1
|
Huang S, Abutaleb K, Mishra S. Glycosphingolipids in Cardiovascular Disease: Insights from Molecular Mechanisms and Heart Failure Models. Biomolecules 2024; 14:1265. [PMID: 39456198 PMCID: PMC11506000 DOI: 10.3390/biom14101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the crucial role of glycosphingolipids (GSLs) in the context of cardiovascular diseases (CVDs), focusing on their biosynthesis, metabolic pathways, and implications for clinical outcomes. GSLs are pivotal in regulating a myriad of cellular functions that are essential for heart health and disease progression. Highlighting findings from both human cohorts and animal models, this review emphasizes the potential of GSLs as biomarkers and therapeutic targets. We advocate for more detailed mechanistic studies to deepen our understanding of GSL functions in cardiovascular health, which could lead to innovative strategies for diagnosis, treatment, and personalized medicine in cardiovascular care.
Collapse
Affiliation(s)
- Sarah Huang
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Karima Abutaleb
- Department of Surgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24061, USA
| | - Sumita Mishra
- Department of Surgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24061, USA
- Center for Exercise Medicine Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24061, USA
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24061, USA
- Department of Human Nutrition, Foods, and Exercise, College of Life Sciences, Virginia Tech, Roanoke, VA 24061, USA
| |
Collapse
|
2
|
Michelucci E, Rocchiccioli S, Gaggini M, Ndreu R, Berti S, Vassalle C. Ceramides and Cardiovascular Risk Factors, Inflammatory Parameters and Left Ventricular Function in AMI Patients. Biomedicines 2022; 10:biomedicines10020429. [PMID: 35203637 PMCID: PMC8962314 DOI: 10.3390/biomedicines10020429] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Ceramides, biologically active lipids correlated to oxidative stress and inflammation, have been associated with adverse outcomes in acute myocardial infarction (AMI). The purpose of this study was to assess the association between ceramides/ratios included in the CERT1 score and increased cardiovascular (CV) risk, inflammatory and left ventricular function parameters in AMI. Methods: high performance liquid chromatography-tandem mass spectrometry was used to identify Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) levels and their ratios to Cer(d18:1/24:0), in 123 AMI patients (FTGM coronary unit, Massa, Italy). Results: Cer(d18:1/16:0): higher in female patients (<0.05), in patients with dyslipidemia (<0.05), and it directly and significantly correlated with aging, brain natriuretic peptide-BNP, erythrocyte sedimentation rate-ESR and fibrinogen. Cer(d18:1/18:0): higher in females (<0.01) and patients with dyslipidemia (<0.01), and increased according to the number of CV risk factors (considering hypertension, dyslipidemia and diabetes). Moreover, it significantly correlated with BNP, troponin at admission, ESR, C reactive protein-CRP, and fibrinogen. Cer(d18:1/24:1): significantly correlated with aging, BNP, fibrinogen and neutrophils. Cer(d18:1/16:0)/Cer(d18:1/24:0): higher in female patients (<0.05), and in patients with higher wall motion score index-WMSI (>1.7; ≤0.05), and in those with multivessel disease (<0.05). Moreover, it significantly correlated with aging, BNP, CRP, ESR, neutrophil-to-lymphocyte ratio-NRL, and fibrinogen. Cer(d18:1/18:0)/Cer(d18:1/24:0): higher in female patients (<0.001), and increased according to age. Moreover, it was higher in patients with lower left ventricular ejection fraction (<35%, ≤0.01), higher WMSI (>1.7, <0.05), and in those with multivessel disease (0.13 ± 0.06 vs. 0.10 ± 0.05 µM, <0.05), and correlates with BNP, ESR, CRP, fibrinogen and neutrophils, platelets, NLR, and troponin at admission. Multiple regression analysis showed that Cer(d18:1/16:0)/Cer(d18:1/24:0) and Cer(d18:1/18:0)/Cer(d18:1/24:0) remained as independent determinants for WMSI after multivariate adjustment (Std coeff 0.17, T-value 1.9, ≤0.05; 0.21, 2.6, <0.05, respectively). Conclusion: Distinct ceramide species are associated with CV risk, inflammation and disease severity in AMI. Thus, a detailed analysis of ceramides may help to better understand CV pathobiology and suggest these new biomarkers as possible risk predictors and pharmacological targets in AMI patients.
Collapse
Affiliation(s)
- Elena Michelucci
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.M.); (S.R.); (M.G.); (R.N.)
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.M.); (S.R.); (M.G.); (R.N.)
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.M.); (S.R.); (M.G.); (R.N.)
| | - Rudina Ndreu
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.M.); (S.R.); (M.G.); (R.N.)
| | - Sergio Berti
- Fondazione CNR-Regione Toscana G Monasterio, 56124 Pisa, Italy;
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, 56124 Pisa, Italy;
- Correspondence:
| |
Collapse
|
3
|
Gao S, Quick C, Guasch-Ferre M, Zhuo Z, Hutchinson JM, Su L, Hu F, Lin X, Christiani D. The Association Between Inflammatory and Oxidative Stress Biomarkers and Plasma Metabolites in a Longitudinal Study of Healthy Male Welders. J Inflamm Res 2021; 14:2825-2839. [PMID: 34234508 PMCID: PMC8254568 DOI: 10.2147/jir.s316262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Human metabolism and inflammation are closely related modulators of homeostasis and immunity. Metabolic profiling is a useful tool to understand the association between metabolism and inflammation at a systemic level. OBJECTIVE To investigate the longitudinal associations between the concentration of plasma metabolites and biomarkers related to inflammation and oxidative stress. METHODS We conducted a repeated cross-sectional analysis consisting of 8 short-term panels that included 88 healthy adult male welders in Massachusetts, USA. In each panel, we collected 1-6 repeated measurements of blood and urine. We used a human vascular injury panel assay and custom cytokine/chemokine assay to quantify inflammatory biomarker plasma levels, liquid chromatography-mass spectrometry to quantify the concentrations of 665 plasma metabolites, and a competitive enzyme-linked immunoassay to quantify urinary 8-OHdG and 8-isoprostane levels. We used linear mixed effects models to estimate the longitudinal association between each inflammatory and oxidative stress biomarker and each metabolite. RESULTS At a 5% FDR threshold, we detected ≥1metabolite association for 8 unique inflammatory and oxidative stress biomarkers: urinary 8-isoprostane, plasma C-reactive protein (CRP), serum amyloid A (SAA), intercellular adhesion molecule 1, circulating vascular cell adhesion molecule-1, interleukin 8 (IL-8), interleukin 10 (IL-10) and vascular endothelial growth factor. Specifically, 3 metabolites in the androgenic steroids pathway were negatively associated with SAA; 3 dihydrosphingomyelins metabolites were positively associated with 1 or more of CRP, SAA, IL-8 and IL-10; 4 metabolites in acyl choline metabolism pathways were negatively associated with IL-8; 7 lysophospholipid metabolites were negatively associated with 1 or more of CRP, SAA and IL-8; 4 sphingomyelins were positively associated with CRP and/or SAA; and 10 metabolites in the xanthine pathway were positively associated with urinary 8-isoprostane. CONCLUSION We found that metabolites in phospholipid groups had strong associations with multiple inflammatory biomarkers, especially CRP, SAA and IL-8. The mechanism of these associations warrants further investigation.
Collapse
Affiliation(s)
- Shangzhi Gao
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Corbin Quick
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Marta Guasch-Ferre
- Nutrition, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Zhu Zhuo
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - John M Hutchinson
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Li Su
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Frank Hu
- Nutrition, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Xihong Lin
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - David Christiani
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
- Pulmonary and Critical Care Division, Department of Medicine, MA General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Burrello J, Biemmi V, Dei Cas M, Amongero M, Bolis S, Lazzarini E, Bollini S, Vassalli G, Paroni R, Barile L. Sphingolipid composition of circulating extracellular vesicles after myocardial ischemia. Sci Rep 2020; 10:16182. [PMID: 32999414 PMCID: PMC7527456 DOI: 10.1038/s41598-020-73411-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are structural components of cell membrane, displaying several functions in cell signalling. Extracellular vesicles (EV) are lipid bilayer membrane nanoparticle and their lipid composition may be different from parental cells, with a significant enrichment in sphingolipid species, especially in pathological conditions. We aimed at optimizing EV isolation from plasma and describing the differential lipid content of EV, as compared to whole plasma. As pilot study, we evaluated the diagnostic potential of lipidomic signature of circulating EV in patients with a diagnosis of ST-segment-elevation myocardial infarction (STEMI). STEMI patients were evaluated before reperfusion and 24-h after primary percutaneous coronary intervention. Twenty sphingolipid species were quantified by liquid-chromatography tandem-mass-spectrometry. EV-ceramides, -dihydroceramides, and -sphingomyelins increased in STEMI vs. matched controls and decreased after reperfusion. Their levels correlated to hs-troponin, leucocyte count, and ejection fraction. Plasma sphingolipids levels were 500-to-700-fold higher as compared to EV content; nevertheless, only sphingomyelins differed in STEMI vs. control patients. Different sphingolipid species were enriched in EV and their linear combination by machine learning algorithms accurately classified STEMI patients at pre-PCI evaluation. In conclusion, EV lipid signature discriminates STEMI patients. These findings may contribute to the identification of novel biomarkers and signaling mechanisms related to cardiac ischemia.
Collapse
Affiliation(s)
- J Burrello
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland
| | - V Biemmi
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - M Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - M Amongero
- Department of Mathematical Sciences G. L. Lagrange, Polytechnic University of Torino, Torino, Italy
| | - S Bolis
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland
| | - E Lazzarini
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland
| | - S Bollini
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - G Vassalli
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - R Paroni
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - L Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland. .,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland. .,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
5
|
Walther A, Cannistraci CV, Simons K, Durán C, Gerl MJ, Wehrli S, Kirschbaum C. Lipidomics in Major Depressive Disorder. Front Psychiatry 2018; 9:459. [PMID: 30374314 PMCID: PMC6196281 DOI: 10.3389/fpsyt.2018.00459] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
Omic sciences coupled with novel computational approaches such as machine intelligence offer completely new approaches to major depressive disorder (MDD) research. The complexity of MDD's pathophysiology is being integrated into studies examining MDD's biology within the omic fields. Lipidomics, as a late-comer among other omic fields, is increasingly being recognized in psychiatric research because it has allowed the investigation of global lipid perturbations in patients suffering from MDD and indicated a crucial role of specific patterns of lipid alterations in the development and progression of MDD. Combinatorial lipid-markers with high classification power are being developed in order to assist MDD diagnosis, while rodent models of depression reveal lipidome changes and thereby unveil novel treatment targets for depression. In this systematic review, we provide an overview of current breakthroughs and future trends in the field of lipidomics in MDD research and thereby paving the way for precision medicine in MDD.
Collapse
Affiliation(s)
| | - Carlo Vittorio Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Department of Physics, TU Dresden, Dresden, Germany
- Brain Bio-Inspired Computing (BBC) Lab, IRCCS Centro Neurolesi “Bonino Pulejo”, Messina, Italy
| | | | - Claudio Durán
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Department of Physics, TU Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
6
|
Meeusen JW, Donato LJ, Bryant SC, Baudhuin LM, Berger PB, Jaffe AS. Plasma Ceramides. Arterioscler Thromb Vasc Biol 2018; 38:1933-1939. [DOI: 10.1161/atvbaha.118.311199] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Ceramides are sphingolipids involved with cellular signaling. Synthesis of ceramides occurs in all tissues. Ceramides accumulate within tissues and the blood plasma during metabolic dysfunction, dyslipidemia, and inflammation. Elevations of ceramides are predictive of cardiovascular mortality. We sought to verify the utility of plasma concentrations of 4 ceramides: N-palmitoyl-sphingosine [Cer(16:0)], N-stearoyl-sphingosine [Cer(18:0)], N-nervonoyl-sphingosine [Cer(24:1)], and N-lignoceroyl-sphingosine [Cer(24:0)] in predicting major adverse cardiovascular events in a diverse patient population referred for coronary angiography.
Approach and Results—
Plasma ceramides were measured in 495 participants before nonurgent coronary angiography. Coronary artery disease, defined as >50% stenosis in ≥1 coronary artery, was identified 265 (54%) cases. Ceramides were not significantly associated with coronary artery disease. Patients were followed for a combined primary end point of myocardial infarction, percutaneous intervention, coronary artery bypass, stroke, or death within 4 years. Ceramides were significantly predictive of outcomes after adjusting for age, sex, body mass index, hypertension, smoking, LDL (low-density lipoprotein) cholesterol, HDL (high-density lipoprotein) cholesterol, triglycerides, serum glucose, and family history of coronary artery disease. The fully adjusted per SD hazard ratios (95% confidence interval) were 1.50 (1.16–1.93) for Cer(16:0), 1.42 (1.11–1.83) for Cer(18:0), 1.43 (1.08–1.89) for Cer(24:1), and 1.58 (1.22–2.04) for the ceramide risk score.
Conclusions—
Elevated plasma concentrations of ceramides are independently associated with major adverse cardiovascular events in patients with and without coronary artery disease.
Collapse
Affiliation(s)
- Jeffrey W. Meeusen
- From the Department of Laboratory Medicine and Pathology (J.W.M., L.J.D., L.M.B., A.S.J.)
| | - Leslie J. Donato
- From the Department of Laboratory Medicine and Pathology (J.W.M., L.J.D., L.M.B., A.S.J.)
| | | | - Linnea M. Baudhuin
- From the Department of Laboratory Medicine and Pathology (J.W.M., L.J.D., L.M.B., A.S.J.)
| | - Peter B. Berger
- Department of Cardiology (P.B.B., A.S.J.), Mayo Clinic, Rochester, MN
| | - Allan S. Jaffe
- From the Department of Laboratory Medicine and Pathology (J.W.M., L.J.D., L.M.B., A.S.J.)
- Department of Cardiology (P.B.B., A.S.J.), Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
Laaksonen R, Ekroos K, Sysi-Aho M, Hilvo M, Vihervaara T, Kauhanen D, Suoniemi M, Hurme R, März W, Scharnagl H, Stojakovic T, Vlachopoulou E, Lokki ML, Nieminen MS, Klingenberg R, Matter CM, Hornemann T, Jüni P, Rodondi N, Räber L, Windecker S, Gencer B, Pedersen ER, Tell GS, Nygård O, Mach F, Sinisalo J, Lüscher TF. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J 2016; 37:1967-76. [PMID: 27125947 PMCID: PMC4929378 DOI: 10.1093/eurheartj/ehw148] [Citation(s) in RCA: 462] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022] Open
Abstract
Aims The aim was to study the prognostic value of plasma ceramides (Cer) as cardiovascular death (CV death) markers in three independent coronary artery disease (CAD) cohorts. Methods and results Corogene study is a prospective Finnish cohort including stable CAD patients (n = 160). Multiple lipid biomarkers and C-reactive protein were measured in addition to plasma Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0), and Cer(d18:1/24:1). Subsequently, the association between high-risk ceramides and CV mortality was investigated in the prospective Special Program University Medicine—Inflammation in Acute Coronary Syndromes (SPUM-ACS) cohort (n = 1637), conducted in four Swiss university hospitals. Finally, the results were validated in Bergen Coronary Angiography Cohort (BECAC), a prospective Norwegian cohort study of stable CAD patients. Ceramides, especially when used in ratios, were significantly associated with CV death in all studies, independent of other lipid markers and C-reactive protein. Adjusted odds ratios per standard deviation for the Cer(d18:1/16:0)/Cer(d18:1/24:0) ratio were 4.49 (95% CI, 2.24–8.98), 1.64 (1.29–2.08), and 1.77 (1.41–2.23) in the Corogene, SPUM-ACS, and BECAC studies, respectively. The Cer(d18:1/16:0)/Cer(d18:1/24:0) ratio improved the predictive value of the GRACE score (net reclassification improvement, NRI = 0.17 and ΔAUC = 0.09) in ACS and the predictive value of the Marschner score in stable CAD (NRI = 0.15 and ΔAUC = 0.02). Conclusions Distinct plasma ceramide ratios are significant predictors of CV death both in patients with stable CAD and ACS, over and above currently used lipid markers. This may improve the identification of high-risk patients in need of more aggressive therapeutic interventions.
Collapse
Affiliation(s)
- Reijo Laaksonen
- Zora Biosciences, Espoo, Finland Medical School, Tampere University, Tampere, Finland Finnish Clinical Biobank Tampere, University Hospital of Tampere, Tampere, Finland
| | | | | | | | | | | | | | | | - Winfried März
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany synlab Academy, synlab Holding Deutschland GmbH, Mannheim and Augsburg, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
| | - Efthymia Vlachopoulou
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Marja-Liisa Lokki
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Markku S Nieminen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Roland Klingenberg
- Department of Cardiology, University Heart Center, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Christian M Matter
- Department of Cardiology, University Heart Center, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Peter Jüni
- Applied Health Research Centre (AHRC), Li Ka Shing Knowledge Institute of St. Michael's Hospital, and Department of Medicine, University of Toronto, Toronto, Canada
| | - Nicolas Rodondi
- Department of General Internal Medicine, University Hospital Bern, Bern, Switzerland Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lorenz Räber
- Cardiovascular Center, Department of Cardiology, University Hospital Bern, Bern, Switzerland
| | - Stephan Windecker
- Cardiovascular Center, Department of Cardiology, University Hospital Bern, Bern, Switzerland
| | - Baris Gencer
- Cardiovascular Center, Department of Cardiology, University Hospital Geneva, Geneva, Switzerland
| | | | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Francois Mach
- Cardiovascular Center, Department of Cardiology, University Hospital Geneva, Geneva, Switzerland
| | - Juha Sinisalo
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Thomas F Lüscher
- Institute of Clinical Chemistry, University Hospital, Zürich, Switzerland
| |
Collapse
|
8
|
Park JY, Lee SH, Shin MJ, Hwang GS. Alteration in metabolic signature and lipid metabolism in patients with angina pectoris and myocardial infarction. PLoS One 2015; 10:e0135228. [PMID: 26258408 PMCID: PMC4530944 DOI: 10.1371/journal.pone.0135228] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/20/2015] [Indexed: 02/02/2023] Open
Abstract
Lipid metabolites are indispensable regulators of physiological and pathological processes, including atherosclerosis and coronary artery disease (CAD). However, the complex changes in lipid metabolites and metabolism that occur in patients with these conditions are incompletely understood. We performed lipid profiling to identify alterations in lipid metabolism in patients with angina and myocardial infarction (MI). Global lipid profiling was applied to serum samples from patients with CAD (angina and MI) and age-, sex-, and body mass index-matched healthy subjects using ultra-performance liquid chromatography/quadruple time-of-flight mass spectrometry and multivariate statistical analysis. A multivariate analysis showed a clear separation between the patients with CAD and normal controls. Lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) species containing unsaturated fatty acids and free fatty acids were associated with an increased risk of CAD, whereas species of lysoPC and lyso-alkyl PC containing saturated fatty acids were associated with a decreased risk. Additionally, PC species containing palmitic acid, diacylglycerol, sphingomyelin, and ceramide were associated with an increased risk of MI, whereas PE-plasmalogen and phosphatidylinositol species were associated with a decreased risk. In MI patients, we found strong positive correlation between lipid metabolites related to the sphingolipid pathway, sphingomyelin, and ceramide and acute inflammatory markers (high-sensitivity C-reactive protein). The results of this study demonstrate altered signatures in lipid metabolism in patients with angina or MI. Lipidomic profiling could provide the information to identity the specific lipid metabolites under the presence of disturbed metabolic pathways in patients with CAD.
Collapse
Affiliation(s)
- Ju Yeon Park
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Sang-Hak Lee
- Cardiology Division, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Jeong Shin
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
9
|
Chen X, Sun A, Zou Y, Ge J, Lazar JM, Jiang XC. Impact of sphingomyelin levels on coronary heart disease and left ventricular systolic function in humans. Nutr Metab (Lond) 2011; 8:25. [PMID: 21521522 PMCID: PMC3111338 DOI: 10.1186/1743-7075-8-25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 04/26/2011] [Indexed: 01/29/2023] Open
Abstract
Sphingomyelin (SM) is an abundant phospholipid in cell membranes and in lipoproteins. In human plasma, SM is mainly found in atherogenic lipoproteins; therefore, higher levels of SM may promote atherogenesis. We investigated the relations between plasma SM levels and the presence of angiographic coronary heart disease (CHD) and left ventricular systolic dysfunction. We studied 732 patients referred for coronary angiography. Median SM levels were higher among patients with CHD and in those with LV systolic dysfunction (LVEF<50%) than in patients without CHD or LV dysfunction. SM levels were significantly correlated with fibrinogen levels, diabetes, apoB, and triglyceride levels. On multivariate analyses, higher median SM levels were associated with a higher risk of CHD and lower LV ejection fraction. The pro-atherogenic property of plasma SM might be related to 1) CHD; 2) LV systolic dysfunction; and 3) metabolism of apoB-containing or triglyceride-rich lipoproteins.
Collapse
Affiliation(s)
- Xueying Chen
- Institute of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Aijun Sun
- Institute of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yunzeng Zou
- Institute of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Junbo Ge
- Institute of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jason M Lazar
- Division of Cardiovascular Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
10
|
Nikolova-Karakashian M, Karakashian A, Rutkute K. Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem 2008; 49:469-86. [PMID: 18751923 DOI: 10.1007/978-1-4020-8831-5_18] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging is characterized by changes in the organism's immune functions and stress response, which in the elderly leads to increased incidence of complications and mortality following inflammatory stress. Alterations in the neuro-endocrine axes and overall decline in the immune system play an essential role in this process. Overwhelming evidence however suggests that many cellular cytokine signaling pathways are also affected, thus underscoring the idea that both, "cellular" and "systemic" changes contribute to aging. IL-1beta for example, induces more potent cellular responses in hepatocytes isolated from aged animals then in hepatocytes from young rats. This phenomenon is referred to as IL-1b hyperresponsiveness and is linked to abnormal regulation of various acute phase proteins during aging.Evidence has consistently indicated that activation of neutral sphingomyelinase and the resulting accumulation of ceramide mediate cellular responses to LPS, IL-1beta, and TNFalpha in young animals. More recent studies identified the cytokine-inducible neutral sphingomyelinase with nSMase2 (smpd3) that is localized in the plasma membrane and mediates cellular responses to IL-1beta and TNFalpha. Intriguingly, constitutive up-regulation of nSMase2 occurs in aging and it underlies the hepatic IL-1b hyperresponsiveness. The increased activity of nSMases2 in aging is caused by a substantial decline in hepatic GSH content linking thereby oxidative stress to the onset of pro-inflammatory state in liver. nSMase2 apparently follows a pattern of regulation consisting with "developmental-aging" continuum, since in animal models of delayed aging, like calorie-restricted animals, the aging-associated changes in NSMase activity and function are reversed.
Collapse
|
11
|
Rutkute K, Karakashian AA, Giltiay NV, Dobierzewska A, Nikolova-Karakashian MN. Aging in rat causes hepatic hyperresposiveness to interleukin-1beta which is mediated by neutral sphingomyelinase-2. Hepatology 2007; 46:1166-76. [PMID: 17668873 DOI: 10.1002/hep.21777] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED The process of aging has recently been shown to substantially affect the ability of cells to respond to inflammatory challenges. We demonstrate that aging leads to hepatic hyperresponsiveness to interleukin 1beta (IL-1beta), and we examine the factors that could be responsible for this phenomenon. IL-1beta-induced phosphorylation of c-jun N-terminal kinase (JNK) in hepatocytes isolated from aged rats was 3 times more potent than that in hepatocytes from young rats. Moreover, JNK was activated by substantially lower doses of IL-1beta. These age-related changes in JNK phosphorylation correlated with diminished IL-1beta-induced degradation of interleukin-1 receptor-associated kinase-1 (IRAK-1). Expression levels of IL1beta receptor I, total JNK, IRAK-1, and transforming growth factor-beta-activated kinase-1 (TAK-1) were not affected by aging. However, increased neutral sphingomyelinase activity was observed in hepatocytes from old animals, which we show is caused by induction of the plasma membrane localized neutral sphingomyelinase-2 (NSMase-2). We provide evidence that NSMase-2 is both required and sufficient for the onset of IL-1beta hyperresponsiveness during aging. Overexpression of NSMase-2 in hepatocytes from young rats leads both to a reduction in IRAK-1 degradation and potentiation of JNK phosphorylation, mimicking that seen in hepatocytes from old animals. More importantly, inhibition of NSMase activity in hepatocytes from aged rats using either scyphostatin or short interfering ribonucleic acid (siRNA) leads to reversion to the "young" phenotype of IL-1beta response. CONCLUSION These results show that the process of aging causes increased basal NSMase-2 activity in hepatocytes, which in turn leads to IRAK-1 stabilization, JNK potentiation, and ultimately IL-1beta hyperresponsiveness.
Collapse
Affiliation(s)
- Kristina Rutkute
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
12
|
Webber CA, Chen YY, Hehr CL, Johnston J, McFarlane S. Multiple signaling pathways regulate FGF-2-induced retinal ganglion cell neurite extension and growth cone guidance. Mol Cell Neurosci 2005; 30:37-47. [PMID: 15996482 DOI: 10.1016/j.mcn.2005.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/23/2005] [Accepted: 05/12/2005] [Indexed: 11/23/2022] Open
Abstract
Growth cones use cues in their environment in order to grow in a directed fashion to their targets. In Xenopus laevis, fibroblast growth factors (FGFs) participate in retinal ganglion cell (RGC) axon guidance in vivo and in vitro. The main intracellular signaling cascades known to act downstream of the FGF receptor include the mitogen-activated protein kinase (MAPK), phospholipase Cgamma (PLCgamma) and phosphotidylinositol 3-kinase (PI3K) pathways. We used pharmacological inhibitors to identify the signaling cascade(s) responsible for FGF-2-stimulated RGC axon extension and chemorepulsion. The MAPK, PI3K and PLCgamma pathways were blocked by U0126, LY249002 and U73122, respectively. D609 was used to test a role for the phosphotidylcholine-PLC (PC-PLC) pathway. We determined that the MAPK and two PLC pathways are required for FGF-2 to stimulate RGC neurite extension in vitro, but the response of axons to FGF-2 applied asymmetrically to the growth cone depended only on the PLC pathways.
Collapse
Affiliation(s)
- C A Webber
- Genes and Development Research Group, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
13
|
Giltiay NV, Karakashian AA, Alimov AP, Ligthle S, Nikolova-Karakashian MN. Ceramide- and ERK-dependent pathway for the activation of CCAAT/enhancer binding protein by interleukin-1beta in hepatocytes. J Lipid Res 2005; 46:2497-505. [PMID: 16106045 DOI: 10.1194/jlr.m500337-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-1beta (IL-1beta) is a major inducer of liver acute-phase protein expression in response to infection. Several transcription factors, including CCAAT/enhancer binding protein (C/EBP), are known mediators in this process, although the mechanisms by which they modulate IL-1beta's action are not completely understood. Activation of sphingomyelinase (SMase) and the subsequent generation of ceramide are early steps in the IL-1beta signaling cascade. In this study, we investigate the role of ceramide in the IL-1beta regulation of C/EBP in primary hepatocytes. The C/EBP DNA binding activity was found to increase in a dose-dependent manner after stimulation with IL-1beta and exogenous addition of C2-ceramide or treatment with SMase. These changes were accompanied by an increase in the nuclear content of C/EBPbeta. Both IL-1beta and ceramide led to extracellular signal-regulated kinase 1/2 (ERK1/2) activation as early as 15 min after treatment. Furthermore, the increase of cellular ceramide content resulted in increased phosphorylation of C/EBPbeta at serine 105 at later time points. Concurrently, the cytosolic levels of C/EBPbeta decreased, suggesting that IL-1beta and ceramide induced nuclear translocation of C/EBPbeta. Ceramide-induced C/EBPbeta phosphorylation, translocation, and DNA binding were suppressed by the addition of PD98059, an inhibitor of ERK1/2 phosphorylation. These results suggest that ceramide and ERK mediate a pathway in the IL-1beta signaling cascade, which results in rapid posttranslational activation of C/EBPbeta.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
14
|
Loidl A, Claus R, Ingolic E, Deigner HP, Hermetter A. Role of ceramide in activation of stress-associated MAP kinases by minimally modified LDL in vascular smooth muscle cells. Biochim Biophys Acta Mol Basis Dis 2004; 1690:150-8. [PMID: 15469904 DOI: 10.1016/j.bbadis.2004.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 04/06/2004] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
Interaction of oxidized low-density lipoprotein (LDL) with arterial smooth muscle cells (SMC) is believed to play a key role in the development of atherosclerosis. Depending on the extent of oxidation, apolipoproteins and/or lipids in the particle may be modified and thus lead to different cellular responses (e.g. proliferation or cell death). Here we report on the signaling effects of LDL, in which only the lipids were oxidized. This so-called minimally modified LDL (mmLDL) mainly activated components involved in stress response and apoptotic cell death including p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase/stress-activated protein kinase (JNK) as well as neutral and acid sphingomyelinase. In contrast, proliferative signaling elements such as extracellular regulated kinase, AKT-kinase and phospho-BAD seem to play a minor role as they were only slightly stimulated by mmLDL. Ceramide, the hydrolysis product of sphingomyelin, seems to be a key mediator as it mimics mmLDL by inducing activation of the same signaling components. Moreover, mmLDL- and ceramide-associated effects on apoptotic protein kinases were abolished by NB6, a specific inhibitor of acid sphingomyelinase. Thus, acid sphingomyelinase is very likely to be primarily responsible for triggering intracellular signal transduction in SMC after exposure to mmLDL via formation of ceramide by an autocatalytic mechanism.
Collapse
Affiliation(s)
- Alexandra Loidl
- Department of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010, Austria
| | | | | | | | | |
Collapse
|
15
|
Jura J, Wegrzyn P, Zarebski A, Władyka B, Koj A. Identification of changes in the transcriptome profile of human hepatoma HepG2 cells stimulated with interleukin-1 beta. Biochim Biophys Acta Mol Basis Dis 2004; 1689:120-33. [PMID: 15196593 DOI: 10.1016/j.bbadis.2004.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 02/27/2004] [Accepted: 03/02/2004] [Indexed: 10/26/2022]
Abstract
Interleukin-1 (IL-1) is the principal pro-inflammatory cytokine participating in the initiation of acute phase response. Human hepatoma HepG2 cells were exposed to 15 ng/ml of IL-1beta for times ranging from 1 to 24 h and the total RNA was isolated. Then cDNA was obtained and used for differential display with 10 arbitrary primers and 9 oligo(dT) primers designed by Clontech. Validation of observed changes of differentially expressed known genes was carried out by RT-PCR or Northern blot analysis. Out of 90 cDNA strands modulated by IL-1, 46 have been successfully reamplified and their sequencing indicates that they represent 36 different cDNA templates. By GenBank search, 26 cDNA clones were identified as already known genes while 10 showed no homology to any known gene. The identified transcripts modulated by IL-1 in HepG2 cells code for intracellular proteins of various function: trafficking/motor proteins (3 genes), proteins participating in the translation machinery or posttranscriptional/posttranslational modifications (7 genes), proteases (1 gene), proteins involved in metabolism (6 genes), activity modulators (3 genes), proteins of the cell cycle machinery (2 genes) and those functionally unclassified (4 genes). Majority of genes responded to IL-1 within 1 to 6 h (early genes), while two were late response genes (12-24 h) and four showed prolonged response over the whole 24-h period. Most of the observed changes of expression were in the range of two- to threefold increase in comparison to control untreated cells. Among identified genes, no typical secretory acute phase protein was found. The obtained results suggest that IL-1 affects the expression of several genes in HepG2 cells, especially those engaged in the synthesis and modifications of proteins.
Collapse
Affiliation(s)
- Jolanta Jura
- Department of Cell Biochemistry, Faculty of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | | | | | | | | |
Collapse
|
16
|
Lightle S, Tosheva R, Lee A, Queen-Baker J, Boyanovsky B, Shedlofsky S, Nikolova-Karakashian M. Elevation of ceramide in serum lipoproteins during acute phase response in humans and mice: role of serine-palmitoyl transferase. Arch Biochem Biophys 2004; 419:120-8. [PMID: 14592455 DOI: 10.1016/j.abb.2003.08.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent studies have indicated that ceramide generated in the liver is secreted into the bloodstream as component of very-low-density lipoproteins (VLDL) and low-density lipoproteins (LDL). This manuscript investigates the effect of host acute phase response to inflammation on lipoprotein ceramide levels. In humans, two different patterns of responses were found. One group of volunteers experienced transient increases in serum ceramide at 1.5h after LPS administration. Second group showed prolonged increases that reached up to 10-fold above the basal level and continued for up to 24h. Increases in ceramide were found only in VLDL and LDL particles. LPS administration induced similar increases in mice. These increases were accompanied by activation of secreted sphingomyelinase in serum and serine-palmitoyl transferase in liver. ASMase knockout mice retained LPS-induced increases in serum ceramide, thus suggesting that the elevation of VLDL and LDL ceramide content is attributed at least in part to activation of de novo synthesis of ceramide in the liver.
Collapse
Affiliation(s)
- Sandy Lightle
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kang YH, Berthiaume F, Yarmush ML. Long-term stable cultures of rat hepatocytes: an in vitro model to study acute and chronic hepatic inflammation. TISSUE ENGINEERING 2002; 8:681-93. [PMID: 12202007 DOI: 10.1089/107632702760240599] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Engineered tissues provide an opportunity to investigate important physiological processes difficult to study in whole perfused organs and animal models. For example, a hepatocyte culture model consisting of rat hepatocytes cultured in a collagen sandwich configuration, which exhibits stable differentiated liver-specific functions, may be useful to investigate liver pathophysiology. To investigate systemic inflammation-related hepatic failure, we chronically exposed hepatocytes to the inflammatory mediators interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) for up to 4 weeks. IL-6 (2.5 ng/mL) transiently suppressed albumin (-90%) and chronically increased fibrinogen (+6-fold) production. IL-6 inhibited urea synthesis at 2.5 ng/mL and stimulated it at 0.025 ng/mL. IL-1beta (10 ng/mL) inhibited albumin (-90%), urea (-40 to 50%), and IL-6-stimulated fibrinogen (-90%) secretion. The inhibitory effect of IL-1beta on urea secretion was dose-dependent. Furthermore, IL-1beta transiently stimulated nitric oxide (NO) synthesis; however, NO did not mediate the effect of IL-1beta on albumin and fibrinogen production, and played a minor role in IL-1beta-mediated urea synthesis suppression. In conclusion, IL-1beta and IL-6 exert, via a direct effect on hepatocytes, long-term inhibitory effects on hepatic functions that are potentially important for the survival of the host, which may contribute to hepatic dysfunction in prolonged inflammatory states.
Collapse
Affiliation(s)
- Yoon H Kang
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
18
|
Abstract
Recent data demonstrating the multifunctional role of serum amyloid A (SAA) in the pathogenesis of amyloidosis have yielded important insights into this potentially fatal consequence of chronic inflammation. SAA has been shown to participate in chemotaxis, cellular adhesion, cytokine production, and metalloproteinase secretion and is thus integrally involved in the disease process. In addition to its production by the liver as part of the acute phase response, SAA is also expressed by several pathologic tissues such atherosclerotic plaques, rheumatoid synovitis and in the brains of patients with Alzheimer disease. Its constitutive production in normal tissue suggests a role for SAA in host defense and tissue turnover. Many pathways are involved in the regulation of SAA, and as more becomes known about these, potential therapeutic targets may be identified. However, the prevention of secondary amyloidosis is best achieved by early and adequate treatment of patients with chronic inflammatory disorders. Suppression of the acute phase response and normalization of SAA levels are likely to significantly impact on the incidence of amyloidosis in inflammatory arthritis.
Collapse
Affiliation(s)
- G Cunnane
- Division of Rheumatology, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| |
Collapse
|
19
|
Lightle SA, Oakley JI, Nikolova-Karakashian MN. Activation of sphingolipid turnover and chronic generation of ceramide and sphingosine in liver during aging. Mech Ageing Dev 2000; 120:111-25. [PMID: 11087909 DOI: 10.1016/s0047-6374(00)00191-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aging leads to a decreased ability of liver to metabolize drugs and increased expression and secretion of acute phase proteins, such as serum amyloid A (SAA), C-reactive protein (CRP), and alpha-1-acid glycoprotein (AGP). This phenomenon resembles some aspects of the acute phase response of host to inflammation; however, the molecular basis for the similarity is unclear. Ceramide and sphingosine are second messenger mediators of cellular responses to stress and inflammation. In liver, they play important role in mediating acute phase responses to IL1-beta. In this study, we use HPLC and thin layer chromatography to evaluate the effects of aging on steady-state levels of ceramide and sphingosine. We report that both lipids are elevated in liver of old (24 months) as compared to young (5 months) male Fisher 344 rats. To elucidate the mechanism(s) for ceramide elevation, we test the acidic (ASMase) and neutral sphingomyelinase (NSMase) in vitro using NBD-sphingomyelin as an exogenous substrate. SM synthase is also analyzed in vitro using NBD-ceramide and [3H]-dipalmitoylphosphatidylcholine (DPPC) as exogenous substrates. In accordance with the increases in the mass of ceramide, the activity of acid and neutral SMase is elevated in old animals. Michaelis-Menten analysis of NSMase implies that the apparent activation of this enzyme is caused by an increase in the Vmax of the enzyme. In contrast, SM synthase activity is lower in old animals as compared to young ones. These results show that aging is accompanied by an elevation in SM turnover and a decrease in its synthesis, resulting in accumulation of pro-inflammatory and growth inhibitory second messenger ceramide. Ceramidase, the only enzyme leading to sphingosine generation, is also measured in vitro using NBD-ceramide as a substrate and liver homogenate as an enzyme source. Its activity is higher in the old rats, as compared to young ones. The acid and neutral forms of the enzyme are affected the most, while the changes in the alkaline enzyme are not significant. The increases in the basal levels of ceramide and sphingosine in old animals may contribute to the onset of an inflammatory like state in liver during aging, exemplified by decreased P4502C11 mRNA expression and chronic induction of acute phase protein expression.
Collapse
Affiliation(s)
- S A Lightle
- Department of Physiology, University of Kentucky College of Medicine, Chandler Medical Center, MS 579, 800 Rose Street, Lexington, KY 40536, USA
| | | | | |
Collapse
|
20
|
Urieli-Shoval S, Linke RP, Matzner Y. Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr Opin Hematol 2000; 7:64-9. [PMID: 10608507 DOI: 10.1097/00062752-200001000-00012] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Serum amyloid A (SAA), the precursor protein in inflammation-associated reactive amyloidosis (AA-type), is an acute phase reactant whose level in the blood increases in response to various insults. It is expressed in the liver, but its physiological role is not well understood. Recently, a broader view of SAA expression and function has been emerging. Expression studies show local production of SAA proteins in histologically normal, atherosclerotic, Alzheimer, inflammatory, and tumor tissues. Binding sites in the SAA protein for high density lipoproteins, calcium, laminin, and heparin/heparan-sulfate were described. Adhesion motifs were identified and new functions, affecting cell adhesion, migration, proliferation and aggregation have been described. These findings emphasize the importance of SAA in various physiological and pathological processes, including inflammation, atherosclerosis, thrombosis, AA-amyloidosis, rheumatoid arthritis, and neoplasia. In addition, recent experiments suggest that SAA may play a "housekeeping" role in normal human tissues.
Collapse
Affiliation(s)
- S Urieli-Shoval
- Hematology Unit, Hadassah University Hospital, Mount Scopus, Jerusalem, Israel.
| | | | | |
Collapse
|
21
|
Merril AH, Nikolova-Karakashian M, Schmelz EM, Morgan ET, Stewart J. Regulation of cytochrome P450 expression by sphingolipids. Chem Phys Lipids 1999; 102:131-9. [PMID: 11001567 DOI: 10.1016/s0009-3084(99)00081-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Sphingolipids modulate many aspects of cell function, including the expression of cytochrome P450, a superfamily of heme proteins that participate in the oxidation of a wide range of compounds of both endogenous (steroid hormones and other lipids) and exogenous (e.g. alcohol, drugs and environmental pollutants) origin. Cytochrome P450-2C11 (CYP 2C11) is down-regulated in response to interleukin-1beta (IL-1beta), and this response involves the hydrolysis of sphingomyelin to ceramide as well as ceramide to sphingosine, and phosphorylation of sphingosine to sphingosine 1-phosphate. Activation of ceramidase(s) are a key determinant of which bioactive sphingolipid metabolites are formed in response to IL-1beta. Ceramidase activation also appears to account for the loss of expression of CYP 2C11 when hepatocytes are placed in cell culture, and the restoration of expression when they are plated on Matrigel; hence, this pathway is influenced by, and may mediate, interactions between hepatocytes and the extracellular matrix. Recent studies using inhibitors of sphingolipid metabolism have discovered that sphingolipids are also required for the induction of CYP1A1 by 3-methylcholanthrene, however, in this case, the requirement is for de novo sphingolipid biosynthesis rather than the turnover of complex sphingolipids. These findings illustrate how changes in sphingolipid metabolism can influence the regulation of at least several isoforms of cytochrome P450.
Collapse
Affiliation(s)
- A H Merril
- Department of Biochemistry, Rollins Research Center, Emory University School of Medicine, Atlanta, GA 30322-3050, USA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
The sphingomyelin (SM) pathway is a ubiquitous, evolutionarily conserved signalling system analogous to conventional systems such as the cAMP and phosphoinositide pathways. Ceramide, which serves as second messenger in this pathway, is generated from SM by the action of a neutral or acidic SMase, or by de novo synthesis co-ordinated through the enzyme ceramide synthase. A number of direct targets for ceramide action have now been identified, including ceramide-activated protein kinase, ceramide-activated protein phosphatase and protein kinase Czeta, which couple the SM pathway to well defined intracellular signalling cascades. The SM pathway induces differentiation, proliferation or growth arrest, depending on the cell type. Very often, however, the outcome of signalling through this pathway is apoptosis. Mammalian systems respond to diverse stresses with ceramide generation, and recent studies show that yeast manifest a form of this response. Thus ceramide signalling is an older stress response system than the caspase/apoptotic death pathway, and hence these two pathways must have become linked later in evolution. Signalling of the stress response through ceramide appears to play a role in the development of human diseases, including ischaemia/reperfusion injury, insulin resistance and diabetes, atherogenesis, septic shock and ovarian failure. Further, ceramide signalling mediates the therapeutic effects of chemotherapy and radiation in some cells. An understanding of the mechanisms by which ceramide regulates physiological and pathological events in specific cells may provide new targets for pharmacological intervention.
Collapse
Affiliation(s)
- S Mathias
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021, USA
| | | | | |
Collapse
|