activate signaling pathways. SphK1 promotes survival and cell proliferation and inhibits inflammation, while SphK2 has the opposite effect. However, both SphK1 and SphK2 promote fibrosis. Thus, a ceramide-SphKs/S1P rheostat modulates oxidant-induced kidney injury by affecting mitochondrial function, ROS production, Bcl-2 family proteins, calcium homeostasis and their downstream signaling pathways. This review will summarize the current evidence for a role of interaction between ROS-antioxidants and ceramide-SphKs/S1P and of a ceramide-SphKs/S1P rheostat in the regulation of oxidative stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan 924-8588, Japan
| |
Collapse
|
11
|
Sears SM, Dupre TV, Shah PP, Davis DL, Doll MA, Sharp CN, Vega AA, Megyesi J, Beverly LJ, Snider AJ, Obeid LM, Hannun YA, Siskind LJ. Neutral ceramidase deficiency protects against cisplatin-induced acute kidney injury. J Lipid Res 2022; 63:100179. [PMID: 35151662 PMCID: PMC8953688 DOI: 10.1016/j.jlr.2022.100179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is a commonly used chemotherapeutic for the treatment of many solid organ cancers; however, its effectiveness is limited by the development of acute kidney injury (AKI) in 30% of patients. AKI is driven by proximal tubule cell death, leading to rapid decline in renal function. It has previously been shown that sphingolipid metabolism plays a role in regulating many of the biological processes involved in cisplatin-induced AKI. For example, neutral ceramidase (nCDase) is an enzyme responsible for converting ceramide into sphingosine, which is then phosphorylated to become sphingosine-1-phosphate, and our lab previously demonstrated that nCDase knockout (nCDase-/-) in mouse embryonic fibroblasts led to resistance to nutrient and energy deprivation-induced cell death via upregulation of autophagic flux. In this study, we further characterized the role of nCDase in AKI by demonstrating that nCDase-/- mice are resistant to cisplatin-induced AKI. nCDase-/- mice display improved kidney function, reduced injury and structural damage, lower rates of apoptosis, and less ER stress compared to wild-type mice following cisplatin treatment. Although the mechanism of protection is still unknown, we propose that it could be mediated by increased autophagy, as chloroquine treatment resensitized nCDase-/- mice to AKI development. Taken together, we conclude that nCDase may represent a novel target to prevent cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Sophia M Sears
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Tess V Dupre
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Parag P Shah
- Department of Medicine, University of Louisville, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Deanna L Davis
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Mark A Doll
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Cierra N Sharp
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Alexis A Vega
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Judit Megyesi
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas, Veterans Healthcare System, Little Rock, AR, USA
| | - Levi J Beverly
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Northport Veteran Affairs Medical Center, Northport, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Northport Veteran Affairs Medical Center, Northport, NY, USA
| | - Leah J Siskind
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
12
|
The Role of Ceramide Metabolism and Signaling in the Regulation of Mitophagy and Cancer Therapy. Cancers (Basel) 2021; 13:cancers13102475. [PMID: 34069611 PMCID: PMC8161379 DOI: 10.3390/cancers13102475] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Sphingolipids are membrane-associated lipids that are involved in signal transduction pathways regulating cell death, growth, and migration. In cancer cells, sphingolipids regulate pathways relevant to cancer therapy, such as invasion, metastasis, apoptosis, and lethal mitophagy. Notable sphingolipids include ceramide, a sphingolipid that induces death and lethal mitophagy, and sphingosine-1 phosphate, a sphingolipid that induces survival and chemotherapeutic resistance. These sphingolipids participate in regulating the process of mitophagy, where cells encapsulate damaged mitochondria in double-membrane vesicles (called autophagosomes) for degradation. Lethal mitophagy is an anti-tumorigenic mechanism mediated by ceramide, where cells degrade many mitochondria until the cancer cell dies in an apoptosis-independent manner. Abstract Sphingolipids are bioactive lipids responsible for regulating diverse cellular functions such as proliferation, migration, senescence, and death. These lipids are characterized by a long-chain sphingosine backbone amide-linked to a fatty acyl chain with variable length. The length of the fatty acyl chain is determined by specific ceramide synthases, and this fatty acyl length also determines the sphingolipid’s specialized functions within the cell. One function in particular, the regulation of the selective autophagy of mitochondria, or mitophagy, is closely regulated by ceramide, a key regulatory sphingolipid. Mitophagy alterations have important implications for cancer cell proliferation, response to chemotherapeutics, and mitophagy-mediated cell death. This review will focus on the alterations of ceramide synthases in cancer and sphingolipid regulation of lethal mitophagy, concerning cancer therapy.
Collapse
|
13
|
Trotman-Lucas M, Gibson CL. A review of experimental models of focal cerebral ischemia focusing on the middle cerebral artery occlusion model. F1000Res 2021; 10:242. [PMID: 34046164 PMCID: PMC8127011 DOI: 10.12688/f1000research.51752.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebral ischemic stroke is a leading cause of death and disability, but current pharmacological therapies are limited in their utility and effectiveness.
In vitro and
in vivo models of ischemic stroke have been developed which allow us to further elucidate the pathophysiological mechanisms of injury and investigate potential drug targets.
In vitro models permit mechanistic investigation of the biochemical and molecular mechanisms of injury but are reductionist and do not mimic the complexity of clinical stroke.
In vivo models of ischemic stroke directly replicate the reduction in blood flow and the resulting impact on nervous tissue. The most frequently used
in vivo model of ischemic stroke is the intraluminal suture middle cerebral artery occlusion (iMCAO) model, which has been fundamental in revealing various aspects of stroke pathology. However, the iMCAO model produces lesion volumes with large standard deviations even though rigid surgical and data collection protocols are followed. There is a need to refine the MCAO model to reduce variability in the standard outcome measure of lesion volume. The typical approach to produce vessel occlusion is to induce an obstruction at the origin of the middle cerebral artery and reperfusion is reliant on the Circle of Willis (CoW). However, in rodents the CoW is anatomically highly variable which could account for variations in lesion volume. Thus, we developed a refined approach whereby reliance on the CoW for reperfusion was removed. This approach improved reperfusion to the ischemic hemisphere, reduced variability in lesion volume by 30%, and reduced group sizes required to determine an effective treatment response by almost 40%. This refinement involves a methodological adaptation of the original surgical approach which we have shared with the scientific community via publication of a visualised methods article and providing hands-on training to other experimental stroke researchers.
Collapse
Affiliation(s)
| | - Claire L Gibson
- School of Psychology, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
14
|
Bielsa N, Casasampere M, Aseeri M, Casas J, Delgado A, Abad JL, Fabriàs G. Discovery of deoxyceramide analogs as highly selective ACER3 inhibitors in live cells. Eur J Med Chem 2021; 216:113296. [PMID: 33677352 DOI: 10.1016/j.ejmech.2021.113296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Acid (AC), neutral (NC) and alkaline ceramidase 3 (ACER3) are the most ubiquitous ceramidases and their therapeutic interest as targets in cancer diseases has been well sustained. This supports the importance of discovering potent and specific inhibitors for further use in combination therapies. Although several ceramidase inhibitors have been reported, most of them target AC and a few focus on NC. In contrast, well characterized ACER3 inhibitors are lacking. Here we report on the synthesis and screening of two series of 1-deoxy(dihydro)ceramide analogs on the three enzymes. Activity was determined using fluorogenic substrates in recombinant human NC (rhNC) and both lysates and intact cells enriched in each enzyme. None of the molecules elicited a remarkable AC inhibitory activity in either experimental setup, while using rhNC, several compounds of both series were active as non-competitive inhibitors with Ki values between 1 and 5 μM. However, a dramatic loss of potency occurred in NC-enriched cell lysates and no activity was elicited in intact cells. Interestingly, several compounds of Series 2 inhibited ACER3 dose-dependently in both cell lysates and intact cells with IC50's around 20 μM. In agreement with their activity in live cells, they provoked a significant increase in the amounts of ceramides. Overall, this study identifies highly selective ACER3 activity blockers in intact cells, opening the door to further medicinal chemistry efforts aimed at developing more potent and specific compounds.
Collapse
Affiliation(s)
- Núria Bielsa
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Mireia Casasampere
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Mazen Aseeri
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), ISCIII, 28029, Madrid, Spain
| | - Antonio Delgado
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain; Department of Pharmacology, Toxicology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC). Faculty of Pharmacy. University of Barcelona (UB). Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - José Luis Abad
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| | - Gemma Fabriàs
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), ISCIII, 28029, Madrid, Spain.
| |
Collapse
|
15
|
Neutral ceramidase is a marker for cognitive performance in rats and monkeys. Pharmacol Rep 2020; 73:73-84. [PMID: 32936422 PMCID: PMC7862079 DOI: 10.1007/s43440-020-00159-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Background Ceramides are lipid molecules determining cell integrity and intercellular signaling, and thus, involved in the pathogenesis of several psychiatric and neurodegenerative disorders. However, little is known about the role of particular enzymes of the ceramide metabolism in the mechanisms of normal behavioral plasticity. Here, we studied the contribution of neutral ceramidase (NC), one of the main enzymes mediating ceramide degradation, in the mechanisms of learning and memory in rats and non-human primates. Methods Naïve Wistar rats and black tufted-ear marmosets (Callithrix penicillata) were tested in several tests for short- and long-term memory and then divided into groups with various memory performance. The activities of NC and acid ceramidase (AC) were measured in these animals. Additionally, anxiety and depression-like behavior and brain levels of monoamines were assessed in the rats. Results We observed a predictive role of NC activity in the blood serum for superior performance of long-term object memory tasks in both species. A brain area analysis suggested that high NC activity in the ventral mesencephalon (VM) predicts better short-term memory performance in rats. High NC activity in the VM was also associated with worse long-term object memory, which might be mediated by an enhanced depression-like state and a monoaminergic imbalance. Conclusions Altogether, these data suggest a role for NC in short- and long-term memory of various mammalian species. Serum activity of NC may possess a predictive role in the assessing the performance of certain types of memory. Electronic supplementary material The online version of this article (10.1007/s43440-020-00159-2) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Duarte C, Akkaoui J, Yamada C, Ho A, Mao C, Movila A. Elusive Roles of the Different Ceramidases in Human Health, Pathophysiology, and Tissue Regeneration. Cells 2020; 9:cells9061379. [PMID: 32498325 PMCID: PMC7349419 DOI: 10.3390/cells9061379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
Ceramide and sphingosine are important interconvertible sphingolipid metabolites which govern various signaling pathways related to different aspects of cell survival and senescence. The conversion of ceramide into sphingosine is mediated by ceramidases. Altogether, five human ceramidases—named acid ceramidase, neutral ceramidase, alkaline ceramidase 1, alkaline ceramidase 2, and alkaline ceramidase 3—have been identified as having maximal activities in acidic, neutral, and alkaline environments, respectively. All five ceramidases have received increased attention for their implications in various diseases, including cancer, Alzheimer’s disease, and Farber disease. Furthermore, the potential anti-inflammatory and anti-apoptotic effects of ceramidases in host cells exposed to pathogenic bacteria and viruses have also been demonstrated. While ceramidases have been a subject of study in recent decades, our knowledge of their pathophysiology remains limited. Thus, this review provides a critical evaluation and interpretive analysis of existing literature on the role of acid, neutral, and alkaline ceramidases in relation to human health and various diseases, including cancer, neurodegenerative diseases, and infectious diseases. In addition, the essential impact of ceramidases on tissue regeneration, as well as their usefulness in enzyme replacement therapy, is also discussed.
Collapse
Affiliation(s)
- Carolina Duarte
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
- Correspondence: (C.D.); (A.M.); Tel.: +1-954-262-7306 (A.M.)
| | - Juliet Akkaoui
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Chiaki Yamada
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Anny Ho
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Cungui Mao
- Department of Medicine, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA;
- Cancer Center, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Alexandru Movila
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA
- Correspondence: (C.D.); (A.M.); Tel.: +1-954-262-7306 (A.M.)
| |
Collapse
|
17
|
Zhang X, Matsuda M, Yaegashi N, Nabe T, Kitatani K. Regulation of Necroptosis by Phospholipids and Sphingolipids. Cells 2020; 9:cells9030627. [PMID: 32151027 PMCID: PMC7140401 DOI: 10.3390/cells9030627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
Several non-apoptotic regulated cell death pathways have been recently reported. Necroptosis, a form of necrotic-regulated cell death, is characterized by the involvement of receptor-interacting protein kinases and/or the pore-forming mixed lineage kinase domain-like protein. Recent evidence suggests a key role for lipidic molecules in the regulation of necroptosis. The purpose of this mini-review is to outline the regulation of necroptosis by sphingolipids and phospholipids.
Collapse
Affiliation(s)
- Xuewei Zhang
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan; (X.Z.); (N.Y.)
| | - Masaya Matsuda
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata 573-0101, Japan; (M.M.); (T.N.)
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan; (X.Z.); (N.Y.)
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata 573-0101, Japan; (M.M.); (T.N.)
| | - Kazuyuki Kitatani
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata 573-0101, Japan; (M.M.); (T.N.)
- Correspondence: ; Tel.: +81-072-800-1237
| |
Collapse
|
18
|
Sen NE, Arsovic A, Meierhofer D, Brodesser S, Oberschmidt C, Canet-Pons J, Kaya ZE, Halbach MV, Gispert S, Sandhoff K, Auburger G. In Human and Mouse Spino-Cerebellar Tissue, Ataxin-2 Expansion Affects Ceramide-Sphingomyelin Metabolism. Int J Mol Sci 2019; 20:E5854. [PMID: 31766565 PMCID: PMC6928749 DOI: 10.3390/ijms20235854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Ataxin-2 (human gene symbol ATXN2) acts during stress responses, modulating mRNA translation and nutrient metabolism. Ataxin-2 knockout mice exhibit progressive obesity, dyslipidemia, and insulin resistance. Conversely, the progressive ATXN2 gain of function due to the fact of polyglutamine (polyQ) expansions leads to a dominantly inherited neurodegenerative process named spinocerebellar ataxia type 2 (SCA2) with early adipose tissue loss and late muscle atrophy. We tried to understand lipid dysregulation in a SCA2 patient brain and in an authentic mouse model. Thin layer chromatography of a patient cerebellum was compared to the lipid metabolome of Atxn2-CAG100-Knockin (KIN) mouse spinocerebellar tissue. The human pathology caused deficits of sulfatide, galactosylceramide, cholesterol, C22/24-sphingomyelin, and gangliosides GM1a/GD1b despite quite normal levels of C18-sphingomyelin. Cerebellum and spinal cord from the KIN mouse showed a consistent decrease of various ceramides with a significant elevation of sphingosine in the more severely affected spinal cord. Deficiency of C24/26-sphingomyelins contrasted with excess C18/20-sphingomyelin. Spinocerebellar expression profiling revealed consistent reductions of CERS protein isoforms, Sptlc2 and Smpd3, but upregulation of Cers2 mRNA, as prominent anomalies in the ceramide-sphingosine metabolism. Reduction of Asah2 mRNA correlated to deficient S1P levels. In addition, downregulations for the elongase Elovl1, Elovl4, Elovl5 mRNAs and ELOVL4 protein explain the deficit of very long-chain sphingomyelin. Reduced ASMase protein levels correlated to the accumulation of long-chain sphingomyelin. Overall, a deficit of myelin lipids was prominent in SCA2 nervous tissue at prefinal stage and not compensated by transcriptional adaptation of several metabolic enzymes. Myelination is controlled by mTORC1 signals; thus, our human and murine observations are in agreement with the known role of ATXN2 yeast, nematode, and mouse orthologs as mTORC1 inhibitors and autophagy promoters.
Collapse
Affiliation(s)
- Nesli-Ece Sen
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsovic
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany;
| | - Susanne Brodesser
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Carola Oberschmidt
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Júlia Canet-Pons
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Zeynep-Ece Kaya
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Cerrahpasa School of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Melanie-Vanessa Halbach
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Suzana Gispert
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Konrad Sandhoff
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Georg Auburger
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| |
Collapse
|
19
|
Mishra SK, Stephenson DJ, Chalfant CE, Brown RE. Upregulation of human glycolipid transfer protein (GLTP) induces necroptosis in colon carcinoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158-167. [PMID: 30472325 PMCID: PMC6448591 DOI: 10.1016/j.bbalip.2018.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/03/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Human GLTP on chromosome 12 (locus 12q24.11) encodes a 24 kD amphitropic lipid transfer protein (GLTP) that mediates glycosphingolipid (GSL) intermembrane trafficking and regulates GSL homeostatic levels within cells. Herein, we provide evidence that GLTP overexpression inhibits the growth of human colon carcinoma cells (HT-29; HCT-116), but spares normal colonic cells (CCD-18Co). Mechanistic studies reveal that GLTP overexpression arrested the cell cycle at the G1/S checkpoint via upregulation of cyclin-dependent kinase inhibitor-1B (Kip1/p27) and cyclin-dependent kinase inhibitor 1A (Cip1/p21) at the protein and mRNA levels, and downregulation of cyclin-dependent kinase-2 (CDK2), cyclin-dependent kinase-4 (CDK4), cyclin E and cyclin D1 protein levels. Assessment of the biological fate of HCT-116 cells overexpressing GLTP indicated no increase in cell death suggesting induction of quiescence. However, HT-29 cells overexpressing GLTP underwent cell death by necroptosis as revealed by phosphorylation of human mixed lineage kinase domain-like protein (pMLKL) via receptor-interacting protein kinase-3 (RIPK-3), elevated cytosolic calcium, and plasma membrane permeabilization by pMLKL oligomerization. Overexpression of W96A-GLTP, an ablated GSL binding site mutant, failed to arrest the cell cycle or induce necroptosis. Sphingolipid assessment (ceramide, monohexosylceramide, sphingomyelin, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate) of HT-29 cells overexpressing GLTP revealed large decreases (>5-fold) in sphingosine-1-phosphate with minimal change in 16:0-ceramide, tipping the 'sphingolipid rheostat' (S1P/16:0-Cer ratio) towards cell death. Depletion of RIPK-3 or MLKL abrogated necroptosis induced by GLTP overexpression. Our findings establish GLTP upregulation as a previously unknown suppressor of human colon carcinoma HT-29 cells via interference with cell cycle progression and induction of necroptosis.
Collapse
Affiliation(s)
| | - Daniel J Stephenson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0614, USA; Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; The Moffitt Cancer Center, Tampa, FL 33620, USA
| | | |
Collapse
|
20
|
Sakamoto W, Coant N, Canals D, Obeid LM, Hannun YA. Functions of neutral ceramidase in the Golgi apparatus. J Lipid Res 2018; 59:2116-2125. [PMID: 30154232 DOI: 10.1194/jlr.m088187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
Ceramidases hydrolyze ceramides into sphingosine and fatty acids, with sphingosine being further metabolized into sphingosine-1-phosphate (S1P); thus, ceramidases control the levels of these bioactive sphingolipids in cells and tissues. Neutral ceramidase (nCDase) is highly expressed in colorectal tissues, and a recent report showed that nCDase activity is involved in Wnt/β-catenin signaling. In addition, the inhibition of nCDase decreases the development and progression of colorectal tumor growth. Here, to determine the action of nCDase in colorectal cancer cells, we focused on the subcellular localization and metabolic functions of this enzyme in HCT116 cells. nCDase was found to be located in both the plasma membrane and in the Golgi apparatus, but it had minimal effects on basal levels of ceramide, sphingosine, or S1P. Cells overexpressing nCDase were protected from the cell death and Golgi fragmentation induced by C6-ceramide, and they showed reduced levels of C6-ceramide and higher levels of S1P and sphingosine. Furthermore, compartment-specific metabolic functions of the enzyme were probed using C6-ceramide and Golgi-targeted bacterial SMase (bSMase) and bacterial ceramidase (bCDase). The results showed that Golgi-specific bCDase also demonstrated resistance against the cell death stimulated by C6-ceramide, and it catalyzed the metabolism of ceramides and produced sphingosine in the Golgi. Targeting bSMase to the Golgi resulted in increased levels of ceramide that were attenuated by the expression of nCDase, also supporting its ability to metabolize Golgi-generated ceramide. These results are critical in understanding the functions of nCDase actions in colorectal cancer cells as well as the compartmentalized pathways of sphingolipid metabolism.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Department of Medicine, Stony Brook University, Stony Brook, NY.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY.,Exploratory Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Nicolas Coant
- Department of Medicine, Stony Brook University, Stony Brook, NY.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY.,Northport Veterans Affairs Medical Center, Northport, NY
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY .,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY.,Department of Biochemistry, Stony Brook University, Stony Brook, NY.,Department of Pharmacology, Stony Brook University, Stony Brook, NY.,Department of Pathology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
21
|
Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. Prog Neurobiol 2018; 163-164:98-117. [DOI: 10.1016/j.pneurobio.2018.01.001] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/04/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
22
|
Parisi LR, Morrow LM, Visser MB, Atilla-Gokcumen GE. Turning the Spotlight on Lipids in Non-Apoptotic Cell Death. ACS Chem Biol 2018; 13:506-515. [PMID: 29376324 DOI: 10.1021/acschembio.7b01082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although apoptosis has long dominated the spotlight, studies in the past two decades have expanded the repertoire of programmed cell death (PCD). Several forms of non-apoptotic regulated cell death have been identified, with important links to organismal homeostasis and different disease pathologies. Necroptosis, ferroptosis, pyroptosis, and NETosis are the major forms of PCD that have attracted attention. Clear biochemical distinctions differentiate these forms of non-apoptotic PCD at the protein and membrane levels. For instance, pore formation at the plasma membrane is a hallmark of necroptosis and pyroptosis; however, different proteins facilitate pore formation in these processes. Here, we will highlight the role of lipids in different forms of non-apoptotic PCD. In particular, we discuss how lipids can trigger or facilitate the membrane-related changes that result in cell death. We also highlight the use of small molecules in elucidating the mechanisms of non-apoptotic PCD and the potential of lipid biosynthetic pathways to perturb these processes for therapeutic applications as a future avenue of research.
Collapse
Affiliation(s)
- Laura R. Parisi
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Lauren M. Morrow
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Michelle B. Visser
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
23
|
A neutral ceramidase, NlnCDase, is involved in the stress responses of brown planthopper, Nilaparvata lugens (Stål). Sci Rep 2018; 8:1130. [PMID: 29348442 PMCID: PMC5773612 DOI: 10.1038/s41598-018-19219-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Ceramidases (CDases) are vital enzymes involved in the biosynthesis of sphingolipids, which are essential components of eukaryotic membranes. The function of these enzymes in insects, however, is poorly understood. We identified a neutral ceramidase (NlnCDase) from the brown planthopper, Nilaparvata lugens, one of the most destructive hemipteran pests of rice. The C12-ceramide was the most preferred substrate for the NlnCDase enzyme. The activity of the NlnCDase enzyme was highest in the neutral-pH range (pH 6.0). It was inhibited by EGTA, Cs+ and Fe2+, while stimulated by EDTA and Ca2+. Moreover, the NlnCDase has higher transcript level and activity in adults than in eggs and nymphs, and in the reproductive organs (ovaries and spermaries) than in other tissues (i.e. heads, thorax, legs, midguts), which suggested that the NlnCDase might be elevated to mediate developmental process. In addition, transcripts and activity of the NlnCDase were up-regulated under abiotic stresses including starvation, abnormal temperature, and insecticides, and biotic stress of resistant rice varieties. Knocking down NlnCDase by RNA interference increased female survival under starvation and temperature stresses, suggesting that NlnCDase might be involved in the stress response in N. lugens.
Collapse
|
24
|
Schwartz NU, Linzer RW, Truman JP, Gurevich M, Hannun YA, Senkal CE, Obeid LM. Decreased ceramide underlies mitochondrial dysfunction in Charcot-Marie-Tooth 2F. FASEB J 2018; 32:1716-1728. [PMID: 29133339 DOI: 10.1096/fj.201701067r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most commonly inherited neurologic disorder, but its molecular mechanisms remain unclear. One variant of CMT, 2F, is characterized by mutations in heat shock protein 27 (Hsp27). As bioactive sphingolipids have been implicated in neurodegenerative diseases, we sought to determine if their dysregulation is involved in CMT. Here, we show that Hsp27 knockout mice demonstrated decreases in ceramide in peripheral nerve tissue and that the disease-associated Hsp27 S135F mutant demonstrated decreases in mitochondrial ceramide. Given that Hsp27 is a chaperone protein, we examined its role in regulating ceramide synthases (CerSs), an enzyme family responsible for catalyzing generation of the sphingolipid ceramide. We determined that CerSs colocalized with Hsp27, and upon the presence of S135F mutants, CerS1 lost its colocalization with mitochondria suggesting that decreased mitochondrial ceramides result from reduced mitochondrial CerS localization rather than decreased CerS activity. Mitochondria in mutant cells appeared larger with increased interconnectivity. Furthermore, mutant cell lines demonstrated decreased mitochondrial respiratory function and increased autophagic flux. Mitochondrial structural and functional changes were recapitulated by blocking ceramide generation pharmacologically. These results suggest that mutant Hsp27 decreases mitochondrial ceramide levels, producing structural and functional changes in mitochondria leading to neuronal degeneration.-Schwartz, N. U., Linzer, R. W., Truman, J.-P., Gurevich, M., Hannun, Y. A., Senkal, C. E., Obeid, L. M. Decreased ceramide underlies mitochondrial dysfunction in Charcot-Marie-Tooth 2F.
Collapse
Affiliation(s)
- Nicholas U Schwartz
- Department of Neurobiology and Behavior, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Ryan W Linzer
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Jean-Philip Truman
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Mikhail Gurevich
- Department of Pharmacology, Stony Brook University School of Medicine, Stony Brook, New York, USA.,Department of Orthopaedics, Stony Brook University School of Medicine, Stony Brook, New York, USA; and
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Can E Senkal
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA.,Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
25
|
Novgorodov SA, Voltin JR, Gooz MA, Li L, Lemasters JJ, Gudz TI. Acid sphingomyelinase promotes mitochondrial dysfunction due to glutamate-induced regulated necrosis. J Lipid Res 2017; 59:312-329. [PMID: 29282302 DOI: 10.1194/jlr.m080374] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Inhibiting the glutamate/cystine antiporter system xc-, a key antioxidant defense machinery in the CNS, could trigger a novel form of regulated necrotic cell death, ferroptosis. The underlying mechanisms of system xc--dependent cell demise were elucidated using primary oligodendrocytes (OLs) treated with glutamate to block system xc- function. Pharmacological analysis revealed ferroptosis as a major contributing factor to glutamate-initiated OL death. A sphingolipid profile showed elevations of ceramide species and sphingosine that were preventable by inhibiting of an acid sphingomyelinase (ASM) activity. OL survival was enhanced by both downregulating ASM expression and blocking ASM activity. Glutamate-induced ASM activation seems to involve posttranscriptional mechanisms and was associated with a decreased GSH level. Further investigation of the mechanisms of OL response to glutamate revealed enhanced reactive oxygen species production, augmented lipid peroxidation, and opening of the mitochondrial permeability transition pore that were attenuated by hindering ASM. Of note, knocking down sirtuin 3, a deacetylase governing the mitochondrial antioxidant system, reduced OL survival. The data highlight the importance of the mitochondrial compartment in regulated necrotic cell death and accentuate the novel role of ASM in disturbing mitochondrial functions during OL response to glutamate toxicity, which is essential for pathobiology in stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Sergei A Novgorodov
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
| | - Joshua R Voltin
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
| | - Monika A Gooz
- Departments of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425
| | - Li Li
- Departments of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425
| | - John J Lemasters
- Departments of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425
| | - Tatyana I Gudz
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425 .,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401
| |
Collapse
|
26
|
Jung WH, Liu CC, Yu YL, Chang YC, Lien WY, Chao HC, Huang SY, Kuo CH, Ho HC, Chan CC. Lipophagy prevents activity-dependent neurodegeneration due to dihydroceramide accumulation in vivo. EMBO Rep 2017; 18:1150-1165. [PMID: 28507162 DOI: 10.15252/embr.201643480] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022] Open
Abstract
Dihydroceramide desaturases are evolutionarily conserved enzymes that convert dihydroceramide (dhCer) to ceramide (Cer). While elevated Cer levels cause neurodegenerative diseases, the neuronal activity of its direct precursor, dhCer, remains unclear. We show that knockout of the fly dhCer desaturase gene, infertile crescent (ifc), results in larval lethality with increased dhCer and decreased Cer levels. Light stimulation leads to ROS increase and apoptotic cell death in ifc-KO photoreceptors, resulting in activity-dependent neurodegeneration. Lipid-containing Atg8/LC3-positive puncta accumulate in ifc-KO photoreceptors, suggesting lipophagy activation. Further enhancing lipophagy reduces lipid droplet accumulation and rescues ifc-KO defects, indicating that lipophagy plays a protective role. Reducing dhCer synthesis prevents photoreceptor degeneration and rescues ifc-KO lethality, while supplementing downstream sphingolipids does not. These results pinpoint that dhCer accumulation is responsible for ifc-KO defects. Human dhCer desaturase rescues ifc-KO larval lethality, and rapamycin reverses defects caused by dhCer accumulation in human neuroblastoma cells, suggesting evolutionarily conserved functions. This study demonstrates a novel requirement for dhCer desaturase in neuronal maintenance in vivo and shows that lipophagy activation prevents activity-dependent degeneration caused by dhCer accumulation.
Collapse
Affiliation(s)
- Wei-Hung Jung
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Chih Liu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Lian Yu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chin Chang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Yu Lien
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsi-Chun Chao
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu-Chi University, Hualien, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Ceramidases, roles in sphingolipid metabolism and in health and disease. Adv Biol Regul 2016; 63:122-131. [PMID: 27771292 DOI: 10.1016/j.jbior.2016.10.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 01/14/2023]
Abstract
Over the past three decades, extensive research has been able to determine the biologic functions for the main bioactive sphingolipids, namely ceramide, sphingosine, and sphingosine 1-phosphate (S1P) (Hannun, 1996; Hannun et al., 1986; Okazaki et al., 1989). These studies have managed to define the metabolism, regulation, and function of these bioactive sphingolipids. This emerging body of literature has also implicated bioactive sphingolipids, particularly S1P and ceramide, as key regulators of cellular homeostasis. Ceramidases have the important role of cleaving fatty acid from ceramide and producing sphingosine, thereby controlling the interconversion of these two lipids. Thus far, five human ceramidases encoded by five different genes have been identified: acid ceramidase (AC), neutral ceramidase (NC), alkaline ceramidase 1 (ACER1), alkaline ceramidase 2 (ACER2), and alkaline ceramidase 3 (ACER3). These ceramidases are classified according to their optimal pH for catalytic activity. AC, which is localized to the lysosomal compartment, has been associated with Farber's disease and is involved in the regulation of cell viability. Neutral ceramidase, which is localized to the plasma membrane and primarily expressed in the small intestine and colon, is involved in digestion, and has been implicated in colon carcinogenesis. ACER1 which can be found in the endoplasmic reticulum and is highly expressed in the skin, plays an important role in keratinocyte differentiation. ACER2, localized to the Golgi complex and highly expressed in the placenta, is involved in programed cell death in response to DNA damage. ACER3, also localized to the endoplasmic reticulum and the Golgi complex, is ubiquitously expressed, and is involved in motor coordination-associated Purkinje cell degeneration. This review seeks to consolidate the current knowledge regarding these key cellular players.
Collapse
|