1
|
Stojanovski BM, Pelc LA, Di Cera E. Role of the activation peptide in the mechanism of protein C activation. Sci Rep 2020; 10:11079. [PMID: 32632109 PMCID: PMC7338465 DOI: 10.1038/s41598-020-68078-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Protein C is a natural anticoagulant activated by thrombin in a reaction accelerated by the cofactor thrombomodulin. The zymogen to protease conversion of protein C involves removal of a short activation peptide that, relative to the analogous sequence present in other vitamin K-dependent proteins, contains a disproportionately high number of acidic residues. Through a combination of bioinformatic, mutagenesis and kinetic approaches we demonstrate that the peculiar clustering of acidic residues increases the intrinsic disorder propensity of the activation peptide and adversely affects the rate of activation. Charge neutralization of the acidic residues in the activation peptide through Ala mutagenesis results in a mutant activated by thrombin significantly faster than wild type. Importantly, the mutant is also activated effectively by other coagulation factors, suggesting that the acidic cluster serves a protective role against unwanted proteolysis by endogenous proteases. We have also identified an important H-bond between residues T176 and Y226 that is critical to transduce the inhibitory effect of Ca2+ and the stimulatory effect of thrombomodulin on the rate of zymogen activation. These findings offer new insights on the role of the activation peptide in the function of protein C.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
2
|
Wu X, Li L, Ding Q, Wang X, Wu F, Wu W. Screening and functional exploration of prothrombin Arg596 related mutations in Chinese venous thromboembolism patients. J Clin Pathol 2018; 71:614-619. [PMID: 29331940 DOI: 10.1136/jclinpath-2017-204888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 11/04/2022]
Abstract
AIMS Dysfunctional prothrombin residue Arg596 associated mutation has been found to precipitate venous thromboembolism (VTE). In the current study we investigated the prevalence of Arg596 associated mutations in Chinese patients with VTE and explored the functional impact of Arg596Gln mutation on coagulation function in affected patients. METHODS Prothrombin clotting activity was measured in 267 unrelated patients with unprovoked VTE. Patients with moderately decreased activities underwent further analysis of the F2 gene. Prothrombin amidolytic activity and antigen levels were detected in mutation carriers. Specific family members were investigated about their VTE histories and clinical phenotypes. The thrombin generation test (TGT) was used to evaluate thrombin function and antithrombin resistance assay was applied to assess the extent of impaired antithrombin inhibition of mutation carriers. RESULTS Two heterozygous mutation carriers of prothrombin Arg596Gln were identified, both of whom had moderately decreased clotting activities but normal amidolytic activities and antigen levels. Among the families of the two probands, nine out of 13 mutation carriers experienced episodes of VTE. TGTs showed that patients had elevated endogenous thrombin potential and prolonged start tail time. Thrombin generation could be inhibited in the presence of thrombomodulin. The thrombin Arg596Gln variant in patients' plasma presented strong resistance to antithrombin inhibition. CONCLUSION Prothrombin Arg596Gln mutation is a risk factor for Chinese patients with VTE due to its moderately decreased clotting activity but strong resistance to antithrombin inhibition. Prothrombin clotting activity screening and its encoding gene sequencing should be considered in patients with VTE when other established risk factors are absent.
Collapse
Affiliation(s)
- Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Wu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Wildhagen K, Lutgens E, Loubele S, Cate HT, Nicolaes G. The structure-function relationship of activated protein C. Thromb Haemost 2017; 106:1034-45. [DOI: 10.1160/th11-08-0522] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/22/2011] [Indexed: 11/05/2022]
Abstract
SummaryProtein C is the central enzyme of the natural anticoagulant pathway and its activated form APC (activated protein C) is able to proteolyse non-active as well as active coagulation factors V and VIII. Proteolysis renders these cofactors inactive, resulting in an attenuation of thrombin formation and overall down-regulation of coagulation. Presences of the APC cofactor, protein S, thrombomodulin, endothelial protein C receptor and a phospholipid surface are important for the expression of anticoagulant APC activity. Notably, APC also has direct cytoprotective effects on cells: APC is able to protect the endothelial barrier function and expresses anti-inflammatory and anti-apoptotic activities. Exact molecular mechanisms have thus far not been completely described but it has been shown that both the protease activated receptor 1 and EPCR are essential for the cytoprotective activity of APC. Recently it was shown that also other receptors like sphingosine 1 phosphate receptor 1, Cd11b/CD18 and tyrosine kinase with immunoglobulin-like and EGFlike domains 2 are likewise important for APC signalling. Mutagenesis studies are being performed to map the various APC functions and interactions onto its 3D structure and to dissect anticoagulant and cytoprotective properties. The results of these studies have provided a wealth of structure-function information. With this review we describe the state-of-the-art of the intricate structure-function relationships of APC, a protein that harbours several important functions for the maintenance of both humoral and tissue homeostasis.Lessons from natural and engineered mutations
Collapse
|
4
|
Essalmani R, Susan-Resiga D, Guillemot J, Kim W, Sachan V, Awan Z, Chamberland A, Asselin MC, Ly K, Desjardins R, Day R, Prat A, Seidah NG. Thrombin activation of protein C requires prior processing by a liver proprotein convertase. J Biol Chem 2017; 292:10564-10573. [PMID: 28468828 DOI: 10.1074/jbc.m116.770040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/25/2017] [Indexed: 01/29/2023] Open
Abstract
Protein C, a secretory vitamin K-dependent anticoagulant serine protease, inactivates factors Va/VIIIa. It is exclusively synthesized in liver hepatocytes as an inactive zymogen (proprotein C). In humans, thrombin cleavage of the propeptide at PR221↓ results in activated protein C (APC; residues 222-461). However, the propeptide is also cleaved by a furin-like proprotein convertase(s) (PCs) at KKRSHLKR199↓ (underlined basic residues critical for the recognition by PCs), but the order of cleavage is unknown. Herein, we present evidence that at the surface of COS-1 cells, mouse proprotein C is first cleaved by the convertases furin, PC5/6A, and PACE4. In mice, this cleavage occurs at the equivalent site, KKRKILKR198↓, and requires the presence of Arg198 at P1 and a combination of two other basic residues at either P2 (Lys197), P6 (Arg193), or P8 (Lys191) positions. Notably, the thrombin-resistant R221A mutant is still cleaved by these PCs, revealing that convertase cleavage can precede thrombin activation. This conclusion was supported by the fact that the APC-specific activity in the medium of COS-1 cells is exclusively dependent on prior cleavage by the convertases, because both R198A and R221A lack protein C activity. Primary cultures of hepatocytes derived from wild-type or hepatocyte-specific furin, PC5/6, or complete PACE4 knock-out mice suggested that the cleavage of overexpressed proprotein C is predominantly performed by furin intracellularly and by all three proprotein convertases at the cell surface. Indeed, plasma analyses of single-proprotein convertase-knock-out mice showed that loss of the convertase furin or PC5/6 in hepatocytes results in a ∼30% decrease in APC levels, with no significant contribution from PACE4. We conclude that prior convertase cleavage of protein C in hepatocytes is critical for its thrombin activation.
Collapse
Affiliation(s)
- Rachid Essalmani
- From the Laboratories of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal, Quebec H2W 1R7, Canada and
| | - Delia Susan-Resiga
- From the Laboratories of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal, Quebec H2W 1R7, Canada and
| | - Johann Guillemot
- From the Laboratories of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal, Quebec H2W 1R7, Canada and
| | - Woojin Kim
- From the Laboratories of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal, Quebec H2W 1R7, Canada and
| | - Vatsal Sachan
- From the Laboratories of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal, Quebec H2W 1R7, Canada and
| | - Zuhier Awan
- From the Laboratories of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal, Quebec H2W 1R7, Canada and
| | - Ann Chamberland
- From the Laboratories of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal, Quebec H2W 1R7, Canada and
| | - Marie-Claude Asselin
- From the Laboratories of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal, Quebec H2W 1R7, Canada and
| | - Kévin Ly
- the Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Roxane Desjardins
- the Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Robert Day
- the Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Annik Prat
- From the Laboratories of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal, Quebec H2W 1R7, Canada and
| | - Nabil G Seidah
- From the Laboratories of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal, Quebec H2W 1R7, Canada and
| |
Collapse
|
5
|
Stavenuiter F, Bouwens EAM, Mosnier LO. Down-regulation of the clotting cascade by the protein C pathway. HEMATOLOGY EDUCATION. EUROPEAN HEMATOLOGY ASSOCIATION. CONGRESS. EDUCATION PROGRAM 2013; 7:365-374. [PMID: 24741378 PMCID: PMC3985519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The protein C pathway provides important biological activities to maintain the fluidity of the circulation, prevent thrombosis, and protect the integrity of the vasculature in response to injury. Activated protein C (APC), in concert with its cofactors and cell receptors, assembles in specific macromolecular complexes to provide efficient proteolysis of multiple substrates that result in anticoagulant and cytoprotective activities. Numerous studies on APC's structure-function relation with its cofactors, cell receptors, and substrates provide valuable insights into the molecular mechanisms and presumed assembly of the macromolecular complexes that are responsible for APC's activities. These insights allow for molecular engineering approaches specifically targeting the interaction of APC with one of its substrates or cofactors. Thus far, these approaches resulted in several anticoagulant-selective and cytoprotective-selective APC mutants, which provide unique insights into the relative contributions of APC's anticoagulant or cytoprotective activities to the beneficial effects of APC in various murine injury and disease models. Because of its multiple physiological and pharmacological activities, the anticoagulant and cytoprotective protein C pathway have important implications for the (patho)physiology of vascular disease and for translational research exploring novel therapeutic strategies to combat complex medical disorders such as thrombosis, inflammation, ischemic stroke and neurodegenerative disease.
Collapse
|
6
|
Activated Protein C Does Not Alleviate the Course of Systemic Inflammation in the APCAP Trial. Int J Inflam 2012; 2012:712739. [PMID: 22645700 PMCID: PMC3356881 DOI: 10.1155/2012/712739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/20/2012] [Indexed: 12/22/2022] Open
Abstract
The study aimed to determine the effect of the activated protein C on the course of systemic inflammation in the APCAP (activated protein C in acute pancreatitis) trial where we randomized 32 patients with severe acute pancreatitis to receive either recombinant activated protein C (drotrecogin alfa activated) (n = 16) or placebo (n = 16) for 96 hours. In the present study, we present the time course of the patients' plasma or serum levels of soluble markers (IL-8, IL-6, IL-10, IL-1ra, sE-selectin, PCT) and monocyte and neutrophil cell surface (CD11b, CD14, CD62L, HLA-DR) markers of systemic inflammatory response during the first 14 days after the randomization. The results of the intervention and placebo groups were comparable showing that recombinant APC treatment did not alter the course of systemic inflammation in severe acute pancreatitis. Our finding is in accordance with the clinical findings in the APCAP trial indicating that the intervention did not affect evolution of multiple organ dysfunctions.
Collapse
|
7
|
Rezaie AR. Regulation of the protein C anticoagulant and antiinflammatory pathways. Curr Med Chem 2010; 17:2059-69. [PMID: 20423310 DOI: 10.2174/092986710791233706] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/19/2010] [Indexed: 12/23/2022]
Abstract
Protein C is a vitamin K-dependent anticoagulant serine protease zymogen in plasma which upon activation by the thrombin-thrombomodulin complex down-regulates the coagulation cascade by degrading cofactors Va and VIIIa by limited proteolysis. In addition to its anticoagulant function, activated protein C (APC) also binds to endothelial protein C receptor (EPCR) in lipid-rafts/caveolar compartments to activate protease- activated receptor 1 (PAR-1) thereby eliciting antiinflammatory and cytoprotective signaling responses in endothelial cells. These properties have led to FDA approval of recombinant APC as a therapeutic drug for severe sepsis. The mechanism by which APC selects its substrates in the anticoagulant and antiinflammatory pathways is not well understood. Recent structural and mutagenesis data have indicated that basic residues of three exposed surface loops known as 39-loop (Lys-37, Lys-38, and Lys-39), 60-loop (Lys-62, Lys- 63, and Arg-67), and 70-80-loop (Arg-74, Arg-75, and Lys-78) (chymotrypsin numbering) constitute an anion binding exosite in APC that interacts with the procoagulant cofactors Va and VIIIa in the anticoagulant pathway. Furthermore, two negatively charged residues on the opposite side of the active-site of APC on a helical structure have been demonstrated to determine the specificity of the PAR-1 recognition in the cytoprotective pathway. This article will review the mechanism by which APC exerts its proteolytic function in two physiologically inter-related pathways and how the structure- function insights into determinants of the specificity of APC interaction with its substrates in two pathways can be utilized to tinker with the structure of the molecule to obtain APC derivatives with potentially improved therapeutic profiles.
Collapse
Affiliation(s)
- A R Rezaie
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| |
Collapse
|
8
|
Abstract
Thrombin is a Na+-activated, allosteric serine protease that plays opposing functional roles in blood coagulation. Binding of Na+ is the major driving force behind the procoagulant, prothrombotic and signaling functions of the enzyme, but is dispensable for cleavage of the anticoagulant protein C. The anticoagulant function of thrombin is under the allosteric control of the cofactor thrombomodulin. Much has been learned on the mechanism of Na+ binding and recognition of natural substrates by thrombin. Recent structural advances have shed light on the remarkable molecular plasticity of this enzyme and the molecular underpinnings of thrombin allostery mediated by binding to exosite I and the Na+ site. This review summarizes our current understanding of the molecular basis of thrombin function and allosteric regulation. The basic information emerging from recent structural, mutagenesis and kinetic investigation of this important enzyme is that thrombin exists in three forms, E*, E and E:Na+, that interconvert under the influence of ligand binding to distinct domains. The transition between the Na+ -free slow from E and the Na+ -bound fast form E:Na+ involves the structure of the enzyme as a whole, and so does the interconversion between the two Na+ -free forms E* and E. E* is most likely an inactive form of thrombin, unable to interact with Na + and substrate. The complexity of thrombin function and regulation has gained this enzyme pre-eminence as the prototypic allosteric serine protease. Thrombin is now looked upon as a model system for the quantitative analysis of biologically important enzymes.
Collapse
Affiliation(s)
- Enrico Di Cera
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, MO 63110, United States.
| |
Collapse
|
9
|
Xu H, Bush LA, Pineda AO, Caccia S, Di Cera E. Thrombomodulin changes the molecular surface of interaction and the rate of complex formation between thrombin and protein C. J Biol Chem 2004; 280:7956-61. [PMID: 15582990 DOI: 10.1074/jbc.m412869200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of thrombin with protein C triggers a key down-regulatory process of the coagulation cascade. Using a panel of 77 Ala mutants, we have mapped the epitope of thrombin recognizing protein C in the absence or presence of the cofactor thrombomodulin. Residues around the Na(+) site (Thr-172, Lys-224, Tyr-225, and Gly-226), the aryl binding site (Tyr-60a), the primary specificity pocket (Asp-189), and the oxyanion hole (Gly-193) hold most of the favorable contributions to protein C recognition by thrombin, whereas a patch of residues in the 30-loop (Arg-35 and Pro-37) and 60-loop (Phe-60h) regions produces unfavorable contributions to binding. The shape of the epitope changes drastically in the presence of thrombomodulin. The unfavorable contributions to binding disappear and the number of residues promoting the thrombin-protein C interaction is reduced to Tyr-60a and Asp-189. Kinetic studies of protein C activation as a function of temperature reveal that thrombomodulin increases >1,000-fold the rate of diffusion of protein C into the thrombin active site and lowers the activation barrier for this process by 4 kcal/mol. We propose that the mechanism of thrombomodulin action is to kinetically facilitate the productive encounter of thrombin and protein C and to allosterically change the conformation of the activation peptide of protein C for optimal presentation to the thrombin active site.
Collapse
Affiliation(s)
- Hong Xu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
10
|
Gale AJ, Griffin JH. Characterization of a thrombomodulin binding site on protein C and its comparison to an activated protein C binding site for factor Va. Proteins 2004; 54:433-41. [PMID: 14747992 DOI: 10.1002/prot.10627] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of the anticoagulant human plasma serine protease zymogen, protein C, by a complex of thrombin and the membrane protein, thrombomodulin, generates activated protein C, a physiologic anti-thrombotic, anti-inflammatory and anti-apoptotic agent. Alanine-scanning site-directed mutagenesis of residues in five surface loops of an extensive basic surface on protein C was used to identify residues that play essential roles in its activation by the thrombin-thrombomodulin complex. Twenty-three residues in the protein C protease domain were mutated to alanine, singly, in pairs or in triple mutation combinations, and mutants were characterized for their effectiveness as substrates of the thrombin-thrombomodulin complex. Three protein C residues, K192, R229, and R230, in two loops, were identified that provided major contributions to interactions with thrombin-thrombomodulin, while six residues, S190, K191, K217, K218, W231, and R312, in four loops, appeared to provide minor contributions. These protein C residues delineated a positively charged area on the molecule's surface that largely overlapped the previously characterized factor Va binding site on activated protein C. Thus, the extensive basic surface of protein C and activated protein C provides distinctly different, though significantly overlapping, binding sites for recognition by thrombin-thrombomodulin and factor Va.
Collapse
Affiliation(s)
- Andrew J Gale
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
11
|
Rezaie AR, Yang L. Thrombomodulin allosterically modulates the activity of the anticoagulant thrombin. Proc Natl Acad Sci U S A 2003; 100:12051-6. [PMID: 14523228 PMCID: PMC218711 DOI: 10.1073/pnas.2135346100] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exosite 1 of thrombin consists of a cluster of basic residues (Arg-35, Lys-36, Arg-67, Lys-70, Arg-73, Arg-75, and Arg-77 in chymotrypsinogen numbering) that play key roles in the function of thrombin. Structural data suggest that the side chain of Arg-35 projects toward the active site pocket of thrombin, but all other residues are poised to interact with thrombomodulin (TM). To study the role of these residues in TM-mediated protein C (PC) activation by thrombin, a charge reversal mutagenesis approach was used to replace these residues with a Glu in separate constructs. The catalytic properties of the mutants toward PC were analyzed in both the absence and presence of TM and Ca2+. It was discovered that, with the exception of the Arg-67 and Lys-70 mutants, all other mutants activated PC with similar maximum rate constants in the presence of a saturating concentration of TM and Ca2+, although their affinity for interaction with TM was markedly impaired. The catalytic properties of the Arg-35 mutant were changed so that PC activation by the mutant no longer required Ca2+ in the presence of TM, but, instead, it was accelerated by EDTA. Moreover, the activity of this mutant toward PC was improved approximately 25-fold independent of TM. These results suggest that Arg-35 is responsible for the Ca2+ dependence of PC activation by the thrombin-TM complex and that a function for TM in the activation complex is the allosteric alleviation of the inhibitory interaction of Arg-35 with the substrate.
Collapse
Affiliation(s)
- Alireza R Rezaie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
| | | |
Collapse
|
12
|
Fuentes-Prior P, Iwanaga Y, Huber R, Pagila R, Rumennik G, Seto M, Morser J, Light DR, Bode W. Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature 2000; 404:518-25. [PMID: 10761923 DOI: 10.1038/35006683] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The serine proteinase alpha-thrombin causes blood clotting through proteolytic cleavage of fibrinogen and protease-activated receptors and amplifies its own generation by activating the essential clotting factors V and VIII. Thrombomodulin, a transmembrane thrombin receptor with six contiguous epidermal growth factor-like domains (TME1-6), profoundly alters the substrate specificity of thrombin from pro- to anticoagulant by activating protein C. Activated protein C then deactivates the coagulation cascade by degrading activated factors V and VIII. The thrombin-thrombomodulin complex inhibits fibrinolysis by activating the procarboxypeptidase thrombin-activatable fibrinolysis inhibitor. Here we present the 2.3 A crystal structure of human alpha-thrombin bound to the smallest thrombomodulin fragment required for full protein-C co-factor activity, TME456. The Y-shaped thrombomodulin fragment binds to thrombin's anion-binding exosite-I, preventing binding of procoagulant substrates. Thrombomodulin binding does not seem to induce marked allosteric structural rearrangements at the thrombin active site. Rather, docking of a protein C model to thrombin-TME456 indicates that TME45 may bind substrates in such a manner that their zymogen-activation cleavage sites are presented optimally to the unaltered thrombin active site.
Collapse
|
13
|
Di Cera E. Site-Specific Thermodynamics: Understanding Cooperativity in Molecular Recognition. Chem Rev 1998; 98:1563-1592. [PMID: 11848942 DOI: 10.1021/cr960135g] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Enrico Di Cera
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St. Louis, Missouri 63110
| |
Collapse
|
14
|
Cheng CH, Geng JP, Castellino FJ. The functions of the first epidermal growth factor homology region of human protein C as revealed by a charge-to-alanine scanning mutagenesis investigation. Biol Chem 1997; 378:1491-500. [PMID: 9461348 DOI: 10.1515/bchm.1997.378.12.1491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Variant proteins containing charge-to-alanine mutations of single amino acid residues and clusters of such groups contained in the epidermal growth factor 1 (EGF1) homology unit of human protein C (PC) have been accomplished, resulting in the following recombinant (r) mutant proteins: r-[E56A/H57A]PC; r-[H66A]PC; r-[D71A]PC; r-[D79A/R81A]PC; r-[E85A/R87A]PC; and r-[R91A/E92A]PC. Studies of the mutant proteins with a variety of Ca2+-dependent and Ca2+-independent monoclonal antibodies not only led to identification of the epitopes of these antibodies, but also confirmed the importance of D/beta-hydroxyaspartic acid (Hya)71 as one probable coordination site for Ca2+. Employing these antibodies, it was also revealed that Ca2+ binding to its site in the EGF1 region of PC did not influence Ca2+ binding or adoption of the Ca2+-dependent conformation of the gamma-carboxyglutamic acid domain of this same protein. In addition, the Ca2+-induced inhibition of PC activation by thrombin, and the kinetic constants for activation of PC by the thrombin/thrombomodulin complex, were only modestly affected by any of the mutations. The mutants r-[E56A/H57A]APC and r-[H66A]APC displayed at least 70% of wild type r-APC activity in a fVIII inactivation assay, while r-[D79A/R81A]APC, r-[E85A/R87A]APC and r-[R91A/E92A]APC possessed only approximately 40% activity in that same assay. The special role of D/Hya71 in this process was confirmed by showing that r-[D71A]APC was inactive in the fVIII-inactivation assay. These findings demonstrate that some of the charged residues of EGF1, most notably those in the carboxy-terminal region of this domain, participate as partial determinants of the anticoagulant activity of APC. Overall, with the exceptions noted, the data generally suggest that the charged residues of the EGF1 domain of PC, and the Ca2+ binding site contained within this module, are likely more involved with maintenance of the overall structural integrity of this module rather than with its direct functional interactions with effectors, activators, or substrates of PC and APC. Lastly, functional Ca2+ binding to the Gla domain of PC is not significantly influenced by the binding of Ca2+ to the EGF1 module.
Collapse
Affiliation(s)
- C H Cheng
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
15
|
Gaussem P, Picard V, Chadeuf G, Arnaud E, Aiach M. Human thrombin variable region 1, including E39, is involved in interactions with alpha 1-antitrypsin M358R and protein C. FEBS Lett 1995; 365:219-22. [PMID: 7781782 DOI: 10.1016/0014-5793(95)00457-k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We used an antithrombin autoantibody (IgG D), the epitope of which encompasses ABE1 and amino acids located within variable region 1, to study thrombin interactions with R358 alpha 1-AT and protein C. IgG D inhibited the thrombin interaction with R358 alpha 1-AT, while hirugen had no effect, indicating that the interaction of R358 alpha 1-AT with thrombin may involve the VR1 subsite. We also obtained evidence that VR1 may be involved in the activation of protein C by thrombin in the absence of thrombomodulin. Moreover, IgG D attenuated the inhibitory effect of calcium ions during protein C activation by thrombin, probably by masking E39 within the VR1 site.
Collapse
Affiliation(s)
- P Gaussem
- INSERM U.428, UFR des Sciences Pharmaceutiques et Biologiques, Université Paris V, France
| | | | | | | | | |
Collapse
|