1
|
Bréhat J, Panel M, Ghaleh B, Morin D. Opening of mitochondrial permeability transition pore in cardiomyocytes: Is ferutinin a suitable tool for its assessment? Fundam Clin Pharmacol 2023. [PMID: 36797226 DOI: 10.1111/fcp.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
Mitochondrial permeability transition pore (mPTP) opening is a critical event leading to cell injury during myocardial ischemia-reperfusion but having a reliable cellular model to study the effect of drugs targeting mPTP is an unmet need. This study evaluated whether the Ca2+ electrogenic ionophore ferutinin is a relevant tool to induce mPTP in cardiomyocytes. mPTP opening was monitored using the calcein/cobalt fluorescence technique in adult cardiomyocytes isolated from wild-type and cyclophylin D (CypD) knock-out mice. Concomitantly, the effect of ferutinin was assessed in isolated myocardial mitochondria. Our results confirmed the Ca2+ ionophoric effect of ferutinin in isolated mitochondria and cardiomyocytes. Ferutinin induced all the hallmarks of mPTP opening in cells (loss of calcein, of mitochondrial potential and cell death), but none of them could be inhibited by CypD deletion or cyclosporine A, indicating that mPTP opening was not the major contributor to the effect of ferutinin. This was confirmed in isolated mitochondria where ferutinin acts by different mechanisms dependent and independent of the mitochondrial membrane potential. At low ferutinin/mitochondria concentration ratio, ferutinin displays protonophoric-like properties, lowering the mitochondrial membrane potential and limiting oxidative phosphorylation without mitochondrial swelling. At high ferutinin/mitochondria ratio, ferutinin induced a sudden Ca2+ independent mitochondrial swelling, which is only partially inhibited by cyclosporine A. Together, these result show that ferutinin is not a suitable tool to investigate CypD-dependent mPTP opening in isolated cardiomyocytes because it possesses other mitochondrial properties such as swelling induction and mitochondrial uncoupling properties which impede its utilization.
Collapse
Affiliation(s)
- Juliette Bréhat
- INSERM U955-IMRB, team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Mathieu Panel
- INSERM U955-IMRB, team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Bijan Ghaleh
- INSERM U955-IMRB, team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Didier Morin
- INSERM U955-IMRB, team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| |
Collapse
|
2
|
Abstract
Mitochondria have been recognized as key organelles in cardiac physiology and are potential targets for clinical interventions to improve cardiac function. Mitochondrial dysfunction has been accepted as a major contributor to the development of heart failure. The main function of mitochondria is to meet the high energy demands of the heart by oxidative metabolism. Ionic homeostasis in mitochondria directly regulates oxidative metabolism, and any disruption in ionic homeostasis causes mitochondrial dysfunction and eventually contractile failure. The mitochondrial ionic homeostasis is closely coupled with inner mitochondrial membrane potential. To regulate and maintain ionic homeostasis, mitochondrial membranes are equipped with ion transporting proteins. Ion transport mechanisms involving several different ion channels and transporters are highly efficient and dynamic, thus helping to maintain the ionic homeostasis of ions as well as their salts present in the mitochondrial matrix. In recent years, several novel proteins have been identified on the mitochondrial membranes and these proteins are actively being pursued in research for roles in the organ as well as organelle physiology. In this article, the role of mitochondrial ion channels in cardiac function is reviewed. In recent times, the major focus of the mitochondrial ion channel field is to establish molecular identities as well as assigning specific functions to them. Given the diversity of mitochondrial ion channels and their unique roles in cardiac function, they present novel and viable therapeutic targets for cardiac diseases.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
3
|
Abstract
This work is aimed to give an electrochemical insight into the ionic transport phenomena in the cellular environment of organized brain tissue. The Nernst–Planck–Poisson (NPP) model is presented, and its applications in the description of electrodiffusion phenomena relevant in nanoscale neurophysiology are reviewed. These phenomena include: the signal propagation in neurons, the liquid junction potential in extracellular space, electrochemical transport in ion channels, the electrical potential distortions invisible to patch-clamp technique, and calcium transport through mitochondrial membrane. The limitations, as well as the extensions of the NPP model that allow us to overcome these limitations, are also discussed.
Collapse
|
4
|
Cheshchevik VT, Krylova NG, Сheshchevik NG, Lapshina EA, Semenkova GN, Zavodnik IB. Role of mitochondrial calcium in hypochlorite induced oxidative damage of cells. Biochimie 2021; 184:104-115. [PMID: 33607241 DOI: 10.1016/j.biochi.2021.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
Hypochlorite (HOCl) is one of the most important mediators of inflammatory processes. Recent evidence demonstrates that changes in intracellular calcium pool play a significant role in the damaging effects of hypochlorite and other oxidants. Mitochondria are shown to be one of the intracellular targets of hypochlorite. But little is known about the mitochondrial calcium pool changes in HOCl-induced mitochondrial dysfunction. Using isolated rat liver mitochondria, we showed the oxidative damage of mitochondria (GSH oxidation and mixed protein-glutathione formation without membrane lipid peroxidation) and alterations in the mitochondrial functional parameters (decrease of respiratory activity and efficiency of oxidative phosphorylation, NADH and FADH coenzyme levels, and membrane potential) under hypochlorite action (50-300 μM). Simultaneously, the mitochondrial calcium release and swelling were demonstrated. In the presence of EGTA, the damaging effects of HOCl were less pronounced, reflecting direct involvement of mitochondrial Ca2+ in mechanisms of oxidant-induced injury. Furthermore, exposure of HeLa cells to hypochlorite resulted in a considerable increase in cytoplasmic calcium concentrations and a decrease in mitochondrial ones. Applying specific inhibitors of calcium transfer systems, we demonstrated that mitochondria play a key role in the redistribution of cytoplasmic Ca2+ ions under hypochlorite action and act as mediators of calcium release from the endoplasmic reticulum into the cytoplasm.
Collapse
Affiliation(s)
- Vitali T Cheshchevik
- Department of Biotechnology, Polessky State University, ulitsa Dnieprovskoy Flotilii, 23, 225710, Pinsk, Belarus.
| | - Nina G Krylova
- Department of Biophysics, Belarusian State University, Prospekt Nezavisimosti 4, 220030, Minsk, Belarus
| | - Nina G Сheshchevik
- Department of Biotechnology, Polessky State University, ulitsa Dnieprovskoy Flotilii, 23, 225710, Pinsk, Belarus
| | - Elena A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola 50, 230030, Grodno, Belarus
| | - Galina N Semenkova
- Department of Biophysics, Belarusian State University, Prospekt Nezavisimosti 4, 220030, Minsk, Belarus
| | - Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola 50, 230030, Grodno, Belarus
| |
Collapse
|
5
|
Precipitation of Inorganic Salts in Mitochondrial Matrix. MEMBRANES 2020; 10:membranes10050081. [PMID: 32349446 PMCID: PMC7281443 DOI: 10.3390/membranes10050081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022]
Abstract
In the mitochondrial matrix, there are insoluble, osmotically inactive complexes that maintain a constant pH and calcium concentration. In the present paper, we examine the properties of insoluble calcium and magnesium salts, such as phosphates, carbonates and polyphosphates, which might play this role. We find that non-stoichiometric, magnesium-rich carbonated apatite, with very low crystallinity, precipitates in the matrix under physiological conditions. Precipitated salt acts as pH buffer, and, hence, can contribute in maintaining ATP production in ischemic conditions, which delays irreversible damage to heart and brain cells after stroke.
Collapse
|
6
|
Horning KJ, Joshi P, Nitin R, Balachandran RC, Yanko FM, Kim K, Christov P, Aschner M, Sulikowski GA, Weaver CD, Bowman AB. Identification of a selective manganese ionophore that enables nonlethal quantification of cellular manganese. J Biol Chem 2020; 295:3875-3890. [PMID: 32047113 PMCID: PMC7086026 DOI: 10.1074/jbc.ra119.009781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
Available assays for measuring cellular manganese (Mn) levels require cell lysis, restricting longitudinal experiments and multiplexed outcome measures. Conducting a screen of small molecules known to alter cellular Mn levels, we report here that one of these chemicals induces rapid Mn efflux. We describe this activity and the development and implementation of an assay centered on this small molecule, named manganese-extracting small molecule (MESM). Using inductively-coupled plasma-MS, we validated that this assay, termed here "manganese-extracting small molecule estimation route" (MESMER), can accurately assess Mn in mammalian cells. Furthermore, we found evidence that MESM acts as a Mn-selective ionophore, and we observed that it has increased rates of Mn membrane transport, reduced cytotoxicity, and increased selectivity for Mn over calcium compared with two established Mn ionophores, calcimycin (A23187) and ionomycin. Finally, we applied MESMER to test whether prior Mn exposures subsequently affect cellular Mn levels. We found that cells receiving continuous, elevated extracellular Mn accumulate less Mn than cells receiving equally-elevated Mn for the first time for 24 h, indicating a compensatory cellular homeostatic response. Use of the MESMER assay versus a comparable detergent lysis-based assay, cellular Fura-2 Mn extraction assay, reduced the number of cells and materials required for performing a similar but cell lethality-based experiment to 25% of the normally required sample size. We conclude that MESMER can accurately quantify cellular Mn levels in two independent cells lines through an ionophore-based mechanism, maintaining cell viability and enabling longitudinal assessment within the same cultures.
Collapse
Affiliation(s)
- Kyle J. Horning
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Piyush Joshi
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Rachana Nitin
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Frank M. Yanko
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235
| | - Plamen Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Gary A. Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212
| | - C. David Weaver
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212
| | - Aaron B. Bowman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232,School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, To whom correspondence should be addressed:
Purdue University, 550 Stadium Mall Dr., HAMP 1173A, West Lafayette, IN 47907-2051. E-mail:
| |
Collapse
|
7
|
Lai LN, Zhang XJ, Zhang XY, Song LH, Guo CH, Lei JW, Song XL. Lazaroid U83836E protects the heart against ischemia reperfusion injury via inhibition of oxidative stress and activation of PKC. Mol Med Rep 2016; 13:3993-4000. [PMID: 27035121 DOI: 10.3892/mmr.2016.5030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 03/07/2016] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress has been demonstrated to be important during myocardial ischemia/reperfusion injury (MIRI). The lazaroid U83836E, which combines the amino functionalities of the 21‑aminosteroids with the antioxidant ring portion of vitamin E, is a reactive oxygen species scavenger. The aim of the current study was to investigate the effect of U83836E on MIRI and its mechanisms of action. Rat hearts were subjected to 30 min ligation of the left anterior descending coronary artery, followed by 2 h reperfusion. The results demonstrated that at 5 mg/kg, U83836E markedly protected cardiac function in ischemia/reperfusion rat models, decreased the malondialdehyde content and creatinine kinase activity, while increasing superoxide dismutase and glutathione peroxidase activity. Additionally, U83836E significantly decreased the histological damage to the myocardium, reduced the area of myocardial infarction in the left ventricle and modified the mitochondrial dysfunction. Furthermore, U83836E enhanced the translocation of protein kinase Cε (PKCε) from the cytoplasm to the membrane. However, the cardioprotective effects of U83836E were reduced in the presence of the PKC inhibitor, chelerythrine (1 mg/kg). Therefore, the results of the present study suggest that U83836E has a potent protective effect against MIRI in rat models through the direct anti‑oxidative stress mechanisms and the activation of PKC signaling.
Collapse
Affiliation(s)
- Li-Na Lai
- Department of Pharmacology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Xiao-Jing Zhang
- Department of Pharmacology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Xiao-Yi Zhang
- Department of Pharmacology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Li-Hua Song
- Department of Pharmacology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Chun-Hua Guo
- Department of Pharmacology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Jing-Wen Lei
- Department of Pharmacology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Xiao-Liang Song
- Department of Pharmacology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
8
|
Vais H, Mallilankaraman K, Mak DOD, Hoff H, Payne R, Tanis JE, Foskett JK. EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. Cell Rep 2016; 14:403-410. [PMID: 26774479 DOI: 10.1016/j.celrep.2015.12.054] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/30/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022] Open
Abstract
The mitochondrial uniporter (MCU) is an ion channel that mediates Ca(2+) uptake into the matrix to regulate metabolism, cell death, and cytoplasmic Ca(2+) signaling. Matrix Ca(2+) concentration is similar to that in cytoplasm, despite an enormous driving force for entry, but the mechanisms that prevent mitochondrial Ca(2+) overload are unclear. Here, we show that MCU channel activity is governed by matrix Ca(2+) concentration through EMRE. Deletion or charge neutralization of its matrix-localized acidic C terminus abolishes matrix Ca(2+) inhibition of MCU Ca(2+) currents, resulting in MCU channel activation, enhanced mitochondrial Ca(2+) uptake, and constitutively elevated matrix Ca(2+) concentration. EMRE-dependent regulation of MCU channel activity requires intermembrane space-localized MICU1, MICU2, and cytoplasmic Ca(2+). Thus, mitochondria are protected from Ca(2+) depletion and Ca(2+) overload by a unique molecular complex that involves Ca(2+) sensors on both sides of the inner mitochondrial membrane, coupled through EMRE.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karthik Mallilankaraman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Don-On Daniel Mak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Hoff
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Riley Payne
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica E Tanis
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
MacDonald JK, Pyle WG, Reitz CJ, Howlett SE. Cardiac contraction, calcium transients, and myofilament calcium sensitivity fluctuate with the estrous cycle in young adult female mice. Am J Physiol Heart Circ Physiol 2014; 306:H938-53. [DOI: 10.1152/ajpheart.00730.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study established conditions to induce regular estrous cycles in female C57BL/6J mice and investigated the impact of the estrous cycle on contractions, Ca2+ transients, and underlying cardiac excitation-contraction (EC)-coupling mechanisms. Daily vaginal smears from group-housed virgin female mice were stained to distinguish estrous stage (proestrus, estrus, metestrus, diestrus). Ventricular myocytes were isolated from anesthetized mice. Contractions and Ca2+ transients were measured simultaneously (4 Hz, 37°C). Interestingly, mice did not exhibit regular cycles unless they were exposed to male pheromones in bedding added to their cages. Field-stimulated myocytes from mice in estrus had larger contractions (∼2-fold increase), larger Ca2+ transients (∼1.11-fold increase), and longer action potentials (>2-fold increase) compared with other stages. Larger contractions and Ca2+ transients were not observed in estrus myocytes voltage-clamped with shorter action potentials. Voltage-clamp experiments also demonstrated that estrous stage had no effect on Ca2+ current, EC-coupling gain, diastolic Ca2+, sarcoplasmic reticulum (SR) Ca2+ content, or fractional release. Although contractions were largest in estrus, myofilament Ca2+ sensitivity was lowest (EC50 values ∼1.15-fold higher) in conjunction with increased phosphorylation of myosin binding protein C in estrus. Contractions were enhanced in ventricular myocytes from mice in estrus because action potential prolongation increased SR Ca2+ release. These findings demonstrate that cyclical changes in reproductive hormones associated with the estrous cycle can influence myocardial electrical and contractile function and modify Ca2+ homeostasis. However, such changes are unlikely to occur in female mice housed in groups under conventional conditions, since these mice do not exhibit regular estrous cycles.
Collapse
Affiliation(s)
| | - W. Glen Pyle
- Cardiovascular Research Group, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Cristine J. Reitz
- Cardiovascular Research Group, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Susan E. Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Wei AC, Liu T, Winslow RL, O'Rourke B. Dynamics of matrix-free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering. ACTA ACUST UNITED AC 2013; 139:465-78. [PMID: 22641641 PMCID: PMC3362519 DOI: 10.1085/jgp.201210784] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mitochondrial Ca(2+) uptake is thought to provide an important signal to increase energy production to meet demand but, in excess, can also trigger cell death. The mechanisms defining the relationship between total Ca(2+) uptake, changes in mitochondrial matrix free Ca(2+), and the activation of the mitochondrial permeability transition pore (PTP) are not well understood. We quantitatively measure changes in [Ca(2+)](out) and [Ca(2+)](mito) during Ca(2+) uptake in isolated cardiac mitochondria and identify two components of Ca(2+) influx. [Ca(2+)](mito) recordings revealed that the first, MCU(mode1), required at least 1 µM Ru360 to be completely inhibited, and responded to small Ca(2+) additions in the range of 0.1 to 2 µM with rapid and large changes in [Ca(2+)](mito). The second component, MCU(mode2), was blocked by 100 nM Ru360 and was responsible for the bulk of total Ca(2+) uptake for large Ca(2+) additions in the range of 2 to 10 µM; however, it had little effect on steady-state [Ca(2+)](mito). MCU(mode1) mediates changes in [Ca(2+)](mito) of 10s of μM, even in the presence of 100 nM Ru360, indicating that there is a finite degree of Ca(2+) buffering in the matrix associated with this pathway. In contrast, the much higher Ca(2+) loads evoked by MCU(mode2) activate a secondary dynamic Ca(2+) buffering system consistent with calcium-phosphate complex formation. Increasing P(i) potentiated [Ca(2+)](mito) increases via MCU(mode1) but suppressed [Ca(2+)](mito) changes via MCU(mode2). The results suggest that the role of MCU(mode1) might be to modulate oxidative phosphorylation in response to intracellular Ca(2+) signaling, whereas MCU(mode2) and the dynamic high-capacity Ca(2+) buffering system constitute a Ca(2+) sink function. Interestingly, the trigger for PTP activation is unlikely to be [Ca(2+)](mito) itself but rather a downstream byproduct of total mitochondrial Ca(2+) loading.
Collapse
Affiliation(s)
- An-Chi Wei
- Division of Cardiology, Department of Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
11
|
Tang XH, Chen J, Yang XL, Yan LF, Gao J. Preservation on calcium homeostasis is involved in mitochondrial protection of Limonium sinense against liver damage in mice. Pharmacogn Mag 2011; 6:191-7. [PMID: 20931078 PMCID: PMC2950381 DOI: 10.4103/0973-1296.66935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 06/20/2010] [Accepted: 07/30/2010] [Indexed: 01/06/2023] Open
Abstract
Mechanisms underlying the mitochondrial protection of Limonium sinense extracts (LSE) was studied in lipopolysaccharide and D-galactosamine (LPS/D-GalN) intoxicated mice. It was found that increased activities of serum aspartate aminotransferase and alanine aminotransferase induced by LPS/D-GalN were significantly inhibited by pretreatment with LSE. The obvious disruption of membrane potential, intramitochondrial Ca 2+ overload and suppression in mitochondrial Ca 2+ -ATPase activity induced by LPS/D-GalN were significantly blocked by pretreatment with LSE. It was concluded that mechanisms underlying protection of LSE against liver mitochondria damage might be related to the preservation on mitochondrial Ca 2+ homeostasis through the preservation on mitochondrial Ca 2+ -ATPase activity.
Collapse
Affiliation(s)
- Xin-Hui Tang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, 50 Kaifang Road, Yancheng, 224002, China
| | | | | | | | | |
Collapse
|
12
|
Abstract
Diabetes mellitus increases the risk of developing cardiovascular diseases such as coronary artery disease and heart failure. Studies have shown that the heart failure risk is increased in diabetic patients even after adjusting for coronary artery disease and hypertension. Although the cause of this increased heart failure risk is multifactorial, increasing evidence suggests that derangements in cardiac energy metabolism play an important role. In particular, abnormalities in cardiomyocyte mitochondrial energetics appear to contribute substantially to the development of cardiac dysfunction in diabetes. This review will summarize these abnormalities in mitochondrial function and discuss potential underlying mechanisms.
Collapse
Affiliation(s)
- Heiko Bugger
- Department of Cardiology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
13
|
Abstract
This method enables scientists to easily convert biologically active carboxylic acids into their methyl esters ("pro-drugs" generally having improved ability to penetrate cell membranes) using only equipment commonly found in a biology laboratory. An ion-exchange resin is used to convert the acid into its salt, which is thereby sequestered on the resin. The addition of methyl iodide converts the salt to the ester, which has no affinity for the resin and is readily eluted. Evaporation of the liquid phase provides the pure methyl ester. The preparation in good chemical yields of methyl esters of bioactive agents in excellent purity and 10-20 mg quantities can be achieved using this method. The method can be completed in 1 day.
Collapse
|
14
|
Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin Sci (Lond) 2008; 114:195-210. [PMID: 18184113 DOI: 10.1042/cs20070166] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The metabolic syndrome represents a cluster of abnormalities, including obesity, insulin resistance, dyslipidaemia and Type 2 diabetes, that increases the risk of developing cardiovascular diseases, such as coronary artery disease and heart failure. The heart failure risk is increased even after adjusting for coronary artery disease and hypertension, and evidence is emerging that changes in cardiac energy metabolism might contribute to the development of contractile dysfunction. Recent findings suggest that myocardial mitochondrial dysfunction may play an important role in the pathogenesis of cardiac contractile dysfunction in obesity, insulin resistance and Type 2 diabetes. This review will discuss potential molecular mechanisms for these mitochondrial abnormalities.
Collapse
|
15
|
Tang X, Gao J, Wang Y, Fan YM, Xu LZ, Zhao XN, Xu Q, Qian ZM. Effective protection of Terminalia catappa L. leaves from damage induced by carbon tetrachloride in liver mitochondria. J Nutr Biochem 2006; 17:177-82. [PMID: 16169207 DOI: 10.1016/j.jnutbio.2005.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 06/21/2005] [Accepted: 06/21/2005] [Indexed: 01/06/2023]
Abstract
The protective effects of chloroform extracts of Terminalia catappa L. leaves (TCCE) on carbon tetrachloride (CCl4)-induced liver damage and the possible mechanisms involved in the protection were investigated in mice. We found that increases in the activity of serum aspartate aminotransferase and alanine aminotransferase and the level of liver lipid peroxidation (2.0-fold, 5.7-fold and 2.8-fold) induced by CCl4 were significantly inhibited by oral pretreatment with 20, 50 or 100 mg/kg of TCCE. Morphological observation further confirmed the hepatoprotective effects of TCCE. In addition, the disruption of mitochondrial membrane potential (14.8%), intramitochondrial Ca2+ overload (2.1-fold) and suppression of mitochondrial Ca2+-ATPase activity (42.0%) in the liver of CCl4-insulted mice were effectively prevented by pretreatment with TCCE. It can be concluded that TCCE have protective activities against liver mitochondrial damage induced by CCl4, which suggests a new mechanism of the hepatoprotective effects of TCCE.
Collapse
Affiliation(s)
- Xinhui Tang
- Institute of Materia Medica, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tang XH, Gao J, Fang F, Chen J, Xu LZ, Zhao XN, Xu Q. Hepatoprotection of oleanolic acid is related to its inhibition on mitochondrial permeability transition. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2005; 33:627-37. [PMID: 16173536 DOI: 10.1142/s0192415x05003223] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The protective effects of oleanolic acid (OA) on carbon tetrachloride (CCl4)-induced liver mitochondrial damage and the possible mechanisms were investigated. Pretreatment with OA prior to the administration of CCl4 significantly suppressed the increases of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (4.2- and 19.9-fold, respectively) in a dose-dependent manner in mice. The dissipation of mitochondrial membrane potential (14.8%) and intra-mitochondrial Ca2+ overload (2.1-fold) in livers of CCl4-insulted mice were also dose-dependently prevented by pretreatment with 20, 50 or 100 mg/kg OA. In addition, the effects of OA on liver mitochondria permeability transition (MPT) induced by Ca2+ were assessed by measuring the change in mitochondrial membrane potential, release of matrix Ca2+ and mitochondrial swelling in vitro. The results showed that preincubation with 50 or 100 microg/ml OA obviously inhibited the Ca2+-induced mitochondrial swelling, mitochondrial membrane depolarization and intra-mitochondrial Ca2+ release. It could be concluded that OA has protective effects on liver mitochondria and the mechanisms underlying its protection may be related to its inhibitory action on MPT.
Collapse
Affiliation(s)
- Xin-Hui Tang
- State Key Laboratory of Pharmaceutical Biotechnology and School of Medicine, Nanjing University, Nanjing, P. R. China
| | | | | | | | | | | | | |
Collapse
|
17
|
Solien J, Haynes V, Giulivi C. Differential requirements of calcium for oxoglutarate dehydrogenase and mitochondrial nitric-oxide synthase under hypoxia: Impact on the regulation of mitochondrial oxygen consumption. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:111-7. [PMID: 15972265 DOI: 10.1016/j.cbpb.2005.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/26/2005] [Accepted: 05/05/2005] [Indexed: 11/19/2022]
Abstract
Studies with isolated mitochondria are performed at artificially high pO(2) (220 to 250 microM oxygen), although this condition is hyperoxic for these organelles. It was the aim of this study to evaluate the effect of hypoxia (20-30 microM) on the calcium-dependent activation of 2-oxoglutarate dehydrogenase (or 2-ketoglutarate dehydrogenase; OGDH) and mitochondrial nitric-oxide synthase (mtNOS). Mitochondria had a P/O value 15% higher in hypoxia than that in normoxia, indicating that oxidative phosphorylation and electron transfer were more efficiently coupled, whereas the intramitochondrial free calcium concentrations were higher (2-3-fold) at lower pO(2). These increases were abrogated by ruthenium red indicating that the higher uptake via the calcium uniporter was involved in this process. Mitochondria at high calcium concentration microdomains may produce nitric oxide, given the K(0.5) of calcium for OGDH (0.16 microM) and mtNOS (approximately 1 microM). Nitric oxide, by binding to cytochrome oxidase in competition with oxygen, decreases the rate of oxygen consumption. This condition is highly beneficial for the following reasons: i, these mitochondria are still able to produce ATP and support calcium clearance; ii, it prevents the accumulation of ROS by slowing the rate of oxygen consumption (hence ROS production); iii, the onset of anoxia is delayed, allowing oxygen to diffuse back to these sites, thereby ameliorating the oxygen gradient between regions of high and low calcium concentration. In this way, oxygen depletion at the latter sites is prevented. This, in turn, assures continued aerobic metabolism which may involve the activated dehydrogenases.
Collapse
Affiliation(s)
- Joseph Solien
- Department of Chemistry, University of Minnesota, Duluth, MN 55812, USA
| | | | | |
Collapse
|
18
|
Jin JK, Kim NH, Min DS, Kim JI, Choi JK, Jeong BH, Choi SI, Choi EK, Carp RI, Kim YS. Increased expression of phospholipase D1 in the brains of scrapie-infected mice. J Neurochem 2005; 92:452-61. [PMID: 15659216 DOI: 10.1111/j.1471-4159.2004.02881.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitochondrial dysfunction and free radical-induced oxidative damage are critical factors in the pathogenesis of neurodegenerative diseases. Recently, phospholipid breakdown by phospholipase D (PLD) has been recognized as an important signalling pathway in the nervous system. Here, we examined the expression of PLD and alteration of membrane phospholipid in scrapie brain. We have found that protein expression and enzyme activity of PLD1 were increased in scrapie brains compared with controls; in particular, there was an increase in the mitochondrial fraction. PLD1 in mitochondrial membranes from scrapie brains, but not from control brains, was tyrosine phosphorylated. Furthermore, the concentration of mitochondrial phospholipids such as phosphatidylcholine and phosphatidylethanolamine was increased and the content of phosphatidic acid, a product of PLD activity, was up-regulated in the mitochondrial membrane fractions. Immunohistochemically, PLD1 immunoreactivity was significantly increased in activated astrocytes in both cerebral cortex and hippocampus of scrapie brains. Taken together, these results suggest that PLD activation might induce alterations in mitochondrial lipids and, in turn, mediate mitochondrial dysfunction in the brains of scrapie-infected mice.
Collapse
Affiliation(s)
- Jae-Kwang Jin
- Ilsong Institute of Life Science, Hallym University, Ilsong Building, Kwanyang-dong, 1605-4 Dongan-gu, Anyang, Kyonggi-do 431-060, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Traaseth N, Elfering S, Solien J, Haynes V, Giulivi C. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:64-71. [PMID: 15282176 DOI: 10.1016/j.bbabio.2004.04.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/21/2004] [Accepted: 04/26/2004] [Indexed: 11/30/2022]
Abstract
An apparent discrepancy arises about the role of calcium on the rates of oxygen consumption by mitochondria: mitochondrial calcium increases the rate of oxygen consumption because of the activation of calcium-activated dehydrogenases, and by activating mitochondrial nitric oxide synthase (mtNOS), decreases the rates of oxygen consumption because nitric oxide is a competitive inhibitor of cytochrome oxidase. To this end, the rates of oxygen consumption and nitric oxide production were followed in isolated rat liver mitochondria in the presence of either L-Arg (to sustain a mtNOS activity) or N(G)-monomethyl-L-Arg (NMMA, a competitive inhibitor of mtNOS) under State 3 conditions. In the presence of NMMA, the rates of State 3 oxygen consumption exhibited a K(0.5) of 0.16 microM intramitochondrial free calcium, agreeing with those required for the activation of the Krebs cycle. By plotting the difference between the rates of oxygen consumption in State 3 with L-Arg and with NMMA at various calcium concentrations, a K(0.5) of 1.2 microM intramitochondrial free calcium was obtained, similar to the K(0.5) (0.9 microM) of the dependence of the rate of nitric oxide production on calcium concentrations. The activation of dehydrogenases, followed by the activation of mtNOS, would lead to the modulation of the Krebs cycle activity by the modulation of nitric oxide on the respiratory rates. This would ensue in changes in the NADH/NAD and ATP/ADP ratios, which would influence the rate of the cycle and the oxygen diffusion.
Collapse
Affiliation(s)
- Nathaniel Traaseth
- Department of Chemistry, University of Minnesota, 10 University Drive, Duluth, MN 55812, USA
| | | | | | | | | |
Collapse
|
20
|
Spät A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 2004; 84:489-539. [PMID: 15044681 DOI: 10.1152/physrev.00030.2003] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aldosterone secretion by glomerulosa cells is stimulated by angiotensin II (ANG II), extracellular K(+), corticotrophin, and several paracrine factors. Electrophysiological, fluorimetric, and molecular biological techniques have significantly clarified the molecular action of these stimuli. The steroidogenic effect of corticotrophin is mediated by adenylyl cyclase, whereas potassium activates voltage-operated Ca(2+) channels. ANG II, bound to AT(1) receptors, acts through the inositol 1,4,5-trisphosphate (IP(3))-Ca(2+)/calmodulin system. All three types of IP(3) receptors are coexpressed, rendering a complex control of Ca(2+) release possible. Ca(2+) release is followed by both capacitative and voltage-activated Ca(2+) influx. ANG II inhibits the background K(+) channel TASK and Na(+)-K(+)-ATPase, and the ensuing depolarization activates T-type (Ca(v)3.2) Ca(2+) channels. Activation of protein kinase C by diacylglycerol (DAG) inhibits aldosterone production, whereas the arachidonate released from DAG in ANG II-stimulated cells is converted by lipoxygenase to 12-hydroxyeicosatetraenoic acid, which may also induce Ca(2+) signaling. Feedback effects and cross-talk of signal-transducing pathways sensitize glomerulosa cells to low-intensity stimuli, such as physiological elevations of [K(+)] (< or =1 mM), ANG II, and ACTH. Ca(2+) signaling is also modified by cell swelling, as well as receptor desensitization, resensitization, and downregulation. Long-term regulation of glomerulosa cells involves cell growth and proliferation and induction of steroidogenic enzymes. Ca(2+), receptor, and nonreceptor tyrosine kinases and mitogen-activated kinases participate in these processes. Ca(2+)- and cAMP-dependent phosphorylation induce the transfer of the steroid precursor cholesterol from the cytoplasm to the inner mitochondrial membrane. Ca(2+) signaling, transferred into the mitochondria, stimulates the reduction of pyridine nucleotides.
Collapse
Affiliation(s)
- András Spät
- Dept. of Physiology, Semmelweis University, Faculty of Medicine, PO Box 259, H-1444 Budapest, Hungary.
| | | |
Collapse
|
21
|
Chalmers S, Nicholls DG. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 2003; 278:19062-70. [PMID: 12660243 DOI: 10.1074/jbc.m212661200] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three sequential phases of mitochondrial calcium accumulation can be distinguished: matrix dehydrogenase regulation, buffering of extramitochondrial free calcium, and finally activation of the permeability transition. Relationships between these phases, free and total matrix calcium concentration, and phosphate concentration are investigated in rat liver and brain mitochondria. Slow, continuous calcium infusion is employed to avoid transient bioenergetic consequences of bolus additions. Liver and brain mitochondria undergo permeability transitions at precise matrix calcium loads that are independent of infusion rate. Cytochrome c release precedes the permeability transition. Cyclosporin A enhances the loading capacity in the presence or absence of acetoacetate. A remarkably constant free matrix calcium concentration, in the range 1-5 microM as monitored by matrix-loaded fura2-FF, was observed when total matrix calcium was increased from 10 to at least 500 nmol of calcium/mg of protein. Increasing phosphate decreased both the free matrix calcium and the matrix calcium-loading capacity. Thus the permeability transition is not triggered by a critical matrix free calcium concentration. The rate of hydrogen peroxide detection by Amplex Red decreased during calcium infusion arguing against a role for oxidative stress in permeability pore activation in this model. A transition between a variable and buffered matrix free calcium concentration occurred at 10 nmol of total matrix calcium/mg protein. The solubility product of amorphous Ca3(PO4)2 is consistent with the observed matrix free calcium concentration, and the matrix pH is proposed to play the major role in maintaining the low matrix free calcium concentration.
Collapse
Affiliation(s)
- Susan Chalmers
- Buck Institute for Age Research, Novato, California 94945, USA
| | | |
Collapse
|
22
|
Abstract
The heart is capable of dramatically altering its overall energy flux with minimal changes in the concentrations of metabolites that are associated with energy metabolism. This cardiac energy metabolism homeostasis is discussed with regard to the potential cytosolic control network responsible for controlling the major energy conversion pathway, oxidative phosphorylation in mitochondria. Several models for this cytosolic control network have been proposed, but a cytosolic Ca(2+) dependent parallel activation scheme for metabolism and work is consistent with most of the experimental results. That model proposes that cytosolic Ca(2+) regulates both the utilization of ATP by the work producing ATPases as well as the mitochondrial production of ATP. Recent studies have provided evidence supporting this role of cytosolic Ca(2+). These data include the demonstration that mitochondrial [Ca(2+)] can track cytosolic [Ca(2+)] and that the compartmentation of cytosolic [Ca(2+)] can facilitate this process. On the metabolic side, Ca(2+) has been shown to rapidly activate several steps in oxidative phosphorylation, including F(1)F(0)-ATPase ATP production as well as several dehydrogenases, which results in a homeostasis of mitochondrial metabolites similar to that observed in the cytosol. Numerous problems with the Ca(2+) parallel activation hypothesis remain including the lack of specific mechanisms of mitochondrial Ca(2+) transport and regulation of F(1)F(0)-ATPase, the time dependence of Ca(2+) activation of cytosolic ATPases as well as oxidative phosphorylation, and the role of cytosolic compartmentation. In addition, the lack of cytosolic or mitochondrial [Ca(2+)] measurements under in vivo conditions is problematic. Several lines of investigation to address these issues are suggested. A model of the cardiac energy metabolism control network is proposed that includes a Ca(2+) parallel activation component together with more classical elements including metabolite feedback and cytosolic compartmentation.
Collapse
Affiliation(s)
- Robert S Balaban
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute/NIH, Building 10, Room B1 D161, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Spät A, Pitter JG, Rohács T, Szabadkai G. Stimulus-secretion coupling and mitochondrial metabolism in steroid-secreting cells. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 2001; 16:197-200. [PMID: 11572920 DOI: 10.1152/physiologyonline.2001.16.5.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) signal in high-Ca(2+) perimitochondrial microdomains is amplified within the mitochondrial matrix and activates Ca(2+)-dependent dehydrogenases. In steroid-secreting cells, small cytoplasmic Ca(2+) signals may also augment mitochondrial Ca(2+) concentration. The ensuing formation of NADH and NADPH may have an essential role in supporting the increased steroid secretion.
Collapse
Affiliation(s)
- A Spät
- Department of Physiology, Faculty of Medicine, Semmelweis University, H-1444 Budapest, Hungary
| | | | | | | |
Collapse
|
24
|
Hajnóczky G, Csordás G, Krishnamurthy R, Szalai G. Mitochondrial calcium signaling driven by the IP3 receptor. J Bioenerg Biomembr 2000; 32:15-25. [PMID: 11768758 DOI: 10.1023/a:1005504210587] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many agonists bring about their effects on cellular functions through a rise in cytosolic [Ca2+] ([Ca2+]c) mediated by the second messenger inositol 1,4,5-trisphosphate (IP3). Imaging studies of single cells have demonstrated that [Ca2+]c signals display cell specific spatiotemporal organization that is established by coordinated activation of IP3 receptor Ca2+ channels. Evidence emerges that cytosolic calcium signals elicited by activation of the IP3 receptors are efficiently transmitted to the mitochondria. An important function of mitochondrial calcium signals is to activate the Ca2+-sensitive mitochondrial dehydrogenases, and thereby to meet demands for increased energy in stimulated cells. Activation of the permeability transition pore (PTP) by mitochondrial calcium signals may also be involved in the control of cell death. Furthermore, mitochondrial Ca2+ transport appears to modulate the spatiotemporal organization of [Ca2+]c responses evoked by IP3 and so mitochondria may be important in cytosolic calcium signaling as well. This paper summarizes recent research to elucidate the mechanisms and significance of IP3-dependent mitochondrial calcium signaling.
Collapse
Affiliation(s)
- G Hajnóczky
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
To a certain extent, all cellular, physiological, and pathological phenomena that occur in cells are accompanied by ionic changes. The development of techniques allowing the measurement of such ion activities has contributed substantially to our understanding of normal and abnormal cellular function. Digital video microscopy, confocal laser scanning microscopy, and more recently multiphoton microscopy have allowed the precise spatial analysis of intracellular ion activity at the subcellular level in addition to measurement of its concentration. It is well known that Ca2+ regulates numerous physiological cellular phenomena as a second messenger as well as triggering pathological events such as cell injury and death. A number of methods have been developed to measure intracellular Ca2+. In this review, we summarize the advantages and pitfalls of a variety of Ca2+ indicators used in both optical and nonoptical techniques employed for measuring intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- A Takahashi
- Department of Cellular and Structural Biology, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- G A Rutter
- Department of Biochemistry, School of Medical Sciences, University of Bristol, United Kingdom.
| | | | | |
Collapse
|
27
|
Ricken S, Leipziger J, Greger R, Nitschke R. Simultaneous measurements of cytosolic and mitochondrial Ca2+ transients in HT29 cells. J Biol Chem 1998; 273:34961-9. [PMID: 9857027 DOI: 10.1074/jbc.273.52.34961] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loading of HT29 cells with the Ca2+ dye fura-2/AM resulted in an nonhomogeneous intracellular distribution of the dye. Cellular compartments with high fura-2 concentrations were identified by correlation with mitochondrial markers, cellular autofluorescence induced by UV, and dynamic measurement of autofluorescence after inhibition of oxidative phosphorylation. Stimulation with carbachol (10(-4) mol/liter) increased cytosolic, nuclear, and mitochondrial Ca2+ activity ([Ca2+]c, [Ca2+]n, and [Ca2+]m, respectively) measured by UV confocal and conventional imaging. Similar results were obtained with a prototype two-photon microscope (Zeiss, Jena, Germany) allowing for fura-2 excitation. The increase of [Ca2+]m lagged behind that of [Ca2+]c and [Ca2+]n by 10-20 s, and after removing the agonist, [Ca2+]m also decreased with a delay. A strong increase of [Ca2+]m occurred only when a certain threshold of [Ca2+]c (around 1 micromol/liter) was exceeded. In a very similar way, ATP, neurotensin, and thapsigargin increased [Ca2+]c and [Ca2+]m. Carbonyl cyanide p-trifluoromethoxyphenylhyrdrazone reversibly reduced the increase of [Ca2+]m. The source of the mitochondrial Ca2+ increase had intra- and extracellular components, as revealed by experiments in low extracellular Ca2+. We conclude that agonist-induced Ca2+ signals are transduced into mitochondria. 1) Mitochondria could serve as a Ca2+ sink, 2) mitochondria could allow the modulation of [Ca2+]c and [Ca2+]n signals, and 3) [Ca2+]m may serve as a stimulatory metabolic signal when a cell is highly stimulated.
Collapse
Affiliation(s)
- S Ricken
- Physiologisches Institut der Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
28
|
Abstract
The elemental composition of rat cardiac muscle was determined with electron probe x-ray microanalysis (EPMA) of rapidly frozen papillary muscles and trabeculae incubated with ryanodine (1 microM) in either 1.2 or 10 mM [Ca2+]o-containing solutions, paced at 0.6 Hz or tetanized at 10 Hz. Total mitochondrial calcium increased significantly, by 4.2 mmol/kg dry weight during a 7 s tetanus, only in muscles tetanized in the presence of 10 mM [Ca2+]o when cytoplasmic Ca2+ is 1-4 microM (Backx, P. H., W.-D. Gao, M. D. Azan-Backx, and E. Marban. 1995. The relationship between contractile force and intracellular [Ca2+] in intact rat trabeculae. J. Gen. Physiol. 105:1-19). Comparison of total mitochondrial with free mitochondrial Ca2+ reported in the literature indicates that the total/free ratio is approximately 6000 at physiological or near-physiological levels of total mitochondrial calcium. Increases in free mitochondrial [Ca2+] consistent with regulation of mitochondrial enzymes should be associated with increases in total mitochondrial calcium detectable with EPMA. However, such increases in mitochondrial calcium occur only as the result of prolonged, unphysiological elevations of cytosolic [Ca2+].
Collapse
Affiliation(s)
- Y Horikawa
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville 22906-0011, USA
| | | | | | | |
Collapse
|
29
|
Rohács T, Tory K, Dobos A, Spät A. Intracellular calcium release is more efficient than calcium influx in stimulating mitochondrial NAD(P)H formation in adrenal glomerulosa cells. Biochem J 1997; 328 ( Pt 2):525-8. [PMID: 9371711 PMCID: PMC1218951 DOI: 10.1042/bj3280525] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We compared the effect on mitochondrial NAD(P)H formation of calcium release from intracellular stores with that of calcium influx from the extracellular space. Simultaneous measurements of cytoplasmic free calcium ion concentration and mitochondrial NAD(P)H were performed on fura-PE3-loaded single rat adrenal glomerulosa cells. The effects of equipotent stimuli in terms of the evoked Ca2+ response were compared. Angiotensin II (AII; 1 nM) induced a higher amplitude NAD(P)H response than K+ (5.6-7.6 mM). Vasopressin (1 microM) also induced a greater initial NAD(P)H formation than K+, although the Ca2+ signal evoked by the two agonists had similar amplitude. To examine the effect of Ca2+ release from internal stores we applied AII in Ca2+-free medium. We compared the effect on NAD(P)H formation of Ca2+ release with Ca2+ influx induced by K+, and with capacitative Ca2+ influx induced by AII. NAD(P)H formation in response to Ca2+ release was greater than that induced by Ca2+ influx, irrespective of whether induced by K+ or AII. Our results indicate that Ca2+, presumably released in the vicinity of mitochondria, activates mitochondrial dehydrogenases more efficiently than Ca2+ entering through the plasma membrane. These data confirm the biological significance of previous observations showing that Ca2+ released from inositol 1,4, 5-trisphosphate-sensitive internal stores increases mitochondrial matrix [Ca2+] to a greater extent than extracellular Ca2+.
Collapse
Affiliation(s)
- T Rohács
- Department of Physiology and Laboratory of Cellular and Molecular Physiology, Semmelweis University of Medicine, P.O. Box 259, H-1444, Budapest, Hungary
| | | | | | | |
Collapse
|
30
|
Guarnieri C, Finelli C, Zini M, Muscari C. Effects of trimetazidine on the calcium transport and oxidative phosphorylation of isolated rat heart mitochondria. Basic Res Cardiol 1997; 92:90-5. [PMID: 9166988 DOI: 10.1007/bf00805569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Trimetazidine (TMZ) added in vitro to isolated cardiac mitochondria at concentrations 10-100 microM in the presence of 25-100 nM extramitochondrial Ca2+ increased Ca2+ uptake and matrix Ca2+ concentration. This effect was less evident in the presence of physiologically Na+ and Mg2+ extramitochondrial concentrations since only 100 microM TMZ was able to increase mitochondrial Ca2+ entry in the presence of 100 nM Ca2+. The drug stimulated a Ca(2+)-cooperative effect on mitochondrial Ca2+ transport, but did not modify the rate of Ca2+ egress stimulated by 10 mM NaCl. An increase in mitochondrial Ca2+ level produced by TMZ enhanced oxoglutarate dehydrogenase activity and then ATP synthesis, particularly when 50 nM extramitochondrial Ca2+ was used. These data suggest that a possible cardiac mechanism of action of TMZ at mitochondrial level could support ATP synthesis by elevating the mitochondrial Ca2+ level.
Collapse
Affiliation(s)
- C Guarnieri
- Department of Biochemistry "G. Moruzzi" Bologna, Italy
| | | | | | | |
Collapse
|
31
|
Rohács T, Nagy G, Spät A. Cytoplasmic Ca2+ signalling and reduction of mitochondrial pyridine nucleotides in adrenal glomerulosa cells in response to K+, angiotensin II and vasopressin. Biochem J 1997; 322 ( Pt 3):785-92. [PMID: 9148750 PMCID: PMC1218256 DOI: 10.1042/bj3220785] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have examined the mitochondrial formation of NAD(P)H in rat adrenal glomerulosa cells. A short-term elevation of the K+ concentration from 3.6 to 8.4 mM induced a reversible increase in the formation of reduced pyridine nucleotides. Potassium applied after the addition of rotenone had no further effect, confirming that the redox signal was of mitochondrial origin. Inhibition of aldosterone synthesis by aminoglutethimide in K+-stimulated cells decreased the rate of decay of the NAD(P)H signal upon the termination of stimulation, indicating that the NADPH formed was consumed in aldosterone synthesis. When the NAD(P)H signal was measured simultaneously with the cytoplasmic free Ca2+ concentration ([Ca2+]i), elevation of the K+ concentration to 6.6 or 8.4 mM induced parallel increases in [Ca2+]i and NAD(P)H formation. The rates of increase and decrease of NAD(P)H were lower than for [Ca2+]i, confirming that the redox signal was secondary to the Ca2+ signal. Angiotensin II (100 pM-1 nM) induced an oscillatory NAD(P)H signal which usually returned to a lower baseline concentration, while a sustained signal with superimposed oscillations was observed at higher concentrations. Simultaneous measurements showed that NAD(P)H levels followed the [Ca2+]i pattern evoked by angiotensin II. Vasopressin (100 nM) also induced parallel oscillations of [Ca2+]i and NAD(P)H. A sustained rise in the extramitochondrial Ca2+ concentration to 1 microM induced a sustained elevation of the intramitochondrial Ca2+ concentration in permeabilized cells, as measured with rhod-2. A sustained rise in [Ca2+]i evoked by long-term stimulation with 8.4 mM K+ or 2.5 nM angiotensin II resulted in sustained NAD(P)H production. These Ca2+-dependent changes in the mitochondrial redox state support the biological response, i.e. aldosterone secretion by glomerulosa cells.
Collapse
Affiliation(s)
- T Rohács
- Department of Physiology and Laboratory of Cellular and Molecular Physiology, Semmelweis University of Medicine, P.O. Box 259, H-1444 Budapest, Hungary
| | | | | |
Collapse
|
32
|
Babcock DF, Herrington J, Goodwin PC, Park YB, Hille B. Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol 1997; 136:833-44. [PMID: 9049249 PMCID: PMC2132502 DOI: 10.1083/jcb.136.4.833] [Citation(s) in RCA: 444] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1996] [Revised: 12/02/1996] [Indexed: 02/03/2023] Open
Abstract
Calcium can activate mitochondrial metabolism, and the possibility that mitochondrial Ca2+ uptake and extrusion modulate free cytosolic [Ca2+] (Cac) now has renewed interest. We use whole-cell and perforated patch clamp methods together with rapid local perfusion to introduce probes and inhibitors to rat chromaffin cells, to evoke Ca2+ entry, and to monitor Ca2+-activated currents that report near-surface [Ca2+]. We show that rapid recovery from elevations of Cac requires both the mitochondrial Ca2+ uniporter and the mitochondrial energization that drives Ca2+ uptake through it. Applying imaging and single-cell photometric methods, we find that the probe rhod-2 selectively localizes to mitochondria and uses its responses to quantify mitochondrial free [Ca2+] (Cam). The indicated resting Cam of 100-200 nM is similar to the resting Cac reported by the probes indo-1 and Calcium Green, or its dextran conjugate in the cytoplasm. Simultaneous monitoring of Cam and Cac at high temporal resolution shows that, although Cam increases less than Cac, mitochondrial sequestration of Ca2+ is fast and has high capacity. We find that mitochondrial Ca2+ uptake limits the rise and underlies the rapid decay of Cac excursions produced by Ca2+ entry or by mobilization of reticular stores. We also find that subsequent export of Ca2+ from mitochondria, seen as declining Cam, prolongs complete Cac recovery and that suppressing export of Ca2+, by inhibition of the mitochondrial Na+/ Ca2+ exchanger, reversibly hastens final recovery of Cac. We conclude that mitochondria are active participants in cellular Ca2+ signaling, whose unique role is determined by their ability to rapidly accumulate and then release large quantities of Ca2+.
Collapse
Affiliation(s)
- D F Babcock
- Department of Physiology & Biophysics, University of Washington, Seattle 98195-7290, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
'Chemical hypoxia' was produced in isolated rat hepatocytes. The cells were immobilized in agarose gel threads and perfused with Krebs-Henseleit bicarbonate buffer equilibrated with 95% O2 + 5% CO2 or 95% air + 5% CO2. During 'chemical hypoxia', 2 mM KCN + 0.5 mM iodoacetate (CN-IAA) were added to the perfusate for 30 min. Cytosolic ionized Ca2+ (Cai2+) was measured with aequorin, the formation of oxygen free radicals by lucigenin-enhanced chemiluminescence and cell injury by the rate of LDH released by the cells in the effluent perfusate. As soon as the cells were exposed to CN-IAA in the presence of 95% O2 + 5% CO2, Cai2+ increased rapidly to reach 1.5 microM within 10 min, and oxygen free radical formation increased 5-fold. The increase in LDH release was temporally delayed and occurred only during the recovery phase. The results were not significantly different when the cells were perfused with KHB equilibrated with 95% air + 5% CO2, except that oxygen free radical formation increased 13-fold. These results suggest that both a rise in Cai2+ and a formation of reactive oxygen species could be responsible for the cell injury and the cell death induced by CN-IAA poisoning.
Collapse
Affiliation(s)
- A B Borle
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | |
Collapse
|
34
|
Abstract
Evidence has accrued during the past two decades that mitochondrial Ca2+ plays an important role in the regulation of numerous cell functions such as energy metabolism. This implies that mitochondrial Ca2+ transport systems might be able to relay the changes of cytosolic Ca2+ concentration ([Ca2+]c) into mitochondrial matrix for regulating biochemical activities. To substantiate this idea, measurements of intramitochondrial free Ca2+ concentration ([Ca2+]m) become essential. In this article, we review the results from recent studies attempting to measure [Ca2+]m in living cells. In addition, the significance of each study is discussed.
Collapse
Affiliation(s)
- S S Sheu
- Department of Pharmacology, University of Rochester, School of Medicine and Dentistry, New York 14642
| | | |
Collapse
|
35
|
Abstract
A model has been proposed in which mitochondrial Ca2+ ion transport serves to regulate mitochondrial matrix free Ca2+ ([Ca2+]m), with the advantage to the animal that this allows the regulation of pyruvate dehydrogenase and the tricarboxylate cycle in response to energy demand. This article examines recent evidence for dehydrogenase activation and for increases in [Ca2+]m in response to increased tissue energy demands, especially in cardiac myocytes and in heart. It critiques recent results on beat-to-beat variation in [Ca2+]m in cardiac muscle and also briefly surveys the impact of mitochondrial Ca2+ transport on transient changes in cytosolic free Ca2+ in excitable tissues. Finally, it proposes that a failure to elevate [Ca2+]m sufficiently in response to work load may underlie some cardiomyopathies of metabolic origin.
Collapse
Affiliation(s)
- R G Hansford
- Gerontology Research Center, National Institute on Aging, Baltimore, Maryland 21224
| |
Collapse
|
36
|
Zottini M, Zannoni D. The Use of Fura-2 Fluorescence to Monitor the Movement of Free Calcium Ions into the Matrix of Plant Mitochondria (Pisum sativum and Helianthus tuberosus). PLANT PHYSIOLOGY 1993; 102:573-578. [PMID: 12231846 PMCID: PMC158814 DOI: 10.1104/pp.102.2.573] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Purified mitochondria isolated from pea (Pisum sativum L. cv Alaska) stems and Jerusalem artichoke (Helianthus tuberosus L. cv OB1) tubers were loaded with the acetoxymethyl ester of the fluorescent Ca2+ indicator fura-2. This made possible the continuous monitoring of free [Ca2+] in the matrix ([Ca2+]m) without affecting the apparent viability of the mitochondria. Pea stem mitochondria contained an initial [Ca2+]m of approximately 60 to 100 nM, whereas [Ca2+]m was severalfold higher (400-600 nM) in mitochondria of Jerusalem artichoke tubers. At low extramitochondrial Ca2+ concentrations ([greater than or equal to]100 nM), there was an energy-dependent membrane potential increase in [Ca2+]m; the final [Ca2+]m was phosphate-dependent in Jerusalem artichoke but was phosphate-independent in pea stem mitochondria. The data presented indicate that (a) there is no absolute requirement for phosphate in Ca2+ uptake; (b) plant mitochondria can accumulate external free Ca2+ by means of an electrophoretic Ca2+ uniporter with an apparent affinity for Ca2+ (Km approximately 150 nM) that is severalfold lower than that measured by conventional methods (isotopes and Ca2+-sensitive electrodes); and (c) [Ca2+]m is within the regulatory range of mammalian intramitochondrial dehydrogenases.
Collapse
Affiliation(s)
- M. Zottini
- Department of Biology, Biochemistry Laboratory, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | |
Collapse
|
37
|
Dux L. Muscle relaxation and sarcoplasmic reticulum function in different muscle types. Rev Physiol Biochem Pharmacol 1993; 122:69-147. [PMID: 8265965 DOI: 10.1007/bfb0035274] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- L Dux
- Department of Biochemistry, Albert Szent-Györgyi, University Medical School, Szeged, Hungary
| |
Collapse
|
38
|
Rutter GA, Diggle TA, Denton RM. Regulation of pyruvate dehydrogenase by insulin and polyamines within electropermeabilized fat-cells and isolated mitochondria. Biochem J 1992; 285 ( Pt 2):435-9. [PMID: 1637336 PMCID: PMC1132807 DOI: 10.1042/bj2850435] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Regulation of the mammalian pyruvate dehydrogenase (PDH) complex by insulin and polyamines has been examined by using electropermeabilized rat epididymal fat-cells and isolated mitochondria. The complex could be regulated within the permeabilized cells not only by insulin, but also by certain low-M(r) species, including Ca2+ and the polyamine spermidine. 2. Both spermine and spermidine increased the level of active dephosphorylated PDH (PDHa) in isolated adipose-tissue mitochondria 2-3-fold, with half-maximal effects at 0.9 mM and 1.7 mM respectively. By contrast, PDH activity in rat heart mitochondria was essentially insensitive to the effects of these polyamines. 3. The effects on PDH activity of incubation of adipose-tissue mitochondria with spermine persisted through re-isolation and re-incubation of the mitochondria in the absence of the polyamine. 4. No evidence was found of any increase in the concentration of spermine associated with purified mitochondrial fractions prepared from insulin-treated tissue. 5. Overall, the data provide further evidence against a role for polyamines in the rapid stimulation of PDH by insulin, but suggest that polyamines may be important in mediating longer-term changes in the activity of the complex.
Collapse
Affiliation(s)
- G A Rutter
- Department of Biochemistry, School of Medical Sciences, University of Bristol, U.K
| | | | | |
Collapse
|
39
|
Loipführer AM, Reichlmayr-Lais AM, Kirchgessner M. Fluorescence Measurement of Free Calcium in Liver Mitochondria of Rats using the Ca2+Indicator Fura-2. J Anim Physiol Anim Nutr (Berl) 1992. [DOI: 10.1111/j.1439-0396.1992.tb00610.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Dubnova EB, Baykov AA. Catalytic properties of the inorganic pyrophosphatase in rat liver mitochondria. Arch Biochem Biophys 1992; 292:16-9. [PMID: 1309290 DOI: 10.1016/0003-9861(92)90044-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intact rat liver mitochondria have very low hydrolytic activity, if any, toward exogenous pyrophosphate. The activity can be unmasked by making mitochondria permeable to PPi by toluene treatment or disrupting them with detergents or ultrasound, indicating that the active site of pyrophosphatase is located in the matrix. Initial rates of PPi hydrolysis by toluene-permeabilized mitochondria and purified pyrophosphatase were found to depend in a similar manner on PPi and Mg2+ concentrations. The simplest model consistent with the data in both cases implies that the reaction proceeds through two pathways and requires MgPPi as the substrate and, at least, one Mg2+ ion as the activator. In the presence of 0.4 mM Mg2+ (physiological concentration), the inhibition constant for Ca2+ is 12 microM and the enzyme activity is, at least, 50% maximal. The results suggest that the activity of pyrophosphatase in mitochondria is high enough to keep free PPi concentration at a level close to that at equilibrium.
Collapse
Affiliation(s)
- E B Dubnova
- A.N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, USSR
| | | |
Collapse
|
41
|
Abstract
The activation of intramitochondrial dehydrogenases by Ca2+ provides a link between the intensity of work performance by a tissue and the activity of pyruvate dehydrogenase and the tricarboxylate cycle, and hence the rate of ATP production by the mitochondria. Several aspects of this model of the control of oxidative phosphorylation are examined in this article, with particular emphasis on mitochondrial functioning in situ in cardiac myocytes and in the intact heart. Recent use of the fluorescent Ca2+ chelating agents indo-1 and fura-2 has allowed a more quantitative description of the dependence of dehydrogenase activity upon concentration of free intramitochondrial Ca2+, in experiments with isolated mitochondria. Further, a novel technique developed by Miyata et al. has allowed description of free intramitochondrial Ca2+ within a single cardiac myocyte, and the conclusion that this parameter changes in response to electrical excitation of the cell over a range which would be expected to give substantial modulation of dehydrogenase activity.
Collapse
Affiliation(s)
- R G Hansford
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, Maryland 21224
| |
Collapse
|
42
|
Kapùs A, Szászi K, Káldi K, Ligeti E, Fonyó A. Is the mitochondrial Ca2+ uniporter a voltage-modulated transport pathway? FEBS Lett 1991; 282:61-4. [PMID: 2026267 DOI: 10.1016/0014-5793(91)80444-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The influence of membrane potential (delta psi) on Ca2+ transport through the Ca2+ uniporter (UP) was investigated in fura-2-loaded rat heart mitochondria at physiologically relevant-submicromolar-external [Ca2+]. In the absence of delta psi the UP could not mediate Ca2+ uptake even when an 8-fold external (approximately 500 nM) to internal (approximately 60 nM) [Ca2+] gradient was present and charge compensation was provided by acetate and the protonophore, CCCP. A small (approximately -120 mV) and transient delta psi (generated by valinomycin) resulted in a rise in matrix [Ca2+] only when external [Ca2+] exceeded 150 nM. At physiologically high (approximately -180 mV) and stable delta psi this threshold value for Ca2+ uptake dropped to 15 nM. The results indicate that (1) at physiological [Ca2+]o, delta psi in addition to being a component of delta mu Ca2+ seems to be necessary for providing a transport-competent conformation for the UP; and (2) below a threshold [Ca2+]o the UP cannot operate even in the presence of a high electric driving force.
Collapse
Affiliation(s)
- A Kapùs
- Department of Physiology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | | | |
Collapse
|
43
|
Pietrobon D, Di Virgilio F, Pozzan T. Structural and functional aspects of calcium homeostasis in eukaryotic cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:599-622. [PMID: 2249682 DOI: 10.1111/j.1432-1033.1990.tb19378.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The maintenance of a low cytosolic free-Ca2+ concentration, ([Ca2+]i) is a common feature of all eukaryotic cells. For this purpose a variety of mechanisms have developed during evolution to ensure the buffering of Ca2+ in the cytoplasm, its extrusion from the cell and/or its accumulation within organelles. Opening of plasma membrane channels or release of Ca2+ from intracellular pools leads to elevation of [Ca2+]i; as a result, Ca2+ binds to cytosolic proteins which translate the changes in [Ca2+]i into activation of a number of key cellular functions. The purpose of this review is to provide a comprehensive description of the structural and functional characteristics of the various components of [Ca2+]i homeostasis in eukaryotes.
Collapse
Affiliation(s)
- D Pietrobon
- Consiglio Nazionale delle Ricerche, Unit for the Study of the Physiology of Mitochondria, University of Padova, Italy
| | | | | |
Collapse
|
44
|
Rutter GA, Osbaldeston NJ, McCormack JG, Denton RM. Measurement of matrix free Mg2+ concentration in rat heart mitochondria by using entrapped fluorescent probes. Biochem J 1990; 271:627-34. [PMID: 2244870 PMCID: PMC1149608 DOI: 10.1042/bj2710627] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. The concentration of free Mg2+ ([Mg2+]m) within the matrix of isolated rat heart mitochondria was measured after loading of the mitochondria with the fluorescent Mg2+ indicators mag-indo-1 and mag-fura-2. No detectable change in total mitochondrial magnesium content occurred during loading with the indicators. Apparent Kd values for Mg2+ of 3.7 mM and 2.3 mM were obtained for mag-indo-1 and mag-fura-2 respectively within mitochondria permeabilized to bivalent cations with ionomycin and the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone. These values are 2.7- and 1.8-fold greater respectively than those obtained for the free acid forms of the dyes in incubation medium. 2. Based on the above Kd values, mitochondrial matrix Mg2+ concentrations were found to lie in the range 0.8-1.5 mM in the absence, or immediately after the addition, of a respiratory substrate. 3. Incubation of mitochondria in the presence of respiratory substrate, but in the absence of external Mg2+, led to a time-dependent decline in [Mg2+]m to about half the initial values after 5 min. This was accompanied by a fall in the total mitochondrial magnesium content from 12.7 to 7.0 nmol/mg of protein. 4. ADP (0.5 mM), ATP (0.5 mM) or 10 mM-NaCl had no significant effect on the fall in [Mg2+], whereas 1 microM-nigericin blocked, and 0.3 microM-valinomycin accelerated, the fall. 5. External Mg2+ concentrations above 1 mM progressively inhibited and reversed the decline in free and total mitochondrial Mg2+.
Collapse
Affiliation(s)
- G A Rutter
- Department of Biochemistry, School of Medical Sciences, University of Bristol, U.K
| | | | | | | |
Collapse
|
45
|
Kapus A, Szászi K, Káldi K, Ligeti E, Fonyó A. Ruthenium red inhibits mitochondrial Na+ and K+ uniports induced by magnesium removal. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44713-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
|
47
|
Saavedra-Molina A, Uribe S, Devlin TM. Control of mitochondrial matrix calcium: studies using fluo-3 as a fluorescent calcium indicator. Biochem Biophys Res Commun 1990; 167:148-53. [PMID: 2310386 DOI: 10.1016/0006-291x(90)91743-c] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluo-3, a fluorescent Ca2+ indicator, is sequestered by isolated rat liver mitochondria and is an effective probe for evaluating the concentration and kinetics of change of mitochondrial matrix ionized calcium ([Ca2+]m) under a variety of conditions. At the wavelengths employed, there is no significant interference by auto-fluorescence. There is an insignificant release of the indicator over four hours and the loading and presence of fluo-3 has no effect on respiratory rate or oxidative phosphorylation. The [Ca2+]m steady state can be altered by the assay conditions, i.e. the presence of extra-mitochondrial Ca2+, Mg2+ phosphate and respiratory inhibitors. The total matrix ionized calcium represents a small percent (less than 0.01%) of the total mitochondrial calcium.
Collapse
Affiliation(s)
- A Saavedra-Molina
- Department of Biological Chemistry, Hahnemann University School of Medicine, Philadelphia, PA 19102
| | | | | |
Collapse
|
48
|
McCormack JG, Denton RM. Intracellular calcium ions and intramitochondrial Ca2+ in the regulation of energy metabolism in mammalian tissues. Proc Nutr Soc 1990; 49:57-75. [PMID: 2190228 DOI: 10.1079/pns19900009] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Milani D, Malgaroli A, Guidolin D, Fasolato C, Skaper SD, Meldolesi J, Pozzan T. Ca2+ channels and intracellular Ca2+ stores in neuronal and neuroendocrine cells. Cell Calcium 1990; 11:191-9. [PMID: 2162259 DOI: 10.1016/0143-4160(90)90070-b] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Changes in [Ca2+]i are essential in modulating a variety of cellular functions. In no other cell type does the regulation of [Ca2+]i reach the level of sophistication observed in cells of neuronal origin. Because of its physicochemical characteristics, the fluorescent Ca2+ indicator Fura-2 has become extremely popular among neuroscientists. The use of this probe, however, has generated a number of problems, in particular, extracytosolic trapping and leakage from intact cells. In the first part of this contribution we briefly discuss the practical application of Fura-2 to the study of [Ca2+]i in primary cultures of neurons and astrocytes. In the second part, we review some recent data (mainly from our laboratories) obtained in neurons and neuroendocrine cells, concerning the regulation of different types of Ca2+ channels and the role and mechanism of intracellular Ca2+ mobilization. The experimental evidence supporting the existence of a previously unrecognised organelle, the calciosome, that we hypothesize represents the functional equivalent in non-muscle cells of sarcoplasmic reticulum, will also briefly be discussed.
Collapse
Affiliation(s)
- D Milani
- FIDIA Research Laboratories, Abano, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Williford DJ, Sharma VK, Korth M, Sheu SS. Spatial heterogeneity of intracellular Ca2+ concentration in nonbeating guinea pig ventricular myocytes. Circ Res 1990; 66:241-8. [PMID: 2295141 DOI: 10.1161/01.res.66.1.241] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The spatial distribution of intracellular Ca2+ concentration was determined by fluorescent digital imaging microscopy in fura-2-loaded quiescent cardiac myocytes isolated from guinea pig ventricle. Fluorescent ratio images revealed discrete as well as clustered bright fluorescent spots ("hot spots"), which occupied approximately 20-50% of an individual cell's area. The fluorescent intensity and the area of the hot spots were increased by agents that deplete Ca2+ in the sarcoplasmic reticulum, namely, ryanodine (20-40 nM) and caffeine (5-15 mM). However, when cells were exposed to agents that deplete mitochondrial Ca2+, such as the protonophore, carbonyl cyanide m-chlorophenyl-hydrazone (CCCP, 100-300 nM), or the inhibitor of electron transport, antimycin A (4-40 nM), the fluorescent intensity and the area of the hot spots were reduced. These results indicate that the spatial distribution of intracellular Ca2+ concentration in the ventricular myocytes of guinea pig is quite heterogeneous. The ability of CCCP and antimycin A, but not of caffeine and ryanodine, to reduce the fluorescent intensity in the hot spots implies that Ca2+ compartmentation in the mitochondria is largely responsible for the intracellular Ca2+ heterogeneity seen in the present study.
Collapse
Affiliation(s)
- D J Williford
- Department of Pharmacology, University of Rochester, School of Medicine and Dentistry, New York
| | | | | | | |
Collapse
|