1
|
Meshkini A. Fine-tuning of the cellular signaling pathways by intracellular GTP levels. Cell Biochem Biophys 2015; 70:27-32. [PMID: 24643502 DOI: 10.1007/s12013-014-9897-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has become increasingly evident that among purine nucleotides, guanine based nucleotides specially guanosine-5'-triphosphate (GTP) serve as an important and independent regulatory factors for development and diverse cellular functions such as differentiation, metabolism, proliferation and survival in multiple tissues. In this brief review, it has been provided selective outline related to delicate regulation of signaling pathways by guanosine based nucleotides as intracellular signaling molecules. Although the exact mode of action of theses nucleotides in many biological processes and signaling pathways is still elusive, it has become well clear that intracellular guanosine based nucleotides content rather than adenosine based nucleotides could modulate the intensity and duration of signaling which ultimately impact on cell's fate. It opens an entirely new perspective for developing new and potential therapeutic strategies to combat diseases like cancer, hypoxia, etc.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,
| |
Collapse
|
2
|
Rovira M, Huang W, Yusuff S, Shim JS, Ferrante AA, Liu JO, Parsons MJ. Chemical screen identifies FDA-approved drugs and target pathways that induce precocious pancreatic endocrine differentiation. Proc Natl Acad Sci U S A 2011; 108:19264-9. [PMID: 22084084 PMCID: PMC3228434 DOI: 10.1073/pnas.1113081108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pancreatic β-cells are an essential source of insulin and their destruction because of autoimmunity causes type I diabetes. We conducted a chemical screen to identify compounds that would induce the differentiation of insulin-producing β-cells in vivo. To do this screen, we brought together the use of transgenic zebrafish as a model of β-cell differentiation, a unique multiwell plate that allows easy visualization of lateral views of swimming larval fish and a library of clinical drugs. We identified six hits that can induce precocious differentiation of secondary islets in larval zebrafish. Three of these six hits were known drugs with a considerable background of published data on mechanism of action. Using pharmacological approaches, we have identified and characterized two unique pathways in β-cell differentiation in the zebrafish, including down-regulation of GTP production and retinoic acid biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun O. Liu
- Pharmacology and Molecular Sciences, and
- Department of Oncology, and
| | - Michael J. Parsons
- Departments of Surgery
- McKusick-Nathans Institute for Genetic Medicine, The Johns Hopkins University, Baltimore, MD 21205; and
| |
Collapse
|
3
|
Intracellular GTP level determines cell's fate toward differentiation and apoptosis. Toxicol Appl Pharmacol 2011; 253:188-96. [PMID: 21396949 DOI: 10.1016/j.taap.2011.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/09/2011] [Accepted: 02/28/2011] [Indexed: 01/23/2023]
Abstract
Since the adequate supply of guanine nucleotides is vital for cellular activities, limitation of their syntheses would certainly result in modulation of cellular fate toward differentiation and apoptosis. The aim of this study was to set a correlation between the intracellular level of GTP and the induction of relevant signaling pathways involved in the cell's fate toward life or death. In that regard, we measured the GTP level among human leukemia K562 cells exposed to mycophenolic acid (MPA) or 3-hydrogenkwadaphnin (3-HK) as two potent inosine monophosphate dehydrogenase inhibitors. Our results supported the maturation of the cells when the intracellular GTP level was reduced by almost 30-40%. Under these conditions, 3-HK and/or MPA caused up-regulation of PKCα and PI3K/AKT pathways. Furthermore, co-treatment of cells with hypoxanthine plus 3-HK or MPA, which caused a reduction of about 60% in the intracellular GTP levels, led to apoptosis and activation of mitochondrial pathways through inverse regulation of Bcl-2/Bax expression and activation of caspase-3. Moreover, our results demonstrated that attenuation of GTP by almost 60% augmented the intracellular ROS and nuclear localization of p21 and subsequently led to cell death. These results suggest that two different threshold levels of GTP are needed for induction of differentiation and/or ROS-associated apoptosis.
Collapse
|
4
|
Shimono D, Fujimoto S, Mukai E, Takehiro M, Nabe K, Radu RG, Shimodahira M, Kominato R, Aramaki Y, Nishi Y, Funakoshi S, Yamada Y, Seino Y. ATP enhances exocytosis of insulin secretory granules in pancreatic islets under Ca2+-depleted condition. Diabetes Res Clin Pract 2005; 69:216-23. [PMID: 16098917 DOI: 10.1016/j.diabres.2005.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 12/30/2004] [Accepted: 01/24/2005] [Indexed: 10/25/2022]
Abstract
Glucose and other nutrients have been shown to stimulate insulin release from pancreatic islets under Ca2+-depleted condition when protein kinase A (PKA) and protein kinase C (PKC) are activated simultaneously. We investigated the role of metabolic nucleotide signals including ATP, ADP, and GTP in exocytosis of insulin secretory granules under Ca2+-depleted condition using electrically permeabilized rat islets. ATP under PKC activation augmented insulin release concentration-dependently by 100 nM 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in Ca2+-depleted condition, while ADP could not suppress ATP-dependent insulin release in this condition. Neither GTP nor activated PKA in the absence of PKC activation increased insulin release under Ca2+-depleted condition in the presence of ATP, but both enhanced insulin secretion in the presence of ATP when PKC was activated. In conclusion, activated PKC and the presence of ATP both are required in the insulin secretory process under Ca2+-depleted condition. While PKA activation and GTP cannot substitute for PKC activation and ATP, respectively, under Ca2+-depleted condition, they enhance ATP-dependent insulin secretion when PKC is activated.
Collapse
Affiliation(s)
- Dai Shimono
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Schwoebel ED, Ho TH, Moore MS. The mechanism of inhibition of Ran-dependent nuclear transport by cellular ATP depletion. J Cell Biol 2002; 157:963-74. [PMID: 12058015 PMCID: PMC2174045 DOI: 10.1083/jcb.200111077] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rran-dependent nuclear transport requires a nuclear pool of RanGTP both for the assembly of export complexes and the disassembly of import complexes. Accordingly, in order for these processes to proceed, Ran-dependent nuclear import and export assays in vitro require the addition of GTP to produce RanGTP. Notably, no ATP requirement can be detected for these transport processes in vitro. But in vivo, when cells are depleted of ATP by the addition of sodium azide and 2-deoxyglucose to block ATP production by oxidative phosphorylation and glycolysis, respectively, Ran-dependent nuclear import and export are rapidly inhibited. This raised the question of whether there is an ATP requirement for these nuclear transport pathways in an intact cell that has remained undetected in vitro. Here we report that the free (but not total) GTP concentration rapidly drops to an undetectable level upon ATP depletion as does the availability of RanGTP. Our conclusion is that the inhibition of Ran-dependent nuclear transport observed upon ATP depletion in vivo results from a shortage of RanGTP rather than the inhibition of some ATP-dependent process.
Collapse
Affiliation(s)
- Eric D Schwoebel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
6
|
Huo J, Luo RH, Metz SA, Li G. Activation of caspase-2 mediates the apoptosis induced by GTP-depletion in insulin-secreting (HIT-T15) cells. Endocrinology 2002; 143:1695-704. [PMID: 11956151 DOI: 10.1210/endo.143.5.8810] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigated the possible involvement of a specific caspase(s) (a family of aspartate-specific cysteine proteases) in programmed cell death of islet beta-cells due to sustained GTP depletion. Treatment (up to 48 h) with 3 microg/ml mycophenolic acid (MPA), which specifically depletes intracellular guanine nucleotides, reduced cell-cycle progression from G1 phase into S and G2/M phases (as assessed by flow cytometry) and, subsequently, induced apoptosis of HIT-15 cells (transformed pancreatic beta-cells). The latter was accompanied by a marked increase of caspase-2 activity (+343%) and moderate activation of caspase-9 (+150%) and caspase-3 (+145%). Importantly, only caspase-2 activation preceded induction of apoptosis. There was no change in activity of caspase-1, -4, -5, -6, and -8. Release of the mitochondrial protein cytochrome c into cytosol was also observed at a late stage. Cotreatment of cells with a permeable pan-caspase inhibitor (Z-VAD-FMK) blocked GTP depletion-induced cell death in a dose-dependent manner. A specific caspase-2 inhibitor (Z-VDVAD-FMK), but not a caspase-3 inhibitor (DEVD-CHO), was also capable of restoring cell viability. Interestingly, activation of caspase-2 leads to caspase-3 activation because the caspase-2 inhibitor abrogated caspase-3 activity. Our results indicate that, while activation of multiple caspases are involved in the execution phase of GTP depletion-induced apoptosis, caspase-2 appears to play the major role in the initiation of this program. This study revealed a novel, caspase-2 mediated form of apoptosis that may be consequent to impaired mitogenesis.
Collapse
Affiliation(s)
- Jianxin Huo
- Cardiovascular Research Institute, National University Medical Institutes, National University of Singapore, 10 Medical Drive, Singapore 117597
| | | | | | | |
Collapse
|
7
|
Tanizawa Y, Nakai K, Sasaki T, Anno T, Ohta Y, Inoue H, Matsuo K, Koga M, Furukawa S, Oka Y. Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion: identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells overexpressing the mutant glutamate dehydrogenase. Diabetes 2002; 51:712-7. [PMID: 11872671 DOI: 10.2337/diabetes.51.3.712] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glutamate dehydrogenase (GDH) is important in normal glucose homeostasis. Mutations of GDH result in hyperinsulinism/hyperammonemia syndrome. Using PCR/single-strand conformation polymorphism analysis of the gene encoding GDH in 12 Japanese patients with persistent hyperinsulinemic hypoglycemia of infancy (PHHI), we found a mutation (Y266C) in one PHHI patient. This mutation was not found in any of the control or type 2 diabetic subjects. The activity of the mutant GDH (GDH266C), expressed in COS-7 cells, was constitutively elevated, and allosteric regulations by ADP and GTP were severely impaired. The effect of the unregulated increase in GDH activity on insulin secretion was examined by overexpressing GDH266C in an insulinoma cell line, MIN6. Although glutamine alone did not stimulate insulin secretion from control MIN6-lacZ, it remarkably stimulated insulin secretion from MIN6-GDH266C. This finding suggests that constitutively activated GDH enhances oxidation of glutamate, which is intracellularly converted from glutamine to alpha-ketoglutarate, a tricarboxylic acid cycle substrate, which thereby stimulates insulin secretion. Interestingly, insulin secretion is also exaggerated significantly at low glucose concentrations (2 and 5 mmol/l) but not at higher glucose concentrations (8--25 mmol/l). Our results directly illustrate the importance of GDH in the regulation of insulin secretion from pancreatic beta-cells.
Collapse
Affiliation(s)
- Yukio Tanizawa
- Department of Bio-Signal Analysis, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Batiuk TD, Schnizlein-Bick C, Plotkin Z, Dagher PC. Guanine nucleosides and Jurkat cell death: roles of ATP depletion and accumulation of deoxyribonucleotides. Am J Physiol Cell Physiol 2001; 281:C1776-84. [PMID: 11698235 DOI: 10.1152/ajpcell.2001.281.6.c1776] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Guanine nucleosides are toxic to some forms of cancer. This toxicity is pronounced in cancers with upregulated guanine nucleotide synthesis, but the mechanisms are poorly understood. We investigated this toxicity by measuring the effects of guanine nucleosides on nucleotides in Jurkat cells using HPLC. We also measured proliferation and cell death with microscopy and fluorescence-activated cell sorting. Guanosine increased GTP to 600% and reduced ATP to 40% of control. This resulted in cell death with a predominance of necrosis. Deoxyguanosine caused similar increases in GTP but at earlier time points. Cell death was severe with a predominance of apoptosis. Deoxyguanosine but not guanosine increased dGTP to 800% of control. Adenosine inhibited the effects of guanosine, in part by competing for uptake. In stimulated leukocytes, guanosine and deoxyguanosine altered the nucleotide pools in a way qualitatively similar to that observed in Jurkat cells. However, proliferation was enhanced rather than impaired. In conclusion, guanosine and deoxyguanosine are toxic to Jurkat cells through two mechanisms: ATP depletion, causing necrosis, and the accumulation of dGTP, resulting in apoptosis.
Collapse
Affiliation(s)
- T D Batiuk
- Department of Medicine, Indiana University and Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
10
|
Fujimoto S, Tsuura Y, Ishida H, Tsuji K, Mukai E, Kajikawa M, Hamamoto Y, Takeda T, Yamada Y, Seino Y. Augmentation of basal insulin release from rat islets by preexposure to a high concentration of glucose. Am J Physiol Endocrinol Metab 2000; 279:E927-40. [PMID: 11001778 DOI: 10.1152/ajpendo.2000.279.4.e927] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have found that preexposure to an elevated concentration of glucose reversibly induces an enhancement of basal insulin release from rat pancreatic islets dependent on glucose metabolism. This basal insulin release augmented by priming was not suppressed by reduction of the intracellular ATP or Ca(2+) concentration, because even in the absence of ATP at low Ca(2+), the augmentation was not abolished from primed electrically permeabilized islets. Moreover, it was not inhibited by an alpha-adrenergic antagonist, clonidine. A threshold level of GTP is required to induce these effects, because together with adenine, mycophenolic acid, a cytosolic GTP synthesis inhibitor, completely abolished the enhancement of basal insulin release due to the glucose-induced priming without affecting the glucose-induced increment in ATP content and ATP-to-ADP ratio. In addition, a GDP analog significantly suppressed the enhanced insulin release due to priming from permeabilized islets in the absence of ATP at low Ca(2+), suggesting that the GTP-sensitive site may play a role in the augmentation of basal insulin release due to the glucose-induced priming effect.
Collapse
Affiliation(s)
- S Fujimoto
- Department of Metabolism and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606 - 8507, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Glucose-induced insulin secretion is pulsatile. Glucose metabolism generates oscillations in the ATP/ADP ratio which lead to opening and closing of ATP-sensitive K(+)-channels producing subsequent oscillations in membrane potential, cytoplasmic calcium and insulin release. Metabolic signals derived from glucose can also stimulate insulin release independent of their effects on ATP-sensitive K(+)-channels. The ATP/ADP ratio may mediate both ATP-sensitive K(+)-channel-dependent and -independent pathways of secretion. Glucose metabolism also results in an increase in long-chain acyl-CoA, which is proposed to act as an effector molecule in the beta -cell. Long-chain acyl-CoA has a variety of effects in the beta -cell that may effect insulin secretion including opening ATP-sensitive K(+)-channels, activating endoplasmic reticulum Ca(2+)-ATPases and stimulating classical protein kinase C activity. In addition to stimulating insulin release, nutrients also effect gene expression, protein synthesis and beta -cell proliferation. Gene expression is effected by nutrient induction of a variety of immediate early response genes. Glucose stimulates proinsulin biosynthesis both at the translational and transcriptional level. beta -cell proliferation, as a result of insulin-like growth factor and growth hormone mitogenic pathways, is also glucose dependent. Thus, many beta -cell functions in addition to secretion are controlled by nutrient metabolism.
Collapse
Affiliation(s)
- J T Deeney
- Obesity Research Center, Evans Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | | | | |
Collapse
|
12
|
Li GD, Luo RH, Metz SA. Effects of inhibitors of guanine nucleotide synthesis on membrane potential and cytosolic free Ca2+ levels in insulin-secreting cells. Biochem Pharmacol 2000; 59:545-56. [PMID: 10660120 DOI: 10.1016/s0006-2952(99)00356-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Adenine nucleotides play an important role in the control of membrane potential by acting on ATP-sensitive K+ (K(ATP)) channels and, in turn, modulating the open probability of voltage-gated Ca2+ channels in pancreatic islet beta-cells. Here, we provide evidence that guanine nucleotides (GNs) also may be involved in the modulation of these events in vivo. GNs were depleted by treatment of HIT-T15 cells with mycophenolic acid (MPA). Resting membrane potential was more depolarized in cells treated for 3 and 6 hr with MPA than in control cells, and this effect was inhibited by diazoxide. After 6 hr of exposure to MPA, basal cytosolic free Ca2+ concentrations ([Ca2+]i) were elevated by 20%. Increments in [Ca2+]i induced by submaximal concentrations of K+ (10-15 mM) or bombesin were enhanced by > 50%. Opening K(ATP) channels with diazoxide lowered basal [Ca2+]i in MPA-treated cells to normal and abrogated the enhanced [Ca2+]i responses. However, an L-type Ca2+ channel blocker only abolished the enhanced [Ca2+]i response to stimuli and had no effect on the elevated basal [Ca2+]i, in contrast to EGTA, which obliterated both, implying that the latter was due to Ca2+ influx via non-L-type Ca2+ channels. These effects on ion fluxes were attributable specifically to GN depletion, since guanosine, which restores GTP content and the GTP/GDP ratio, but not adenosine, prevented all MPA-induced ion changes; furthermore, the latter were mimicked by mizoribine (a structurally dissimilar GTP synthesis inhibitor). It is concluded that, in addition to adenine nucleotides, GNs might contribute to the modulation of K(ATP) channels in intact beta-cells. In addition, GN depletion appeared to be able to reduce stimulated insulin secretion by a mechanism largely independent of the changes of ion fluxes observed above.
Collapse
Affiliation(s)
- G D Li
- Cardiovascular Research Institute, National University Medical Institutes, National University of Singapore, Singapore.
| | | | | |
Collapse
|
13
|
Aizawa T, Komatsu M, Asanuma N, Sato Y, Sharp GW. Glucose action 'beyond ionic events' in the pancreatic beta cell. Trends Pharmacol Sci 1998; 19:496-9. [PMID: 9871411 DOI: 10.1016/s0165-6147(98)01273-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
For normal glucose homeostasis, insulin release by the pancreatic beta cell is vital. Until recently, it was thought that glucose-induced ionic events, such as closure of the ATP-sensitive K+ (KATP) channels, membrane depolarization, activation of the L-type voltage-dependent Ca2+ channels, Ca2+ influx and elevation of cytosolic free Ca2+, constitute the main signalling pathway in beta-cell stimulus-secretion coupling. However, since the discovery of 'non-ionic' glucose actions in the beta cell by the Aizawa and Henquin laboratories in 1991, data have accumulated that strongly indicate the physiological relevance of this signalling pathway. In this review, Toru Aizawa and colleagues discuss how the KATP channel-Ca2+ hypothesis was formulated, what was overlooked in the hypothesis, and then provide a comprehensive view of stimulus-secretion coupling in the beta cell, with an emphasis on non-ionic glucose actions.
Collapse
Affiliation(s)
- T Aizawa
- Department of Geriatrics, Endocrinology and Metabolism, Shinshu University School of Medicine, Naganoken, Japan
| | | | | | | | | |
Collapse
|
14
|
Nishimura M, Ishida H, Tsuura Y, Kato S, Mizuno N, Fujimoto S, Mukai E, Kajikawa M, Usami M, Seino Y. Necessity of endogenous GTP derived from glucose-6-phosphate for insulin secretion augmented by glucose under protein kinase A activation. Biochem Biophys Res Commun 1998; 243:253-7. [PMID: 9473513 DOI: 10.1006/bbrc.1997.7938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate the possible involvement of some intracellular metabolic signaling other than the ATP derived from glucose metabolism under protein kinase A (PKA) activation, we measured the insulin secretory capacity stimulated by glucose and other fuel secretagogues using diazoxide-treated pancreatic islets. Under these conditions, we found a signal from a site proximal to glyceraldehyde-3-phosphate (GA-3-P) in the glycolysis to be necessary for glucose-induced insulin secretion. By using several different glycolytic enzyme inhibitors, we found that this proximal signal is derived from glucose-6-phosphate (G-6-P), and that metabolic signaling distal to GA-3-P also is necessary. Mycophenolic acid completely inhibited the augmented glucose-induced insulin secretion, which guanosine could reverse, indicating that the proximal signaling is coupling with endogenous GTP production. In this novel system of metabolic signaling, endogenous GTP derived from G-6-P in the glycolysis elicits the augmentation of glucose-induced insulin secretion under PKA activation in diazoxide-treated pancreatic islets.
Collapse
Affiliation(s)
- M Nishimura
- Department of Metabolism and Clinical Nutrition, Kyoto University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|