1
|
Liu Y, Li H, Shen X, Liu Y, Zhong X, Zhong J, Cao R. PCMT1 confirmed as a pan-cancer immune biomarker and a contributor to breast cancer metastasis. Am J Cancer Res 2024; 14:3711-3732. [PMID: 39267673 PMCID: PMC11387850 DOI: 10.62347/tyll7952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Protein L-isoaspartyl (D-aspartyl) methyltransferase (PIMT, gene name PCMT1) is an enzyme that repairs proteins with altered aspartate residues by methylation, restoring their normal structure and function. This study conducted a comprehensive analysis of PCMT1 in pan-cancer. The Cancer Genome Atlas, Human Protein Atlas website, and the Genotype-Tissue Expression were utilized in analysis of PCMT1 expression. We examined the association between PCMT1 expression and various factors, including gene modifications, DNA methylation, immune cell infiltration, immunological checkpoints, drug susceptibility, tumor mutation burden (TMB), and microsatellite instability (MSI). Enrichment analyses determined the potential biological roles and pathways involving PCMT1. Our focus then shifted to the role of PCMT1 in breast invasive carcinoma (BRCA). We found that PCMT1 expression was aberrant in many tumors and significantly influenced the prognosis across several cancer types. Gene alterations in PCMT1 predominantly involved deep deletions and amplifications. A negative correlation was observed between DNA methylation and PCMT1 expression across all studied cancer types except thyroid carcinoma PCMT1 exhibited positive correlations with common lymphoid progenitor and CD4(+) T helper 2 cells, whereas it was inversely correlated with central and effector memory T cells, memory CD8(+) T cells, and CD4(+) T helper 1 cells. In many cancer types, PCMT1 expression closely correlated with immunological checkpoint inhibitors, TMB, and MSI. It was also significantly linked to pathways involved in epithelial-mesenchymal transition (EMT), highlighting its role in cancer metastasis. PCMT1 emerged as a significant predictor of breast cancer progression. In vitro experiments demonstrated that reducing PCMT1 expression decreased BRCA cell migration and invasiveness. Additionally, animal studies confirmed that inhibition of PCMT1 slowed tumor growth.
Collapse
Affiliation(s)
- Yiqi Liu
- The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421001, Hunan, China
| | - Haobing Li
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| | - Xiangyu Shen
- Department of Breast and Thyroid Surgery, Third Xiangya Hospital, Central South University Changsha 410000, Hunan, China
| | - Ying Liu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| | - Xiaoxiao Zhong
- Department of Breast and Thyroid Surgery, Third Xiangya Hospital, Central South University Changsha 410000, Hunan, China
- Department of General Surgery, Third Xiangya Hospital, Central South University Changsha 410000, Hunan, China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| | - Renxian Cao
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| |
Collapse
|
2
|
Sugawara Y, Hirakawa Y, Nagasu H, Narita A, Katayama A, Wada J, Shimizu M, Wada T, Kitamura H, Nakano T, Yokoi H, Yanagita M, Goto S, Narita I, Koshiba S, Tamiya G, Nangaku M, Yamamoto M, Kashihara N. Genome-wide association study of the risk of chronic kidney disease and kidney-related traits in the Japanese population: J-Kidney-Biobank. J Hum Genet 2023; 68:55-64. [PMID: 36404353 DOI: 10.1038/s10038-022-01094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/22/2022]
Abstract
Chronic kidney disease (CKD) is a syndrome characterized by a gradual loss of kidney function with decreased estimated glomerular filtration rate (eGFR), which may be accompanied by an increase in the urine albumin-to-creatinine ratio (UACR). Although trans-ethnic genome-wide association studies (GWASs) have been conducted for kidney-related traits, there have been few analyses in the Japanese population, especially for the UACR trait. In this study, we conducted a GWAS to identify loci related to multiple kidney-related traits in Japanese individuals. First, to detect loci associated with CKD, eGFR, and UACR, we performed separate GWASs with the following two datasets: 475 cases of CKD diagnosed at seven university hospitals and 3471 healthy subjects (dataset 1) and 3664 cases of CKD-suspected individuals with eGFR <60 ml/min/1.73 m2 or urinary protein ≥ 1+ and 5952 healthy subjects (dataset 2). Second, we performed a meta-analysis between these two datasets and detected the following associated loci: 10 loci for CKD, 9 loci for eGFR, and 22 loci for UACR. Among the loci detected, 22 have never been reported previously. Half of the significant loci for CKD were shared with those for eGFR, whereas most of the loci associated with UACR were different from those associated with CKD or eGFR. The GWAS of the Japanese population identified novel genetic components that were not previously detected. The results also suggest that the group primarily characterized by increased UACR possessed genetically different features from the group characterized by decreased eGFR.
Collapse
Affiliation(s)
- Yuka Sugawara
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Yosuke Hirakawa
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Okayama, Japan
| | - Akira Narita
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Akihiro Katayama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University, Okayama, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Ishikawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Ishikawa, Japan
| | - Hiromasa Kitamura
- Department of Nephrology, Hypertension & Strokology, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Nephrology, Hypertension & Strokology, Kyushu University, Fukuoka, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University, Kyoto, Japan
| | | | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Niigata University, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University, Niigata, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan.,The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Okayama, Japan.
| |
Collapse
|
3
|
The Protein L-Isoaspartyl (D-Aspartyl) Methyltransferase Regulates Glial-to-Mesenchymal Transition and Migration Induced by TGF-β1 in Human U-87 MG Glioma Cells. Int J Mol Sci 2022; 23:ijms23105698. [PMID: 35628507 PMCID: PMC9146343 DOI: 10.3390/ijms23105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
The enzyme PIMT methylates abnormal aspartyl residues in proteins. U-87 MG cells are commonly used to study the most frequent brain tumor, glioblastoma. Previously, we reported that PIMT isoform I possessed oncogenic features when overexpressed in U-87 MG and U-251 MG glioma cells. Higher levels of wild-type PIMT stimulated migration and invasion in both glioma cell lines. Conversely, PIMT silencing reduced these migratory abilities of both cell lines. These results indicate that PIMT could play a critical role in glioblastoma growth. Here, we investigated for the first time, molecular mechanisms involving PIMT in the regulation of epithelial to mesenchymal transition (EMT) upon TGF-β1 treatments. Gene array analyses indicated that EMT genes but not PIMT gene were regulated in U-87 MG cells treated with TGF-β1. Importantly, PIMT silencing by siRNA inhibited in vitro migration in U-87 MG cells induced by TGF-β1. In contrast, overexpressed wild-type PIMT and TGF-β1 had additive effects on cell migration. When PIMT was inhibited by siRNA, this prevented Slug induction by TGF-β1, while Snail stimulation by TGF-β1 was increased. Indeed, overexpression of wild-type PIMT led to the opposite effects on Slug and Snail expression dependent on TGF-β1. These data highlighted the importance of PIMT in the EMT response dependent on TGF-β1 in U-87 MG glioma cells by an antagonist regulation in the expression of transcription factors Slug and Snail, which are critical players in EMT.
Collapse
|
4
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
5
|
Su Z, Ren N, Ling Z, Sheng L, Zhou S, Guo C, Ke Z, Xu T, Qin Z. Differential expression of microRNAs associated with neurodegenerative diseases and diabetic nephropathy in protein l-isoaspartyl methyltransferase-deficient mice. Cell Biol Int 2021; 45:2316-2330. [PMID: 34314072 DOI: 10.1002/cbin.11679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 11/05/2022]
Abstract
Protein l-isoaspartyl methyltransferase (PIMT/PCMT1), an enzyme repairing isoaspartate residues in peptides and proteins that result from the spontaneous decomposition of normal l-aspartyl and l-asparaginyl residues during aging, has been revealed to be involved in neurodegenerative diseases (NDDs) and diabetes. However, the molecular mechanisms for a putative association of PIMT dysfunction with these diseases have not been clarified. Our study aimed to identify differentially expressed microRNAs (miRNAs) in the brain and kidneys of PIMT-deficient mice and uncover the epigenetic mechanism of PIMT-involved NDDs and diabetic nephropathy (DN). Differentially expressed miRNAs by sequencing underwent target prediction and enrichment analysis in the brain and kidney of PIMT knockout (KO) mice and age-matched wild-type (WT) littermates. Sequence analysis revealed 40 differentially expressed miRNAs in the PIMT KO mouse brain including 25 upregulated miRNAs and 15 downregulated miRNAs. In the PIMT KO mouse kidney, there were 80 differentially expressed miRNAs including 40 upregulated miRNAs and 40 downregulated miRNAs. Enrichment analysis and a systematic literature review of differentially expressed miRNAs indicated the involvement of PIMT deficiency in the pathogenesis in NDDs and DN. Some overlapped differentially expressed miRNAs between the brain and kidney were quantitatively assessed in the brain, kidney, and serum-derived exosomes, respectively. Despite being preliminary, these results may aid in investigating the pathological hallmarks and identify the potential therapeutic targets and biomarkers for PIMT dysfunction-related NDDs and DN.
Collapse
Affiliation(s)
- Zhonghao Su
- Department of Febrile Disease, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Na Ren
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zicheng Ling
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lanyue Sheng
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sirui Zhou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiefeng Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenxia Qin
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Belkourchia F, Desrosiers RR. The enzyme L-isoaspartyl (D-aspartyl) methyltransferase promotes migration and invasion in human U-87 MG and U-251 MG glioblastoma cell lines. Biomed Pharmacother 2021; 140:111766. [PMID: 34082401 DOI: 10.1016/j.biopha.2021.111766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
The protein L-isoaspartyl (D-aspartyl) methyltransferase (PIMT) recognizes abnormal L-isoaspartyl and D-aspartyl residues in proteins. Among examined tissues, PIMT shows the highest level in the brain. The U-87 MG cell line is a commonly used cellular model to study the most frequent brain tumor, glioblastoma. Previously, we reported that PIMT amount increased when U-87 MG cells were detached from the extracellular matrix. Recently, we also showed that PIMT possessed pro-angiogenic properties. Together, these PIMT features led us to postulate that PIMT could play a critical role in glioblastoma growth. Here, we investigate PIMT role in U-87 MG cell viability, adhesion, migration, invasion, and colony formation and in the reorganization of the actin and tubulin cytoskeleton. PIMT inhibition by siRNA significantly reduced in vitro cell migration and invasion in various assays, including wound-healing assay, Boyden chambers coated with gelatin and Matrigel invasion assay. Conversely, in stably transfected U-87 MG cells overexpressing wild-type PIMT, cell migration, invasive capacity and colony formation significantly increased. However, in stably transfected cells with the gene encoding for mutated PIMT(D83V), despite of its overexpression, migration and invasion remained similar to those observed in control cells. In all these conditions, cell viability was unaffected. Importantly, overexpressed wild-type PIMT and mutated PIMT(D83V) have opposite effects on the organization of microtubules and actin cytoskeleton and thus on morphology of U-87 cells. These data highlighted the importance of PIMT level and its catalytic activity in migration and invasion of U-87 glioma cells and its possible contribution in cancer invasion during glioma growth.
Collapse
Affiliation(s)
- Fatima Belkourchia
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Richard R Desrosiers
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
7
|
Soliman R, Cordero-Maldonado ML, Martins TG, Moein M, Conrotte JF, Warmack RA, Skupin A, Crawford AD, Clarke SG, Linster CL. l-Isoaspartyl Methyltransferase Deficiency in Zebrafish Leads to Impaired Calcium Signaling in the Brain. Front Genet 2021; 11:612343. [PMID: 33552132 PMCID: PMC7859441 DOI: 10.3389/fgene.2020.612343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Isomerization of l-aspartyl and l-asparaginyl residues to l-isoaspartyl residues is one type of protein damage that can occur under physiological conditions and leads to conformational changes, loss of function, and enhanced protein degradation. Protein l-isoaspartyl methyltransferase (PCMT) is a repair enzyme whose action initiates the reconversion of abnormal l-isoaspartyl residues to normal l-aspartyl residues in proteins. Many lines of evidence support a crucial role for PCMT in the brain, but the mechanisms involved remain poorly understood. Here, we investigated PCMT activity and function in zebrafish, a vertebrate model that is particularly well-suited to analyze brain function using a variety of techniques. We characterized the expression products of the zebrafish PCMT homologous genes pcmt and pcmtl. Both zebrafish proteins showed a robust l-isoaspartyl methyltransferase activity and highest mRNA transcript levels were found in brain and testes. Zebrafish morphant larvae with a knockdown in both the pcmt and pcmtl genes showed pronounced morphological abnormalities, decreased survival, and increased isoaspartyl levels. Interestingly, we identified a profound perturbation of brain calcium homeostasis in these morphants. An abnormal calcium response upon ATP stimulation was also observed in mouse hippocampal HT22 cells knocked out for Pcmt1. This work shows that zebrafish is a promising model to unravel further facets of PCMT function and demonstrates, for the first time in vivo, that PCMT plays a pivotal role in the regulation of calcium fluxes.
Collapse
Affiliation(s)
- Remon Soliman
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Teresa G Martins
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mahsa Moein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-François Conrotte
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rebeccah A Warmack
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,University of California, San Diego, La Jolla, CA, United States
| | - Alexander D Crawford
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Oslo, Norway.,Institute for Orphan Drug Discovery, Bremer Innovations- und Technologiezentrum, Bremen, Germany
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
8
|
Simko V, Belvoncikova P, Csaderova L, Labudova M, Grossmannova K, Zatovicova M, Kajanova I, Skultety L, Barathova M, Pastorek J. PIMT Binding to C-Terminal Ala459 of CAIX Is Involved in Inside-Out Signaling Necessary for Its Catalytic Activity. Int J Mol Sci 2020; 21:ijms21228545. [PMID: 33198416 PMCID: PMC7696048 DOI: 10.3390/ijms21228545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023] Open
Abstract
Human carbonic anhydrase IX (CAIX), a unique member of the α carbonic anhydrase family, is a transmembrane glycoprotein with high enzymatic activity by which CAIX contributes to tumorigenesis through pH regulation. Due to its aberrant expression, CAIX is considered to be a marker of tumor hypoxia and a poor prognostic factor of several human cancers. Hypoxia-activated catalytic function of CAIX is dependent on posttranslational modification of its short intracellular domain. In this work, we have identified that C-terminal Ala459 residue, which is common across CAIX of various species as well as additional transmembrane isoforms, plays an important role in CAIX activation and in pH regulation. Moreover, structure prediction I-TASSER analysis revealed involvement of Ala459 in potential ligand binding. Using tandem mass spectrometry, Protein-L-isoaspartyl methyltransferase (PIMT) was identified as a novel interacting partner, further confirmed by an in vitro pulldown assay and an in situ proximity ligation assay. Indeed, suppression of PIMT led to increased alkalinization of culture media of C33a cells constitutively expressing CAIX in hypoxia. We suggest that binding of PIMT represents a novel intracellular signal required for enzymatic activity of CAIX with a potential unidentified downstream function.
Collapse
Affiliation(s)
- Veronika Simko
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Petra Belvoncikova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Lucia Csaderova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Martina Labudova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Katarina Grossmannova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Miriam Zatovicova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Ivana Kajanova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Ludovit Skultety
- Department of Rickettsiology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia;
| | - Monika Barathova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
- Correspondence: ; Tel.: +421-2-5930-2461
| | - Jaromir Pastorek
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
- Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| |
Collapse
|
9
|
Juang C, Chen B, Bru JL, Nguyen K, Huynh E, Momen M, Kim J, Aswad DW. Polymorphic Variants of Human Protein l-Isoaspartyl Methyltransferase Affect Catalytic Activity, Aggregation, and Thermal Stability: IMPLICATIONS FOR THE ETIOLOGY OF NEUROLOGICAL DISORDERS AND COGNITIVE AGING. J Biol Chem 2017; 292:3656-3665. [PMID: 28100787 DOI: 10.1074/jbc.m116.765222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/16/2017] [Indexed: 01/13/2023] Open
Abstract
Protein l-isoaspartyl methyltransferase (PIMT/PCMT1), a product of the human pcmt1 gene, catalyzes repair of abnormal l-isoaspartyl linkages in age-damaged proteins. Pcmt1 knock-out mice exhibit a profound neuropathology and die 30-60 days postnatal from an epileptic seizure. Here we express 15 reported variants of human PIMT and characterize them with regard to their enzymatic activity, thermal stability, and propensity to aggregation. One mutation, R36C, renders PIMT completely inactive, whereas two others, A7P and I58V, exhibit activity that is 80-100% higher than wild type. G175R is highly prone to aggregation and has greatly reduced activity. R17S and R17H show markedly enhanced sensitivity to thermal denaturation. Based on previous studies of moderate PIMT variation in humans and mice, we predict that heterozygosity for R36C, G175R, R17S, and R17H will prove detrimental to cognitive function and successful aging, whereas homozygosity (if it ever occurs) will lead to severe neurological problems in the young.
Collapse
Affiliation(s)
- Charity Juang
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Baihe Chen
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Jean-Louis Bru
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Katherine Nguyen
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Eric Huynh
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Mahsa Momen
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Jeungjin Kim
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Dana W Aswad
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| |
Collapse
|
10
|
Qin Z, Dimitrijevic A, Aswad DW. Accelerated protein damage in brains of PIMT+/- mice; a possible model for the variability of cognitive decline in human aging. Neurobiol Aging 2014; 36:1029-36. [PMID: 25465735 DOI: 10.1016/j.neurobiolaging.2014.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
Isoaspartate formation is a common type of protein damage normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). Mice with a knockout of the gene (Pcmt1) for this enzyme (KO, -/-) exhibit a pronounced neuropathology with fatal epileptic seizures at 30-60 days. Heterozygous (HZ, +/-) mice have 50% of the PIMT activity found in wild-type (WT, +/+) mice, but appear normal. To see if HZ mice exhibit accelerated aging at the molecular level, we compared brain extracts from HZ and WT mice at 8 months and 2 years with regard to PIMT activity, isoaspartate levels, and activity of an endogenous PIMT substrate, creatine kinase B. PIMT activity declined modestly with age in both genotypes. Isoaspartate was significantly higher in HZ than WT mice at 8 months and more so at 2 years, rising 5× faster in HZ males and 3× faster in females. Creatine kinase activity decreased with age and was always lower in the HZ mice. These findings suggest the individual variation of human PIMT levels may significantly influence the course of age-related central nervous system dysfunction.
Collapse
Affiliation(s)
- Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Aleksandra Dimitrijevic
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Dana W Aswad
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
11
|
Dimitrijevic A, Qin Z, Aswad DW. Isoaspartyl formation in creatine kinase B is associated with loss of enzymatic activity; implications for the linkage of isoaspartate accumulation and neurological dysfunction in the PIMT knockout mouse. PLoS One 2014; 9:e100622. [PMID: 24955845 PMCID: PMC4067349 DOI: 10.1371/journal.pone.0100622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/29/2014] [Indexed: 01/12/2023] Open
Abstract
Isoaspartate (isoAsp) formation is a common type of spontaneous protein damage that is normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). PIMT-KO (knockout) mice exhibit a pronounced neuropathology highlighted by death from an epileptic seizure at 30 to 60 days after birth. The mechanisms by which isoaspartyl damage disrupts normal brain function are incompletely understood. Proteomic analysis of the PIMT-KO mouse brain has shown that a number of key neuronal proteins accumulate high levels of isoAsp, but the extent to which their cellular functions is altered has yet to be determined. One of the major neuronal targets of PIMT is creatine kinase B (CKB), a well-characterized enzyme whose activity is relatively easy to assay. We show here that (1) the specific activity of CKB is significantly reduced in the brains of PIMT-deficient mice, (2) that in vitro aging of recombinant CKB results in significant accumulation of isoAsp sites with concomitant loss of enzymatic activity, and (3) that incubation of in vitro aged CKB with PIMT and its methyl donor S-adenosyl-L-methionine substantially repairs the aged CKB with regard to both its isoAsp content and its enzymatic activity. These results, combined with similarity in phenotypes of PIMT-KO and CKB-KO mice, suggests that loss of normal CKB structure and function contributes to the mechanisms by which isoAsp accumulation leads to CNS dysfunction in the PIMT-KO mouse.
Collapse
Affiliation(s)
- Aleksandra Dimitrijevic
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Dana W Aswad
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
12
|
Qin Z, Yang J, Klassen HJ, Aswad DW. Isoaspartyl protein damage and repair in mouse retina. Invest Ophthalmol Vis Sci 2014; 55:1572-9. [PMID: 24550364 DOI: 10.1167/iovs.13-13668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To determine the propensity of retinal proteins for spontaneous damage via formation of isoaspartyl sites, a common type of protein damage that could contribute to retinal disease. METHODS Tissue extracts were obtained from retinas and brains of control mice and from mice in which the gene for protein L-isoaspartate O-methyltransferase (PIMT; an enzyme that repairs isoaspartyl protein damage) was knocked out. PIMT expression in these extracts was measured by Western blot, and its specific activity was assayed by monitoring the rate of [(3)H]methyl transfer from S-adenosyl-[methyl-(3)H]L-methionine to γ-globulin. Isoaspartate levels in extracts were measured by their capacity to accept [(3)H]methyl groups via the PIMT-catalyzed methylation reaction. To compare molecular weight distributions of isoaspartyl-rich proteins in retina versus brain, proteins from PIMT knockout (KO) and control mice were separated by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF). Isoaspartyl proteins were (3)H-labeled on-blot using a PIMT overlay and imaged by autoradiography. RESULTS When normalized to the β-actin content of each tissue, retina was found to be nearly identical to brain with regard to expression and activity of PIMT and its propensity to accumulate isoaspartyl sites when PIMT is absent. The two tissues show distinct differences in the molecular weight distribution of isoaspartyl proteins. CONCLUSIONS The retina is rich in PIMT activity and contains a wide range of proteins that are highly susceptible to this type of protein damage. Recoverin may be one such protein. Isoaspartate formation, along with oxidation, should be considered as a potential source of protein dysfunction and autoimmunity in retinal disease.
Collapse
Affiliation(s)
- Zhenxia Qin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | | | | | | |
Collapse
|
13
|
Qin Z, Kaufman RS, Khoury RN, Khoury MK, Aswad DW. Isoaspartate accumulation in mouse brain is associated with altered patterns of protein phosphorylation and acetylation, some of which are highly sex-dependent. PLoS One 2013; 8:e80758. [PMID: 24224061 PMCID: PMC3818261 DOI: 10.1371/journal.pone.0080758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/14/2013] [Indexed: 12/05/2022] Open
Abstract
Isoaspartate (isoAsp) formation is a major source of protein damage that is kept in check by the repair function of protein L-isoaspartyl methyltransferase (PIMT). Mice deficient in PIMT accumulate isoAsp-containing proteins, resulting in cognitive deficits, abnormal neuronal physiology and cytoarchitecture, and fatal epileptic seizures 30–60 days after birth. Synapsins I and II, dynamin-1, collapsin response mediator protein 2 (CRMP2), and α/β-tubulin are major targets of PIMT in brain. To investigate links between isoAsp accumulation and the neurological phenotype of the KO mice, we used Western blotting to compare patterns of in vivo phosphorylation or acetylation of the major PIMT targets listed above. Phosphorylations of synapsins I and II at Ser-9 were increased in female KO vs. WT mice, and acetylation of tubulin at Lys-40 was decreased in male KO vs. WT mice. Average levels of dynamin-1 phosphorylation at Ser-778 and Ser-795 were higher in male KO vs. WT mice, but the statistical significance (P>0.1) was low. No changes in phosphorylation were found in synapsins I and II at Ser-603, in CRMP2 at Ser-522 or Thr-514, in DARPP-32 at Thr-34, or in PDK1 at Ser-241. General levels of phosphorylation assessed with Pro-Q Diamond stain, or an anti-phosphotyrosine antibody, appeared similar in the WT and KO mice. We conclude that isoAsp accumulation is associated with altered functional status of several neuronal proteins that are highly susceptible to this type of damage. We also uncovered unexpected differences in how male and female mice respond to isoAsp accumulation in the brain.
Collapse
Affiliation(s)
- Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Rachel S. Kaufman
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Rana N. Khoury
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Mitri K. Khoury
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Dana W. Aswad
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sambri I, Capasso R, Pucci P, Perna AF, Ingrosso D. The microRNA 15a/16-1 cluster down-regulates protein repair isoaspartyl methyltransferase in hepatoma cells: implications for apoptosis regulation. J Biol Chem 2011; 286:43690-43700. [PMID: 22033921 DOI: 10.1074/jbc.m111.290437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Asparaginyl deamidation, a spontaneous protein post-biosynthetic modification, determines isoaspartyl formation and structure-function impairment. The isoaspartyl protein carboxyl-O-methyltransferase (PCMT1; EC 2.1.1.77) catalyzes the repair of the isopeptide bonds at isoaspartyl sites, preventing deamidation-related functional impairment. Protein deamidation affects key apoptosis mediators, such as BclxL, thus increasing susceptibility to apoptosis, whereas PCMT1 activity may effectively counteract such alterations. The aim of this work was to establish the role of RNAi as a potential mechanism for regulating PCMT1 expression and its possible implications in apoptosis. We investigated the regulatory properties of the microRNA 15a/16-1 cluster on PCMT1 expression on HepG2 cells. MicroRNA 15a or microRNA 16-1 transfection, as well as their relevant antagonists, showed that PCMT1 is effectively regulated by this microRNA cluster. The direct interaction of these two microRNAs with the seed sequence at the 3' UTR of PCMT1 transcripts was demonstrated by the luciferase assay system. The role of PCMT1 down-regulation in conditioning the susceptibility to apoptosis was investigated using various specific siRNA or shRNA approaches, to prevent non-PCMT1-specific pleiotropic effects to take place. We found that PCMT1 silencing is associated with an increase of the BclxL isoform reported to be inactivated by deamidation, thus making cells more susceptible to apoptosis induced by cisplatinum. We conclude that PCMT1 is effectively regulated by the microRNA 15a/16-1 cluster and is involved in apoptosis by preserving the structural stability and biological function of BclxL from deamidation. Control of PCMT1 expression by microRNA 15a/16-1 may thus represent a late checkpoint in apoptosis regulation.
Collapse
Affiliation(s)
- Irene Sambri
- Department of Biochemistry and Biophysics, Second University of Naples, Naples 80138, Italy
| | - Rosanna Capasso
- Department of Biochemistry and Biophysics, Second University of Naples, Naples 80138, Italy
| | - Piero Pucci
- Ceinge, Advanced Biotechnologies and School of Life Science, "Federico II" University, Naples 80138, Italy
| | - Alessandra F Perna
- First Division of Nephrology, School of Medicine and Surgery, Second University of Naples, Naples 80138, Italy
| | - Diego Ingrosso
- Department of Biochemistry and Biophysics, Second University of Naples, Naples 80138, Italy.
| |
Collapse
|
15
|
Cournoyer P, Desrosiers RR. Valproic acid enhances protein L-isoaspartyl methyltransferase expression by stimulating extracellular signal-regulated kinase signaling pathway. Neuropharmacology 2009; 56:839-48. [PMID: 19371592 DOI: 10.1016/j.neuropharm.2009.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 01/06/2009] [Accepted: 01/09/2009] [Indexed: 11/29/2022]
Abstract
Proteins are susceptible to various non-enzymatic post-translational modifications occurring during aging and in certain pathological states. The protein L-isoaspartyl methyltransferase (PIMT) is an enzyme that recognizes and repairs the abnormal L-isoaspartyl residues in proteins. Recently, we reported that PIMT expression was stimulated by the anti-epileptic drug valproic acid and that this was mediated through the glycogen synthase kinase-3 (GSK-3)/beta-catenin pathway. In this study, to gain further insights into which of the signaling pathways activated by valproic acid regulate PIMT abundance, astrocytoma U-87 MG and neuroblastoma SH-SY5Y cells were treated with this drug to investigate the possible involvement of the extracellular-regulated kinase (ERK) pathway in PIMT induction. Valproic acid increased ERK1/2 phosphorylation on Thr202/Tyr204 and Thr185/Tyr187, respectively. Pharmacological inhibitors against the kinases Src, c-Raf, MEK1/2 and ERK1/2 abolished the ERK1/2 phosphorylation stimulated by valproic acid, thus preventing PIMT induction by the drug. Furthermore, MEK1/2 inhibition with U0126 blocked the higher phosphorylation of RSK-1 on Thr359/Ser363 and of GSK-3beta on Ser9 as well as the increased expression of RSK-1, beta-catenin and PIMT upon treatment with valproic acid. RSK-1 knockdown by interfering RNA abrogated the increased expression of RSK-1, beta-catenin and PIMT as well as the induced phosphorylation of RSK-1 and GSK-3beta due to valproic acid. Thus, our findings demonstrated that PIMT up-regulation by valproic acid required the activation of the ERK signaling pathway including RSK-1 the latter being responsible for inactivating GSK-3 and subsequently leading to beta-catenin stabilization.
Collapse
Affiliation(s)
- Philippe Cournoyer
- Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8
| | | |
Collapse
|
16
|
Lanthier J, Desrosiers RR. Regulation of protein L-isoaspartyl methyltransferase by cell-matrix interactions: involvement of integrin alphavbeta3, PI 3-kinase, and the proteasome. Biochem Cell Biol 2007; 84:684-94. [PMID: 17167531 DOI: 10.1139/o06-055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The enzyme L-isoaspartyl methyltransferase (PIMT) is known to repair damaged proteins that have accumulated abnormal aspartyl residues during cell aging. However, little is known about the mechanisms involved in the regulation of PIMT expression. Here we report that PIMT expression in bovine aortic endothelial cells is regulated by cell detachment and readhesion to a substratum. During cell detachment, the PIMT level was rapidly and strongly increased and correlated with a stimulation of protein synthesis. Aside from endothelial cells, PIMT levels were also regulated by cell adhesion in various cancer cell lines. The upregulation of PIMT expression could be prevented by an anti-alphavbeta3 antibody (LM609) or by a cyclic RGD peptide (XJ735) specific to integrin alphavbeta3, indicating that this integrin was likely involved in PIMT regulation. Moreover, we found that PIMT expression returned to the basal level when cells were replated on a substratum after detachment, though downregulation of PIMT expression could be partly prevented by the PI3K inhibitors LY294002 and wortmannin, as well as by the proteasome inhibitors MG-132, lactacystin, and beta-lactone. These findings support the assumption that the PIMT level was downregulated by proteasomal degradation, involving the PI3K pathway, during cell attachment. This study reports new insights on the molecular mechanisms responsible for the regulation of PIMT expression in cells. The regulation of PIMT level upon cell-substratum contact suggests a potential role for PIMT in biological processes such as wound healing, cell migration, and tumor metastasis dissemination.
Collapse
Affiliation(s)
- Julie Lanthier
- Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | | |
Collapse
|
17
|
Lapointe M, Lanthier J, Moumdjian R, Régina A, Desrosiers RR. Expression and activity of l-isoaspartyl methyltransferase decrease in stage progression of human astrocytic tumors. ACTA ACUST UNITED AC 2005; 135:93-103. [PMID: 15857672 DOI: 10.1016/j.molbrainres.2004.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 09/03/2004] [Accepted: 12/05/2004] [Indexed: 11/30/2022]
Abstract
Protein l-isoaspartyl methyltransferase (PIMT) functions as a repair enzyme that acts upon damaged proteins bearing abnormal aspartyl residues. We previously reported that PIMT expression and activity are reduced by half in human epileptic hippocampus. Here we investigated PIMT regulation in astrocytic tumors, which are the most common human brain tumors. PIMT expression and enzyme activity were significantly decreased in all grades of human astrocytic tumors. More precisely, PIMT levels were significantly lower by 76% in pilocytic astrocytomas (grade I), 46% in astrocytomas (grade II), 69% in anaplastic astrocytomas (grade III), and a marked 80% in glioblastomas (grade IV) as compared to normal brains. RT-PCR analysis showed that levels of type I PIMT mRNA were up-regulated while those of type II PIMT mRNA were down-regulated in glioblastomas. Furthermore, the reduced PIMT levels correlated closely with a decrease in the number of neuron cells in astrocytic tumors as assessed by measuring the neuron-specific enolase level. Many proteins with abnormal aspartyl residues accumulated in brain tumors and some were specific to individual grades of astrocytic tumors. Similar results were obtained, either by measuring the reduction in PIMT activity and expression or by measuring the formation of abnormal proteins, in an orthotopic rat brain tumor model implanted with invasive CNS-1 glioma cells. The novelty of these findings was to provide the first evidence for a marked reduction of PIMT expression and activity during stage progression of astrocytic tumors in humans.
Collapse
Affiliation(s)
- Marjolaine Lapointe
- Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
18
|
Lanthier J, Bouthillier A, Lapointe M, Demeule M, Béliveau R, Desrosiers RR. Down-regulation of protein L-isoaspartyl methyltransferase in human epileptic hippocampus contributes to generation of damaged tubulin. J Neurochem 2002; 83:581-91. [PMID: 12390520 DOI: 10.1046/j.1471-4159.2002.01150.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein L-isoaspartyl methyltransferase (PIMT) repairs the damaged proteins which have accumulated abnormal aspartyl residues during cell aging. Gene targeting has elucidated a physiological role for PIMT by showing that mice lacking PIMT died prematurely from fatal epileptic seizures. Here we investigated the role of PIMT in human mesial temporal lobe epilepsy. Using surgical specimens of hippocampus and neocortex from controls and epileptic patients, we showed that PIMT activity and expression were 50% lower in epileptic hippocampus than in controls but were unchanged in neocortex. Although the protein was down-regulated, PIMT mRNA expression was unchanged in epileptic hippocampus, suggesting post-translational regulation of the PIMT level. Moreover, several proteins with abnormal aspartyl residues accumulate in epileptic hippocampus. Microtubules component beta-tubulin, one of the major PIMT substrates, had an increased amount (two-fold) of L-isoaspartyl residues in the epileptic hippocampus. These results demonstrate that the down-regulation of PIMT in epileptic hippocampus leads to a significant accumulation of damaged tubulin that could contribute to neuron dysfunction in human mesial temporal lobe epilepsy.
Collapse
Affiliation(s)
- Julie Lanthier
- Laboratoire de Médecine Moléculaire, Université du Québec à Montréal, Hôpital Sainte-Justine, C.P. 8888, Succursale Centre-ville, Montréal, Québec, Canada H3C 3P8
| | | | | | | | | | | |
Collapse
|
19
|
Farrar C, Clarke S. Altered levels of S-adenosylmethionine and S-adenosylhomocysteine in the brains of L-isoaspartyl (D-Aspartyl) O-methyltransferase-deficient mice. J Biol Chem 2002; 277:27856-63. [PMID: 12023972 DOI: 10.1074/jbc.m203911200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-Isoaspartyl (D-aspartyl) O-methyltransferase (PCMT1) is a protein repair enzyme that initiates the conversion of abnormal D-aspartyl and L-isoaspartyl residues to the normal L-aspartyl form. In the course of this reaction, PCMT1 converts the methyl donor S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy). Due to the high level of activity of this enzyme, particularly in the brain, it seemed of interest to investigate whether the lack of PCMT1 activity might alter the concentrations of these small molecules. AdoMet and AdoHcy were measured in mice lacking PCMT1 (Pcmt1-/-), as well as in their heterozygous (Pcmt1+/-) and wild type (Pcmt1+/+) littermates. Higher levels of AdoMet and lower levels of AdoHcy were found in the brains of Pcmt1-/- mice, and to a lesser extent in Pcmt1+/- mice, when compared with Pcmt1+/+ mice. In addition, these levels appear to be most significantly altered in the hippocampus of the Pcmt1-/- mice. The changes in the AdoMet/AdoHcy ratio could not be attributed to increases in the activities of methionine adenosyltransferase II or S-adenosylhomocysteine hydrolase in the brain tissue of these mice. Because changes in the AdoMet/AdoHcy ratio could potentially alter the overall excitatory state of the brain, this effect may play a role in the progressive epilepsy seen in the Pcmt1-/- mice.
Collapse
Affiliation(s)
- Christine Farrar
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
20
|
Kinzel V, König N, Pipkorn R, Bossemeyer D, Lehmann WD. The amino terminus of PKA catalytic subunit--a site for introduction of posttranslational heterogeneities by deamidation: D-Asp2 and D-isoAsp2 containing isozymes. Protein Sci 2000; 9:2269-77. [PMID: 11152138 PMCID: PMC2144497 DOI: 10.1110/ps.9.11.2269] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Conserved deamidation of PKA catalytic subunit isozymes Calpha and Cbeta--more than 25% at Asn2 in vivo in both cases--has been shown to yield Asp2- and isoAsp2-containing isozymes (Jedrzejewski PT, Girod A, Tholey A, König N, Thullner S, Kinzel V, Bossemeyer D, 1998, Protein Sci 7:457-469). Isoaspartate formation in proteins in vivo is indicative of succinimide intermediates involved in both the initial deamidation reaction as well as the "repair" of isoAsp to Asp by the action of protein L-isoaspartyl (D-aspartyl) O-methyl transferase (PIMT). L-Succinimide is prone to racemization to D-succinimide, which may hydrolyze to D-isoAsp- and D-Asp-containing diastereomers with, respectively, no and poor substrate character for PIMT. To analyze native PKA catalytic subunit from cardiac muscle for these isomers the N-terminal tryptic peptides (T1) of the enzyme were analyzed following procedures refined specifically with a set of corresponding synthetic peptides. The methods combined high resolution high-performance liquid chromatography and a new mass spectrometric procedure for the discrimination between Asp- and isoAsp-residues in peptides (Lehmann et al., 2000). The results demonstrate the occurrence of D-isoAsp- and D-Asp-containing T1 fragments in addition to the L-isomers. The small amount of the L-isoAsp isomer, representing only part of the D-isoAsp isomer, and the relatively large amounts of the L-Asp and D-Asp isomers argues for an effective action of PIMT present in cardiac tissue.
Collapse
Affiliation(s)
- V Kinzel
- Department of Pathochemistry, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
21
|
Desrosiers RR, Nguyen QT, Béliveau R. The carboxyl methyltransferase modifying G proteins is a metalloenzyme. Biochem Biophys Res Commun 1999; 261:790-7. [PMID: 10441503 DOI: 10.1006/bbrc.1999.0936] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prenylated protein carboxyl methyltransferase (PPMT) catalyzes the posttranslational methylation of isoprenylated C-terminal cysteine residues found in many signaling proteins such as the small monomeric G proteins and the gamma subunits of heterotrimeric G proteins. Here we report that both membrane-bound PPMT from rat kidney and the recombinant bacterially expressed form of the enzyme required divalent cations for catalytic activity. Unlike EDTA and EGTA, the metal chelator 1,10-phenanthroline strongly inhibited the PPMT activity of kidney intracellular membranes in a dose- and time-dependent manner. 1,10-Phenanthroline was found to inhibit the methylation of the prenylcysteine analog N-acetyl-S-all-trans-geranylgeranyl-l-cysteine, a synthetic substrate for PPMT, with an IC(50) of 2.2 mM. Gel electrophoretic analysis demonstrated that 1,10-phenanthroline almost totally abolished the labeling of methylated proteins in kidney intracellular membranes. Immunoblotting analysis showed that one of the two major peaks of (3)H-methylated proteins in intracellular membranes comigrated with the small G proteins Ras, Cdc42, RhoA, and Rab1. In addition, the methylation of immunoprecipitated Ras and RhoA from kidney intracellular membranes was strongly inhibited when 1,10-phenanthroline was present. Treatment of kidney intracellular membranes with 1,10-phenanthroline increased the proteolytic degradation of PPMT by exogenous trypsin, compared to untreated membranes. We conclude from these data that metal ions are essential for the activity and the stabilization of PPMT. The finding that PPMT is a metalloenzyme may provide new insights into the functions played by this methyltransferase in signal transduction processes.
Collapse
Affiliation(s)
- R R Desrosiers
- Laboratoire de Médecine Moléculaire, Centre de Cancérologie Charles Bruneau, Université du Québec à Montréal, Succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | | | | |
Collapse
|
22
|
Desrosiers RR, Béliveau R. Guanosine 5'-(3-O-Thio)triphosphate stimulates protein carboxyl methylation in cell membranes. Arch Biochem Biophys 1999; 367:333-40. [PMID: 10395752 DOI: 10.1006/abbi.1999.1283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using guanosine 5'-(3-O-thio)triphosphate (GTPgammaS), we previously reported that protein carboxyl methyltransferase activities in kidney brush border membranes were increased by the GTP analog (Arch. Biochem. Biophys. 351, 149-158, 1998). Here, we investigated the distribution and characterized the effect of GTPgammaS on protein carboxyl methylation activity. The analysis of species distribution of carboxyl methylation in kidney brush border membranes showed that the GTPgammaS strongly stimulated this activity in rat (15.9-fold), mouse (14.7-fold), human (2.9-fold), and rabbit (2.7-fold). Analysis of GTPgammaS-dependent carboxyl methylation in rat tissues and cell fractions indicated that the activity was mainly localized in membranes of intestine, lung, and kidney, with the highest activity found in liver. To characterize the methyltransferase activity modulated by GTPgammaS in liver membranes, their sensitivity to the detergent 3-[(3-cholamido)dimethylammonio]-1-propanesulfonic acid (Chaps) was used. Methylation of N-acetyl-S-farnesyl cysteine, a prenylated protein methyltransferase (PPMT) substrate was strongly inhibited (86%) in the presence of Chaps, while the methylation of bovine calmodulin and ovalbumin, both of which are substrates for the protein L-isoaspartyl/d-aspartyl methyltransferase (PIMT), was slightly reduced by the detergent (0-12%). The GTPgammaS-dependent carboxyl methylation of endogenous substrates in liver membranes was decreased by 35% in the presence of Chaps, suggesting that PPMT was not the predominant methyltransferase involved in the methylation stimulated by GTPgammaS in liver membranes. Electrophoretic analysis showed that radioactive methylation of several substrates induced by GTPgammaS in liver membranes was reduced by adding calmodulin. Interestingly, addition of GTPgammaS partially inhibited the methylation of two PIMT substrates, ovalbumin (24%) and bovine calmodulin (19%), when incubated with liver membranes. Immunoprecipitation of PIMT from liver and lung membranes strongly inhibited (88-94%) the methylation stimulated by GTPgammaS. Altogether, these data support the hypothesis that GTPgammaS could regulate PIMT activity and may provide new insights into the function of the methyltransferase.
Collapse
Affiliation(s)
- R R Desrosiers
- Centre de cancérologie Charles Bruneau, Université du Québec à Montréal, C. P. 8888, Succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | | |
Collapse
|
23
|
Bilodeau D, Béliveau R. Inhibition of GTPgammaS-dependent L-isoaspartyl protein methylation by tyrosine kinase inhibitors in kidney. Cell Signal 1999; 11:45-52. [PMID: 10206344 DOI: 10.1016/s0898-6568(98)00030-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Protein carboxyl methylation in rat kidney cytosol is increased by the addition of guanosine 5'-O-[gamma-thio]triphosphate (GTPgammaS), a non-hydrolysable analogue of GTP. GTPgammaS-stimulated methyl ester group incorporation takes place on isoaspartyl residues, as attested by the alkaline sensitivity of the labelling and its competitive inhibition by L-isoaspartyl-containing peptides. GTPgammaS was the most potent nucleotide tested, whereas GDPbetaS and ATPgammaS also stimulated methylation but to a lesser extent. Maximal stimulation (5-fold) of protein L-isoaspartyl methytransferase (PIMT) activity by GTPgammaS was reached at a physiological pH in the presence of 10 mM MgCl2. Other divalent cations, such as Cu2+, Zn2+ and Co2+ (100 microM), totally inhibited GTPgammaS-dependent carboxyl methylation. The phosphotyrosine phosphatase inhibitor vanadate potentiated the GTPgammaS stimulation of PIMT activity in the kidney cytosol at a concentration lower than 40 microM, but increasing the vanadate concentration to more than 40 microM resulted in a dose-dependent inhibition of the GTPgammaS effect. The tyrosine kinase inhibitors genistein (IC50 = 4 microM) and tyrphostin (IC50 = 1 microM) abolished GTPgammaS-dependent PIMT activity by different mechanisms, as was revealed by acidic gel analysis of methylated proteins. Whereas tyrphostin stabilised the methyl ester groups, genistein acted by blocking a crucial step required for the activation of PIMT activity by GTPgammaS. The results obtained with vanadate and genistein suggest that tyrosine phosphorylation regulates GTPgammaS-stimulated PIMT activity in the kidney cytosol.
Collapse
Affiliation(s)
- D Bilodeau
- Département de chimie-biochimie, Université du Québec à Montréal et Centre de Cancérologìe Charles Bruneau, Hôpital Ste-Justine, Montréal, Québec, Canada
| | | |
Collapse
|
24
|
Wainwright G, Webster SG, Rees HH. Neuropeptide regulation of biosynthesis of the juvenoid, methyl farnesoate, in the edible crab, Cancer pagurus. Biochem J 1998; 334 ( Pt 3):651-7. [PMID: 9729474 PMCID: PMC1219735 DOI: 10.1042/bj3340651] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The neuropeptide mandibular organ (MO)-inhibiting hormone (MO-IH), synthesized and secreted from the X-organ-sinus-gland complex of the eyestalk, regulates the biosynthesis of the putative crustacean juvenile hormone, methyl farnesoate (MF). Using radiolabelled acetate as a precursor for isoprenoid biosynthesis, farnesoic acid (FA), farnesol, farnesal, MF and geranyl geraniol were detected in MOs cultured for 24 h. Treatment of MOs with extract of sinus gland inhibited the final step of biosynthesis of MF, catalysed by FA O-methyltransferase. Additionally, treatment of MOs with purified MO-IH exhibited a dose-dependent inhibition of this final step of MF synthesis. The extent of this inhibition was dependent on the ovary stage of the MO-donor animal, being maximal in MOs from animals in the early stages of ovarian development. Assay of FA O-methyltransferase activity, using [3H]FA in the presence of S-adenosyl-l-methionine, demonstrated that the enzyme was located in the cytosolic fraction of MOs and was inhibited by incubation of MOs with MO-IH prior to preparation of subcellular fractions. For cytosolic preparations taken from vitellogenic animals, both Vmax and Km were appreciably lower than for those taken from non-vitellogenic animals. Conversely, eyestalk ablation of early-vitellogenic animals, which removes the source of MO-IH in vivo, resulted in enhancement of the cytosolic FA O-methyltransferase activity. Although both Vmax and Km show an appreciable increase upon eyestalk ablation, the increased enzyme activity is probably reflected by the fact that Vmax/Km (an approximate indication of kcat) has increased 5-fold. The combined evidence demonstrates that MO-IH inhibits FA O-methyltransferase, the enzyme which catalyses the final step of MF biosynthesis in MOs.
Collapse
Affiliation(s)
- G Wainwright
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
| | | | | |
Collapse
|
25
|
Desrosiers RR, Béliveau R. Regulation by GTPgammaS of protein carboxylmethyltransferase activity in kidney brush border membranes. Arch Biochem Biophys 1998; 351:149-58. [PMID: 9514644 DOI: 10.1006/abbi.1997.0538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The increase in carboxyl methylation induced by guanosine 5',3-O-(thio)triphosphate (GTPgammaS) in brush border membranes from rat kidney cortex was studied, and the methyltransferase activities affected by this nucleotide analog were identified. Addition of GTPgammaS to brush border membranes stimulated the carboxyl methylation in a time-dependent manner while adenosine and guanine nucleotides were ineffective. The GTPgammaS-dependent carboxyl methylation was inhibited by the chelating agents EDTA (63%) and 1,10-phenanthroline (68%), suggesting that this activity required divalent cations. The methyl ester groups induced by the addition of GTPgammaS to brush border membranes were unstable, with about 80% of them hydrolyzed following 1 h incubation at 37 degrees C. The GTPgammaS stimulation of the carboxyl methylation in brush border membranes was unaffected by the detergent 3-[(3cholamido)-dimethylammonio]-1-propanesulfonic acid up to a concentration of 0.4% (w/v). At this latter detergent concentration, the activity of prenylated protein methyltransferase (PPMT) was strongly inhibited and that of l-isoaspartyl/d-aspartylmethyltransferase (PIMT) was increased twofold, as measured with their respective exogenous substrates, N-acetyl-S-farnesyl cysteine and ovalbumin. GTPgammaS increased the methylation of several substrates in brush border membranes. The induced methylation in substrates migrating between 20 and 36 kDa was strongly decreased by the competitive inhibitor farnesylthioacetic acid, a synthetic farnesylated substrate for PPMT, while a delta-sleep-inducing peptide containing an L-isoaspartyl residue inhibited that of substrates with molecular weights above 36 kDa, suggesting that PIMT activity was also involved. This interpretation was strengthened by the observation that the increased methylation induced by GTPgammaS in these membrane substrates was completely lost following their analysis by gel electrophoresis under alkaline conditions. Taken together, these results indicate that both PPMT and PIMT activities are regulated by guanine nucleotides in brush border membranes of rat kidney.
Collapse
Affiliation(s)
- R R Desrosiers
- Département de chimie-biochimie, et Centre d'oncologie Charles Bruneau, Université du Québec à Montréal, Hôpital Sainte-Justine, Succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | | |
Collapse
|
26
|
Jedrzejewski PT, Girod A, Tholey A, König N, Thullner S, Kinzel V, Bossemeyer D. A conserved deamidation site at Asn 2 in the catalytic subunit of mammalian cAMP-dependent protein kinase detected by capillary LC-MS and tandem mass spectrometry. Protein Sci 1998; 7:457-69. [PMID: 9521123 PMCID: PMC2143929 DOI: 10.1002/pro.5560070227] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The N-terminal sequence myr-Gly-Asn is conserved among the myristoylated cAPK (protein kinase A) catalytic subunit isozymes Calpha, Cbeta, and Cgamma. By capillary LC-MS and tandem MS, we show that, in approximately one third of the Calpha and Cbeta enzyme populations from cattle, pig, rabbit, and rat striated muscle, Asn 2 is deamidated to Asp 2. This deamidation accounts for the major isoelectric variants of the cAPK C-subunits formerly called CA and CB. Deamidation also includes characteristic isoaspartate isomeric peptides from Calpha and Cbeta. Asn 2 deamidation does not occur during C-subunit preparation and is absent in recombinant myristoylated Calpha (rCalpha) from Escherichia coli. Deamidation appears to be the exclusive pathway for introduction of an acidic residue adjacent to the myristoylated N-terminal glycine, verified by the myristoylation negative phenotype of an rCalpha(Asn 2 Asp) mutant. This is the first report thus far of a naturally occurring myr-Gly-Asp sequence. Asp 2 seems to be required for the well-characterized (auto)phosphorylation of the native enzyme at Ser 10. Our results suggest that the myristoylated N terminus of cAPK is a conserved site for deamidation in vivo. Comparable myr-Gly-Asn sequences are found in several signaling proteins. This may be especially significant in view of the recent knowledge that negative charges close to myristic acid in some proteins contribute to regulating their cellular localization.
Collapse
Affiliation(s)
- P T Jedrzejewski
- Department of Central Spectroscopy, German Cancer Research Center, Heidelberg
| | | | | | | | | | | | | |
Collapse
|
27
|
Weber DJ, McFadden PN. Detection and characterization of a protein isoaspartyl methyltransferase which becomes trapped in the extracellular space during blood vessel injury. JOURNAL OF PROTEIN CHEMISTRY 1997; 16:257-67. [PMID: 9188065 DOI: 10.1023/a:1026300924908] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Injury to rat blood vessels in vivo was found to release intracellular pools of protein D-aspartyl/L-isoaspartyl carboxyl methyltransferase (PIMT) into the extracellular milieu, where it becomes trapped. This trapped cohort of PIMT is able to utilize radiolabeled S-adenosyl-L-methionine (AdoMet) introduced into the circulation to methylate blood vessel proteins containing altered aspartyl residues. As further shown in this study, methylated substrates are detected only at the specific site of injury. In vitro studies more fully characterized this endogenous PIMT activity in thoracic aorta and inferior vena cava. Methylation kinetics, immunoblotting, and the lability of methylated substrates at mild alkaline pH were used to demonstrate that both types of blood vessel contain an endogenous protein D-aspartyl/L-isoaspartyl carboxyl methyltransferase (PIMT). At least 50% of the PIMT activity is resistant to nonionic detergent extraction, suggesting that the enzyme activity becomes trapped within or behind the extracellular matrix (ECM). Quantities of lactate dehydrogenase (LDH), another soluble enzyme of presumed intracellular origin, were found to be similarly trapped in the extracellular space of blood vessels.
Collapse
Affiliation(s)
- D J Weber
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331, USA
| | | |
Collapse
|