1
|
Horovitz-Fried M, Cooper DR, Patel NA, Cipok M, Brand C, Bak A, Inbar A, Jacob AI, Sampson SR. Insulin rapidly upregulates protein kinase Cdelta gene expression in skeletal muscle. Cell Signal 2005; 18:183-93. [PMID: 16095881 DOI: 10.1016/j.cellsig.2005.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 04/07/2005] [Indexed: 11/28/2022]
Abstract
Recent studies in our laboratories have shown that Protein Kinase C delta (PKCdelta) is essential for insulin-induced glucose transport in skeletal muscle, and that insulin rapidly stimulates PKCdelta activity skeletal muscle. The purpose of this study was to examine mechanisms of regulation of PKCdelta protein availability. Studies were done on several models of mammalian skeletal muscle and utilized whole cell lysates of differentiated myotubes. PKCdelta protein levels were determined by Western blotting techniques, and PKCdelta RNA levels were determined by Northern blotting, RT-PCR and Real-Time RT-PCR. Insulin stimulation increased PKCdelta protein levels in whole cell lysates. This effect was not due to an inhibition by insulin of the rate of PKCdelta protein degradation. Insulin also increased 35S-methionine incorporation into PKCdelta within 5-15 min. Pretreatment of cells with transcription or translation inhibitors abrogated the insulin-induced increase in PKCdelta protein levels. We also found that insulin rapidly increased the level of PKCdelta RNA, an effect abolished by inhibitors of transcription. The insulin-induced increase in PKCdelta expression was not reduced by inhibition of either PI3 Kinase or MAP kinase, indicating that these signaling mechanisms are not involved, consistent with insulin activation of PKCdelta. Studies on cells transfected with the PKCdelta promoter demonstrate that insulin activated the promoter within 5 min. This study indicates that the expression of PKCdelta may be regulated in a rapid manner during the course of insulin action in skeletal muscle and raise the possibility that PKCdelta may be an immediate early response gene activated by insulin.
Collapse
|
2
|
Peng Z, Beaven MA. An essential role for phospholipase D in the activation of protein kinase C and degranulation in mast cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:5201-8. [PMID: 15843515 DOI: 10.4049/jimmunol.174.9.5201] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of phospholipase D (PLD) and protein kinase C (PKC) as well as calcium mobilization are essential signals for degranulation of mast cells. However, the exact role of PLD in degranulation remains undefined. In this study we have tested the hypothesis that the PLD product, phosphatidic acid, and diacylglycerides generated therefrom might promote activation of PKC. Studies were conducted in two rodent mast cell lines that were stimulated with Ag via FcepsilonRI and a pharmacologic agent, thapsigargin. Diversion of production of phosphatidic acid to phosphatidylbutanol (the transphosphatidylation reaction) by addition of l-butanol suppressed both the translocation of diacylglyceride-dependent isoforms of PKC to the membrane and degranulation. Tertiary-butanol, which is not a substrate for the transphosphatidylation, had a minimal effect on PKC translocation and degranulation, and 1-butanol itself had no effect on PKC translocation when PKC was stimulated directly with phorbol ester, 12-O-tetradecanoylphorbol-13-acetate. Also, in cells transfected with small inhibitory RNAs directed against PLD1 and PLD2, activation of PLD, generation of diacylglycerides, translocation of PKC, and degranulation were all suppressed. Phorbol ester, which did not stimulate degranulation by itself, restored degranulation when used in combination with thapsigargin whether PLD function was disrupted with 1-butanol or the small inhibitory RNAs. However, degranulation was not restored when cells were costimulated with Ag and phorbol ester. These results suggested that the production of phosphatidic acid by PLD facilitates activation of PKC and, in turn, degranulation, although additional PLD-dependent processes appear to be critical for Ag-mediated degranulation.
Collapse
Affiliation(s)
- Ze Peng
- Laboratory of Molecular Immunology, National, Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | |
Collapse
|
3
|
Srivastava J, Procyk KJ, Iturrioz X, Parker PJ. Phosphorylation is required for PMA- and cell-cycle-induced degradation of protein kinase Cdelta. Biochem J 2002; 368:349-55. [PMID: 12207561 PMCID: PMC1222988 DOI: 10.1042/bj20020737] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2002] [Revised: 08/19/2002] [Accepted: 09/04/2002] [Indexed: 11/17/2022]
Abstract
Classical and novel protein kinase C (PKC) isoforms are down-regulated as a result of chronic activation by certain tumour promoters and physiological stimuli; however, the mechanisms leading to down-regulation are not fully understood. In the present study, we have studied the PMA ('TPA')-induced degradation of PKCdelta in NIH 3T3 cells under culture conditions where PKCdelta displays cell-cycle-dependent down-regulation. In contrast with previous studies, a hyperphosphorylated form of this PKC isoform, promoted by calyculin A, was rapidly degraded in PMA-treated cells. Similarly, the presence of calyculin A enhanced the down-regulation of PKCdelta observed on G(1)/S-phase progression through the cell cycle. Analysis of phosphorylation-site mutants indicated that the T-loop Thr(505) phosphorylation site was critical for induced degradation.
Collapse
Affiliation(s)
- Jyoti Srivastava
- Protein Phosphorylation Laboratory, Cancer Research UK London Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, U.K
| | | | | | | |
Collapse
|
4
|
Srivastava J, Goris J, Dilworth SM, Parker PJ. Dephosphorylation of PKCdelta by protein phosphatase 2Ac and its inhibition by nucleotides. FEBS Lett 2002; 516:265-9. [PMID: 11959144 DOI: 10.1016/s0014-5793(02)02500-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The protein phosphatases PP1(c), PP2A(c) and PP2Calpha are shown to dephosphorylate protein kinase Cdelta (PKCdelta) in vitro; of these PP2A(c) displayed the highest specific activity towards PKCdelta. The role of PP2A(c) in the dephosphorylation of PKCdelta in cells was supported by the demonstration that these proteins could be co-immunoprecipitated from NIH3T3 cells. However the observation that binding of Mg-ATP to PKCdelta could protect the enzyme from dephosphorylation by PP2A(c) in vitro indicates that an additional input/factor is required for dephosphorylation in vivo.
Collapse
Affiliation(s)
- Jyoti Srivastava
- Protein Phosphorylation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK
| | | | | | | |
Collapse
|
5
|
Pettitt TR, Wakelam MJ. Diacylglycerol kinase epsilon, but not zeta, selectively removes polyunsaturated diacylglycerol, inducing altered protein kinase C distribution in vivo. J Biol Chem 1999; 274:36181-6. [PMID: 10593903 DOI: 10.1074/jbc.274.51.36181] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Porcine aortic endothelial cells have previously been shown to contain particularly high basal levels of polyunsaturated diacylglycerol (DAG) together with a very high degree of membrane-associated protein kinase C (PKC), which is largely insensitive to further activation (Pettitt, T. R., Martin, A., Horton, T., Liossis, C., Lord, J. M., and Wakelam, M. J. O. (1997) J. Biol. Chem. 272, 17354-17359). To investigate the possibility that the high polyunsaturated DAG levels were constitutively activating PKC, we transfected porcine aortic endothelial cells with two different forms of human diacylglycerol kinase, epsilon and zeta. In vitro, the former is specific for polyunsaturated structures, whereas the latter shows no apparent selectivity. Overexpression of DAGKepsilon specifically reduced the level of polyunsaturated DAG in the transfected cells while having little effect on the more saturated structures. It also caused the redistribution of PKCalpha and epsilon from the membrane to the cytosol. Overexpression of DAGKzeta caused a general reduction in DAG levels but had little effect on PKC distribution. These results for the first time show that DAGKepsilon specifically phosphorylates polyunsaturated DAG in vivo and that in so doing it regulates PKC localization and activity. This provides support for the proposal that it is the polyunsaturated DAGs that function as messengers and convincing evidence for DAGKepsilon being a physiological terminator of DAG second messenger signaling.
Collapse
Affiliation(s)
- T R Pettitt
- Institute for Cancer Studies, The University of Birmingham, Birmingham B15 2TA, United Kingdom
| | | |
Collapse
|
6
|
Abstract
The protein kinase C (PKC) family consists of 11 isoenzymes that, due to structural and enzymatic differences, can be subdivided into three groups: The Ca(2+)-dependent, diacylglycerol (DAG)-activated cPKCs (conventional PKCs: alpha, beta 1, beta 2, gamma); the Ca(2+)-independent, DAG-activated nPKCs (novel PKCs: delta, epsilon, eta, theta, mu), and the Ca(2+)-dependent, DAG non-responsive aPKCs (atypical PKCs: zeta, lambda/iota). PKC mu is a novel PKC, but with some special structural and enzymatic properties.
Collapse
Affiliation(s)
- M Gschwendt
- German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
7
|
Abstract
1. 1,2-Diacyl-sn-glycerols (DAG) are minor components of cell membranes (about 1 mole% of the lipids) and yet they are potent regulators of both the physical properties of the lipid bilayer and the catalytic behaviour of several membrane-related enzymes. 2. In the pure state DAG's present a considerable polymorphism, with several crystalline phases in addition to the neat fluid phase. The most stable crystalline phase is the so-called beta' phase, a monoclinic crystalline form with orthorhombic perpendicular subcell chain packing, in which both acyl chains lie parallel to each other in a hairpinlike configuration about the sn-1 and sn-2 glycerol carbon atoms. The molecules are organized in a bilayer, with the glycerol backbone roughly parallel to the plane of the bilayer, and the acyl chains tilted at approximately 60 degrees with respect to that plane. Acyl chain unsaturation, and particularly a single cis unsaturation, impairs chain packing in mixed-chain DAG's, and this results in an increased number of metastable crystalline phases. 3. DAG's mix with phospholipids in fluid bilayers when their melting temperature is below or close enough to the melting temperature of the bilayer system. When incorporated in phospholipid bilayers, the conformation of DAG is such that the glycerol backbone is nearly perpendicular to the bilayer, with the sn-1 chain extending from the glycerol Cl carbon into the hydrophobic matrix of the bilayer and the sn-2 chain first extending parallel to the bilayer surface, then making a 90 degrees bend at the position of the sn-1 carbonyl to become parallel to the sn-1 chain. DAG's are located in phospholipid bilayers about two CH2 units deeper than the adjacent phospholipids. DAG's mix nonideally with phospholipids, giving rise to in-plane separations of DAG-rich and -poor domains, even in the fluid state. DAG molecules also increase the separation between phospholipid headgroups, and decrease the hydration of the bilayer surface. Also, because the transversal section of the DAG headgroup is small when compared to that of the acyl chains, DAG favours the (negative) curvature of the lipid monolayers, and DAG-phospholipid mixtures tend to convert into inverted nonlamellar hexagonal or cubic phases. 4. A number of membrane enzyme activities are modulated (activated) by DAG, most notably protein kinase C, phospholipases and other enzymes of lipid metabolism. Protein kinase C activation (and perhaps that of other enzymes as well) occurs as the combined result of a number of DAG-induced modifications of lipid bilayers that include: changes in lipid headgroup conformation, interspacing and hydration, changes in the bilayer propensity to form inverted nonlamellar phases, and lateral phase separations of DAG-rich and -poor domains. Among the DAG-activated enzymes, phospholipases C show the peculiarity of yielding the activator DAG as their reaction product, and this allows the self-induced transition from a low- to a high-activity status. 5. DAG's induce or enhance membrane fusion in a number of ways, mainly through partial dehydration of the bilayer surface, increase in lipid monolayer curvature and perhaps lateral phase separation. DAG-increased fusion rates have been demonstrated in several instances of cation-induced fusion of model membranes, as well as in Ca(2+)-induced fusion of chromaffin granules with plasma membrane vesicles. Also phospholipase C has been shown to induce vesicle aggregation and fusion through the catalytic generation of DAG in the bilayers. A rather general property of DAG is that it promotes vesicular or interparticle aggregation. 6. In the living cell, DAG is often generated through phospholipid degradation in response to an extracellular agonist binding a specific receptor in the cell surface. DAG is said to act as an intracellular second messenger. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- F M Goñi
- Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | | |
Collapse
|
8
|
Abstract
Distinct, structurally different forms of sn-1,2-diacylglycerol are found in cells, these are polyunsaturated, mono- or di-unsaturated and saturated. The pathways that generate or metabolise sn-1, 2-diacylglycerol are reviewed. The evidence that it is the polyunsaturated forms of sn-1,2-diacylglycerol, but the more saturated forms of phosphatidate which function as intracellular signals is considered.
Collapse
Affiliation(s)
- M J Wakelam
- Institute for Cancer Studies, Birmingham University, Queen Elizabeth Hospital, Clinical Research Block, Birmingham B15 2TA, UK.
| |
Collapse
|
9
|
Wakelam MJ, Harnett MM. Phospholipase A2 (EC 3.1.1.4) and D (EC 3.1.4.4) signalling in lymphocytes. Proc Nutr Soc 1998; 57:551-4. [PMID: 10096115 DOI: 10.1079/pns19980079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M J Wakelam
- Institute for Cancer Studies, Birmingham University Medical School, UK.
| | | |
Collapse
|
10
|
Arita Y, Buffolino P, Coppock DL. Regulation of the cell cycle at the G2/M boundary in metastatic melanoma cells by 12-O-tetradecanoyl phorbol-13-acetate (TPA) by blocking p34cdc2 kinase activity. Exp Cell Res 1998; 242:381-90. [PMID: 9683525 DOI: 10.1006/excr.1997.3911] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
12-O-Tetradecanoyl phorbol-13-acetate (TPA) inhibits the growth of most malignant melanoma cells but stimulates the growth of normal human melanocytes. We previously showed that addition of TPA inhibits the growth of the human metastatic melanoma cell line, Demel, by blocking cells at both the G1/S and G2/M cell cycle transitions (D. L. Coppock et al., 1992, Cell Growth Differ. 3, 485-494). To examine the G2/M transition, we developed a method to synchronize the cells in early S phase using Lovastatin and mevalonate, followed by treatment with hydroxyurea (HU). TPA (30 nM) was effective in blocking cells from entering mitosis and reentering G1 when added up to the end of G2. These cells arrested in G2. Examination of the levels of cyclins A and B1 demonstrated that the levels of these cyclins were not limiting for entrance into M. However, the addition of TPA blocked the increase in p34(cdc2)/cyclin B1 kinase activity. In cells treated with TPA, most p34(cdc2) was found in the slowly migrating forms on Western blots, which contained increased levels of phosphotyrosine. In addition, the level of the cyclin-dependent kinase inhibitor p21(Cip1/Waf1), but not of p27(Kip1), was increased. We examined the expression of protein kinase C (PKC) isoforms in Demel cells using Western blots to understand which types were involved in the G2 arrest. Demel cells expressed the PKC alpha, betaI, betaII, delta, epsilon, iota/lambda, zeta, and mu isozymes. PKC eta and PKC theta were not detected. Addition of TPA did not completely down regulate any PKC isozymes over a 12-h period in these synchronized cells. PKC alpha, betaI, betaII, delta, and epsilon isozymes were translocated to the membrane fraction from the cytosolic fraction when treated with TPA. PKC delta appeared as a doublet and the addition of TPA shifted a majority to the slower migrating form. The level of PKC mu was constant; however, a slow mobility form was observed in TPA-treated cells. This reduced mobility was at least partially due to phosphorylation. Thus, the arrest of growth in G2 appears to be due to the inhibition of the p34(cdc2) kinase activity which is associated with the increased expression of p21(Cip1/Waf1) and increased phosphorylation on tyrosine of p34(cdc2). This arrest, in turn, is associated with a shift of PKC isozymes PKC alpha, PKC betaI, PKC betaII, PKC delta, PKC epsilon, and PKC mu to the membrane fraction which is induced by addition of TPA.
Collapse
Affiliation(s)
- Y Arita
- Oncology Research Lab, Winthrop University Hospital, 222 Station Plaza North No. 300, Mineola, New York, 11501, USA
| | | | | |
Collapse
|
11
|
Hodgkin MN, Pettitt TR, Martin A, Michell RH, Pemberton AJ, Wakelam MJ. Diacylglycerols and phosphatidates: which molecular species are intracellular messengers? Trends Biochem Sci 1998; 23:200-4. [PMID: 9644971 DOI: 10.1016/s0968-0004(98)01200-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In eukaryotes, many receptor agonists use phospholipase-generated lipids as intracellular messengers. Receptor occupation stimulates the production of polyunsaturated 1,2-diacylglycerols by phosphatidylinositol-4,5-bisphosphate specific phospholipases C and/or of mono-unsaturated and saturated phosphatidates by phospholipase-D-catalysed phosphatidylcholine breakdown. The primary phospholipase products are rapidly metabolized: polyunsaturated 1,2-diacylglycerols are converted to polyunsaturated phosphatidates by diacylglycerol kinase; mono-unsaturated and saturated phosphatidates are dephosphorylated to give mono-unsaturated and saturated 1,2-diacylglycerols by phosphatidate phosphohydrolase. The phospholipase-generated polyunsaturated 1,2-diacylglycerols and mono-unsaturated and saturated phosphatidates appear to be intracellular messengers, whereas their immediate metabolites probably do not have signalling functions.
Collapse
Affiliation(s)
- M N Hodgkin
- Institute for Cancer Studies, University of Birmingham Edgbaston, UK
| | | | | | | | | | | |
Collapse
|
12
|
Wooten MW, Seibenhener ML, Heikkila JE, Mischak H. Delta-protein kinase C phosphorylation parallels inhibition of nerve growth factor-induced differentiation independent of changes in Trk A and MAP kinase signalling in PC12 cells. Cell Signal 1998; 10:265-76. [PMID: 9617484 DOI: 10.1016/s0898-6568(97)00127-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the ability of bryostatin 1 to block nerve growth factor (NGF)-induced differentiation of pheochromocytoma PC12 cells and to effect expression of protein kinase C (PKC) isoforms. Compared with phorbol myristate acetate (PMA), a likewise potent activator of PKC, high doses of bryostatin (> 200 nM) failed to down-regulate delta-PKC, as with zeta-PKC, whereas, alpha-PKC was completely down-regulated. Two forms of delta-PKC were expressed in PC12 cells, a phosphorylated 78.000 M(r) species and a de-phosphorylated 76.000 M(r) form. High-dose bryostatin treatment resulted in a 4.5-fold increase in phosphorylated delta-PKC and a 2.5-fold increase in phosphotyrosine. Inhibition of tyrosine kinase activity, with either herbimycin or genistein, prior to addition of bryostatin abrogated protection from down-regulation and led to simultaneous increases in ubiquitinated 110.000 M(r)-delta-PKC. Similarly, pre-treatment of cells with N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal, an inhibitor of the proteasome pathway, prior to low-dose treatment with bryostatin resulted in a dose-dependent accumulation of delta-PKC and inhibition of down-regulation. Protection of delta-PKC from down-regulation by high-dose bryostatin requires a counter-balance between protein tyrosine kinase and phosphatase systems. High doses of bryostatin blocked NGF-induced neurite outgrowth without altering Y-490 TrK A phosphorylation or an alteration in pp44/42 mitogen-activated protein kinase. Our findings suggest that the phosphorylation state of delta-PKC may regulate its ability to participate in signal coupling and modulation of cell growth and differentiation pathways. Moreover, these data reveal the existence of a signalling pathway independent of MAP kinase that affects NGF differentiation in a negative fashion.
Collapse
Affiliation(s)
- M W Wooten
- Department of Zoology, Auburn University, AL 36849.
| | | | | | | |
Collapse
|
13
|
Pettitt TR, Martin A, Horton T, Liossis C, Lord JM, Wakelam MJ. Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions. Phospholipase D-derived diacylglycerol does not activate protein kinase C in porcine aortic endothelial cells. J Biol Chem 1997; 272:17354-9. [PMID: 9211874 DOI: 10.1074/jbc.272.28.17354] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stimulation of cells with certain agonists often activates both phospholipases C and D. These generate diacylglycerol and phosphatidate, respectively, although the two lipids are also apparently interconvertable through the actions of phosphatidate phosphohydrolase and diacylglycerol kinase. Diacylglycerol activates protein kinase C while one role for phosphatidate is the activation of actin stress fiber formation. Therefore, if the two lipids are interconvertable, it is theoretically possible that an uncontrolled signaling loop could arise. To address this issue structural analysis of diacylglycerol, phosphatidate, and phosphatidylbutanol (formed in the presence of butan-1-ol) from both Swiss 3T3 and porcine aortic endothelial cells was performed. This demonstrated that phospholipase C activation generates primarily polyunsaturated species while phospholipase D activation generates saturated/monounsaturated species. In the endothelial cells, where phospholipase D was activated by lysophosphatidic acid independently of phospholipase C, there was no activation of protein kinase C. Thus we propose that only polyunsaturated diacylglycerols and saturated/monounsaturated phosphatidates function as intracellular messengers and that their interconversion products are inactive.
Collapse
Affiliation(s)
- T R Pettitt
- Institute for Cancer Studies, The University of Birmingham, Birmingham B15 2TH, United Kingdom
| | | | | | | | | | | |
Collapse
|