1
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
2
|
Li Z, Deng L, Cheng M, Ye X, Yang N, Fan Z, Sun L. Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review). Int J Oncol 2025; 66:24. [PMID: 39981904 PMCID: PMC11844338 DOI: 10.3892/ijo.2025.5730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Liver metastasis is the leading cause of colorectal cancer (CRC)‑related mortality. Microbiota dysbiosis serves a role in the pathogenesis of colorectal liver metastases. Bile acids (BAs), cholesterol metabolites synthesized by intestinal bacteria, contribute to the metastatic cascade of CRC, encompassing colorectal invasion, migration, angiogenesis, anoikis resistance and the establishment of a hepatic pre‑metastatic niche. BAs impact inflammation and modulate the immune landscape within the tumor microenvironment by activating signaling pathways, which are used by tumor cells to facilitate metastasis. Given the widespread distribution of BA‑activated receptors in both tumor and immune cells, strategies aimed at restoring BA homeostasis and blocking metastasis‑associated signaling are of importance in cancer therapy. The present study summarizes the specific role of BAs in each step of colorectal liver metastasis, elucidating the association between BA and CRC progression to highlight the potential of BAs as predictive biomarkers for colorectal liver metastasis and their therapeutic potential in developing novel treatment strategies.
Collapse
Affiliation(s)
- Zhaoyu Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, P.R. China
| | - Lingjun Deng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Mengting Cheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Xiandong Ye
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Nanyan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Zaiwen Fan
- Department of Oncology, Air Force Medical Center of People's Liberation Army, Air Force Medical University, Beijing 100010, P.R. China
| | - Li Sun
- Department of Oncology, Air Force Medical Center of People's Liberation Army, Air Force Medical University, Beijing 100010, P.R. China
| |
Collapse
|
3
|
Zhang Q, Lu L, Wang J, Lu M, Liu D, Zhou C, Liu Z. Metabolomic profiling reveals the step-wise alteration of bile acid metabolism in patients with diabetic kidney disease. Nutr Diabetes 2024; 14:85. [PMID: 39384774 PMCID: PMC11464666 DOI: 10.1038/s41387-024-00315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the major complication of diabetes concomitant with gut dysbiosis and glycometabolic disorder, which are strongly associated with bile acid (BA) metabolism. Yet studies investigating the BA metabolism involving in DKD pathogenesis are limited. This study aimed to explore the metabolomic profiling of BAs in DKD and analyze its association with DKD progression. METHODS An ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established to quantify BAs in the plasma, fecal and urine samples of patients with DKD or T2DM and healthy individuals (n = 30 for each group). The key BAs associated with DKD were identified by orthogonal partial least-squares discriminant analysis (OPLS-DA) and receiver-operating characteristic (ROC) curve. Polynomial regression and Pearson's correlation analyses were performed to assess the correlation between the key BAs and the clinical indicators reflecting DKD progression. RESULTS Metabolomic profiling of 50 kinds of BAs presented the markedly step-wise alterations of BAs in plasma and feces as well as the little in urine of patients with DKD. Eight kinds of BAs in the plasma, eight kinds in the feces and three kinds in the urine were abnormally expressed, accompanying with the increased conjugated/unconjugated ratios of cholic acid, deoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid and hyocholic acid in the plasma, and of cholic acid, chenodeoxycholic acid and lithocholic acid in the feces. Moreover, the increased plasma level of glycochenodeoxycholic acid, and the increased fecal levels of glycolithocholic acid, 7-ketodeoxycholic acid and chenodeoxycholic acid-3-β-D-glucuronide are strongly correlated with the clinical indicators reflecting DKD progression, including eGFR, 24 h urinary protein and 24 h urinary microalbumin. CONCLUSIONS Our study for the first time disclosed the specific alterations of BA metabolism reflecting the step-wise progression of DKD, providing the basis for early identification and therapeutical strategies for DKD.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Liqian Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Jiao Wang
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Manman Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Chunyu Zhou
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China.
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China.
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Jiang X, Jiang Z, Cheng Q, Sun W, Jiang M, Sun Y. Cholecystectomy promotes the development of colorectal cancer by the alternation of bile acid metabolism and the gut microbiota. Front Med (Lausanne) 2022; 9:1000563. [PMID: 36213655 PMCID: PMC9540502 DOI: 10.3389/fmed.2022.1000563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality of colorectal cancer (CRC) have been markedly increasing worldwide, causing a tremendous burden to the healthcare system. Therefore, it is crucial to investigate the risk factors and pathogenesis of CRC. Cholecystectomy is a gold standard procedure for treating symptomatic cholelithiasis and gallstone diseases. The rhythm of bile acids entering the intestine is altered after cholecystectomy, which leads to metabolic disorders. Nonetheless, emerging evidence suggests that cholecystectomy might be associated with the development of CRC. It has been reported that alterations in bile acid metabolism and gut microbiota are the two main reasons. However, the potential mechanisms still need to be elucidated. In this review, we mainly discussed how bile acid metabolism, gut microbiota, and the interaction between the two factors influence the development of CRC. Subsequently, we summarized the underlying mechanisms of the alterations in bile acid metabolism after cholecystectomy including cellular level, molecular level, and signaling pathways. The potential mechanisms of the alterations on gut microbiota contain an imbalance of bile acid metabolism, cellular immune abnormality, acid-base imbalance, activation of cancer-related pathways, and induction of toxin, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi Cheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Yan Sun,
| |
Collapse
|
5
|
Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P, Mikó E. The role of bile acids in carcinogenesis. Cell Mol Life Sci 2022; 79:243. [PMID: 35429253 PMCID: PMC9013344 DOI: 10.1007/s00018-022-04278-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
AbstractBile acids are soluble derivatives of cholesterol produced in the liver that subsequently undergo bacterial transformation yielding a diverse array of metabolites. The bulk of bile acid synthesis takes place in the liver yielding primary bile acids; however, other tissues have also the capacity to generate bile acids (e.g. ovaries). Hepatic bile acids are then transported to bile and are subsequently released into the intestines. In the large intestine, a fraction of primary bile acids is converted to secondary bile acids by gut bacteria. The majority of the intestinal bile acids undergo reuptake and return to the liver. A small fraction of secondary and primary bile acids remains in the circulation and exert receptor-mediated and pure chemical effects (e.g. acidic bile in oesophageal cancer) on cancer cells. In this review, we assess how changes to bile acid biosynthesis, bile acid flux and local bile acid concentration modulate the behavior of different cancers. Here, we present in-depth the involvement of bile acids in oesophageal, gastric, hepatocellular, pancreatic, colorectal, breast, prostate, ovarian cancer. Previous studies often used bile acids in supraphysiological concentration, sometimes in concentrations 1000 times higher than the highest reported tissue or serum concentrations likely eliciting unspecific effects, a practice that we advocate against in this review. Furthermore, we show that, although bile acids were classically considered as pro-carcinogenic agents (e.g. oesophageal cancer), the dogma that switch, as lower concentrations of bile acids that correspond to their serum or tissue reference concentration possess anticancer activity in a subset of cancers. Differences in the response of cancers to bile acids lie in the differential expression of bile acid receptors between cancers (e.g. FXR vs. TGR5). UDCA, a bile acid that is sold as a generic medication against cholestasis or biliary surge, and its conjugates were identified with almost purely anticancer features suggesting a possibility for drug repurposing. Taken together, bile acids were considered as tumor inducers or tumor promoter molecules; nevertheless, in certain cancers, like breast cancer, bile acids in their reference concentrations may act as tumor suppressors suggesting a Janus-faced nature of bile acids in carcinogenesis.
Collapse
Affiliation(s)
- Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
| |
Collapse
|
6
|
Fu J, Yu M, Xu W, Yu S. Research Progress of Bile Acids in Cancer. Front Oncol 2022; 11:778258. [PMID: 35127481 PMCID: PMC8810494 DOI: 10.3389/fonc.2021.778258] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
Bile acids (BAs) were originally known as detergents to facilitate the digestion and absorption of lipids. And our current knowledge of BAs has been extended to potential carcinogenic or cancer suppressor factors due to constant research. In fact, BAs were regarded as a tumor promoters as early as the 1940s. Differential bile acid signals emitted by various bile acid profiles can produce distinct pathophysiological traits, thereby participating in the occurrence and development of tumors. Nevertheless, in recent years, more and more studies have noticed the value of BAs as therapeutic targets. And several studies have applied BAs as a therapeutic agent for various diseases including cancer. Based on the above evidence, we acknowledge that the role of BAs in cancer has yet to be exploited, although considerable efforts have been made to probe the functions of BAs. In this review, we describe the characteristics of BAs as a double-edged sword in cancer, hoping to provide references for future cancer treatments.
Collapse
Affiliation(s)
- Junhao Fu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Min Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shian Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- *Correspondence: Shian Yu,
| |
Collapse
|
7
|
Impact of Deoxycholic Acid on Oesophageal Adenocarcinoma Invasion: Effect on Matrix Metalloproteinases. Int J Mol Sci 2020; 21:ijms21218042. [PMID: 33126685 PMCID: PMC7672620 DOI: 10.3390/ijms21218042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Bile acids (BAs) have been implicated in the development of oesophagitis, Barrett’s oesophagus and oesophageal adenocarcinoma (OAC). However, whether BAs promote cancer invasiveness has not been elucidated. We evaluated the role of BAs, in particular deoxycholic acid (DCA), in OAC invasion. Migration and invasiveness in untreated and BA-treated oesophageal SKGT-4 cancer cells were evaluated. Activity and expression of different matrix metalloproteinases (MMPs) were determined by zymography, ELISA, PCR and Western blot. Finally, human OAC tissues were stained for MMP-10 by immunohistochemistry. It was found that SKGT-4 cells incubated with low concentrations of DCA had a significant increase in invasion. In addition, MMP-10 mRNA and protein expression were also increased in the presence of DCA. MMP-10 was found to be highly expressed both in-vitro and in-vivo in neoplastic OAC cells relative to non-neoplastic squamous epithelial cells. Our results show that DCA promotes OAC invasion and MMP-10 overexpression. This study will advance our understanding of the pathophysiological mechanisms involved in human OAC and shows promise for the development of new therapeutic strategies.
Collapse
|
8
|
Nguyen TT, Ung TT, Li S, Lian S, Xia Y, Park SY, Do Jung Y. Metformin inhibits lithocholic acid-induced interleukin 8 upregulation in colorectal cancer cells by suppressing ROS production and NF-kB activity. Sci Rep 2019; 9:2003. [PMID: 30765814 PMCID: PMC6376015 DOI: 10.1038/s41598-019-38778-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022] Open
Abstract
Metformin, an inexpensive, well-tolerated oral agent that is a commonly used first-line treatment for type 2 diabetes, has become the focus of intense research as a potential anticancer agent. In this study, we describe the inhibitory effect of metformin in interleukin 8 (IL-8) upregulation by lithocholic acid (LCA) in HCT116 colorectal cancer (CRC) cells. Pharmacological inhibition studies indicated that reactive oxygen species (ROS) were involved in LCA-induced IL-8 upregulation through activation of the transcription factor NF-κB. Metformin was demonstrated to block LCA-stimulated ROS production, in turn suppressing NF-κB signaling that was critical for IL-8 upregulation. An NADPH oxidase assay proved that the inhibitory effect of metformin on ROS production was derived from its strong suppression of NADPH oxidase, a key producer of ROS in cells. Compared with conditioned media (CM) derived from HCT116 cells treated with LCA, CM derived from HCT116 cells pretreated with metformin and then treated with LCA lost all stimulatory effect on endothelial cell proliferation and tubelike formation. In conclusion, metformin inhibited NADPH oxidase, which in turn suppressed ROS production and NF-κB activation to prevent IL-8 upregulation stimulated by LCA; this prevention thus obstructed endothelial cell proliferation and tubelike formation.
Collapse
Affiliation(s)
- Thi Thinh Nguyen
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Hwasun, Jeonnam, 58138, Korea
| | - Trong Thuan Ung
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Hwasun, Jeonnam, 58138, Korea
| | - Shinan Li
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Hwasun, Jeonnam, 58138, Korea
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yong Xia
- Department of Urology, New York University School of Medicine, New York, NY, 10010, USA
| | - Sun Young Park
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Hwasun, Jeonnam, 58138, Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Hwasun, Jeonnam, 58138, Korea.
| |
Collapse
|
9
|
Nguyen TT, Ung TT, Kim NH, Jung YD. Role of bile acids in colon carcinogenesis. World J Clin Cases 2018; 6:577-588. [PMID: 30430113 PMCID: PMC6232560 DOI: 10.12998/wjcc.v6.i13.577] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/15/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023] Open
Abstract
Bile acids (BAs) are cholesterol derivatives synthesized in the liver and then secreted into the intestine for lipid absorption. There are numerous scientific reports describing BAs, especially secondary BAs, as strong carcinogens or promoters of colon cancers. Firstly, BAs act as strong stimulators of colorectal cancer (CRC) initiation by damaging colonic epithelial cells, and inducing reactive oxygen species production, genomic destabilization, apoptosis resistance, and cancer stem cells-like formation. Consequently, BAs promote CRC progression via multiple mechanisms, including inhibiting apoptosis, enhancing cancer cell proliferation, invasion, and angiogenesis. There are diverse signals involved in the carcinogenesis mechanism of BAs, with a major role of epidermal growth factor receptor, and its down-stream signaling, involving mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt, and nuclear factor kappa-light-chain-enhancer of activated B cells. BAs regulate numerous genes including the human leukocyte antigen class I gene, p53, matrix metalloprotease, urokinase plasminogen activator receptor, Cyclin D1, cyclooxygenase-2, interleukin-8, and miRNAs of CRC cells, leading to CRC promotion. These evidence suggests that targeting BAs is an efficacious strategies for CRC prevention and treatment.
Collapse
Affiliation(s)
- Thi Thinh Nguyen
- Department of Biochemistry, Chonnam National University Medical School, Jeonnam 58138, South Korea
| | - Trong Thuan Ung
- Department of Biochemistry, Chonnam National University Medical School, Jeonnam 58138, South Korea
| | - Nam Ho Kim
- Department of Nephrology, Chonnam National University Medical School, Gwangju 501-190, South Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Jeonnam 58138, South Korea
| |
Collapse
|
10
|
do Nascimento PGG, Lemos TLG, Almeida MCS, de Souza JMO, Bizerra AMC, Santiago GMP, da Costa JGM, Coutinho HDM. Lithocholic acid and derivatives: Antibacterial activity. Steroids 2015. [PMID: 26216208 DOI: 10.1016/j.steroids.2015.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In order to develop bioactive lithocholic acid derivatives, we prepared fifteen semi-synthetic compounds through modification at C-3 and/or C-24. The reactions showed yields ranging from 37% to 100%. The structures of all compounds obtained were identified on the basis of their spectral data (IR, MS, 1D- and 2D-NMR). The activity of lithocholic acid and derivatives was evaluated against the growth of Escherichia coli, Staphylococcus aureus, Bacillus cereus and Pseudomonas aeruginosa. The derivative 3α-formyloxy-5β-cholan-24-oic acid (LA-06) showed the best activity, with MIC values of 0.0790 mM against E. coli (Ec 27) and B. cereus in both cases, and 0.0395 mM against S. aureus (ATCC 12692). Lithocholic acid and the derivatives with MIC⩽1.2 mM were evaluated on the susceptibility of some bacterial pathogens to the aminoglycoside antibiotics neomycin, amikacin and gentamicin was evaluated. There are no previously reported studies about these compounds as modifiers of the action of antibiotics or any other drugs.
Collapse
Affiliation(s)
- Patrícia G G do Nascimento
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, CE, Brazil
| | - Telma L G Lemos
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, CE, Brazil.
| | - Macia C S Almeida
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, CE, Brazil
| | - Juliana M O de Souza
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, CE, Brazil
| | - Ayla M C Bizerra
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, CE, Brazil
| | - Gilvandete M P Santiago
- Departamento de Farmácia, Universidade Federal do Ceará, Rua Capitão Francisco Pedro No. 1210, Campus do Porangabussu, 60430-370 Fortaleza, CE, Brazil
| | - José G M da Costa
- Departamento de Química Biológica, Universidade Regional do Cariri, 63105-000 Crato, CE, Brazil
| | - Henrique D M Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri, 63105-000 Crato, CE, Brazil
| |
Collapse
|
11
|
Dahl CP, Husberg C, Gullestad L, W�hre A, Damås JK, Vinge LE, Finsen AV, Ueland T, Florholmen G, Aakhus S, Halvorsen B, Aukrust P, �ie E, Yndestad A, Christensen G. Increased Production of CXCL16 in Experimental and Clinical Heart Failure. Circ Heart Fail 2009; 2:624-32. [DOI: 10.1161/circheartfailure.108.821074] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Christen Peder Dahl
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Cathrine Husberg
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Lars Gullestad
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Anne W�hre
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Jan Kristian Damås
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Leif Erik Vinge
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Alexandra V. Finsen
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Thor Ueland
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Geir Florholmen
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Svend Aakhus
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Bente Halvorsen
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Pål Aukrust
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Erik �ie
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Arne Yndestad
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| | - Geir Christensen
- From the Research Institute for Internal Medicine (C.P.D., J.K.D., A.V.F., T.U., B.H., P.A., E.�., A.Y.), Department of Cardiology (C.P.D., L.G., A.V.F., S.A., E.�.), Section of Clinical Immunology and Infectious Diseases (J.K.D., P.A.), Section of Endocrinology (T.U.), and Institute for Surgical Research (L.E.V.), Rikshospitalet University Hospital, University of Oslo; Institute for Experimental Medical Research (C.H., A.W., A.V.F., G.F., E.�., G.C.), Ullevål University Hospital; and Center for
| |
Collapse
|
12
|
Ikegawa S, Yamamoto T, Ito H, Ishiwata S, Sakai T, Mitamura K, Maeda M. Immunoprecipitation and MALDI-MS identification of lithocholic acid-tagged proteins in liver of bile duct-ligated rats. J Lipid Res 2008; 49:2463-2473. [DOI: 10.1194/jlr.m800350-jlr200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
13
|
Fukase K, Ohtsuka H, Onogawa T, Oshio H, Ii T, Mutoh M, Katayose Y, Rikiyama T, Oikawa M, Motoi F, Egawa S, Abe T, Unno M. Bile acids repress E-cadherin through the induction of Snail and increase cancer invasiveness in human hepatobiliary carcinoma. Cancer Sci 2008; 99:1785-92. [PMID: 18691339 PMCID: PMC11160067 DOI: 10.1111/j.1349-7006.2008.00898.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although some kinds of bile acids have been implicated in colorectal cancer development, the mechanism of cancer progression remains unexplored in hepatobiliary cancer. From our personal results using complementary DNA microarray, we found that chenodeoxycholic acid (CDCA) induced Snail expression in human carcinoma cell lines derived from hepatocellular carcinoma and cholangiocarcinoma. Snail expression plays an important role in the regulation of E-cadherin and in the acquisition of invasive potential in many types of human cancers including hepatocellular carcinoma. We found that CDCA and lithocholic acid (LCA) induced Snail expression in a concentration-dependent manner and down-regulated E-cadherin expression in hepatocellular carcinoma and cholangiocarcinoma cell lines. Moreover, Snail short interference RNA (siRNA) treatment reduced the down-regulation of E-cadherin by CDCA or LCA. Luciferase analysis demonstrated that the promoter region from -111 to -24 relative to the transcriptional start site was necessary for this induction and, at least in part, nuclear factor Y (NF-Y) and stimulating protein 1 (Sp1) might be an inducer of Snail expression in response to bile acids. In addition, using an in vitro wound healing assay and invasion assay, we observed that CDCA and LCA induced cell migration and invasion. These results suggest that bile acids repress E-cadherin through the induction of transcription factor Snail and increase cancer invasiveness in human hepatocellular carcinoma and cholangiocarcinoma. Inhibition of this bile acid-stimulated pathway may prove useful as an adjuvant in the therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Koji Fukase
- Department of Surgery, Tohoku University Graduate School of Medical Science, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Song S, Byrd JC, Koo JS, Bresalier RS. Bile acids induce MUC2 overexpression in human colon carcinoma cells. Cancer 2005; 103:1606-14. [PMID: 15754327 DOI: 10.1002/cncr.21015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mucin alterations are a common feature of colonic neoplasia, and alterations in MUC2 mucin have been associated with tumor progression in the colon. Bile acids have been linked to colorectal carcinogenesis and mucin secretion, but their effects on mucin gene expression in human colon carcinoma cells is unknown METHODS Human colon carcinoma cells were treated </= 6 hours with 10-200 microM deoxycholate, chenodeoxycholate, or ursodeoxycholate. MUC2 protein was assayed by Western blot analysis and MUC2 transcription was assayed using a MUC2 promoter reporter luciferase construct. Transcription activator protein 1 (AP-1) activity was measured using an AP-1 reporter construct and confirmed by Western blot analysis for c-Jun/AP-1. RESULTS MUC2 transcription and MUC2 protein expression were increased three to fourfold by bile acids in a time and dose-dependent manner with no effect on cell viability. AP-1 activity was also increased (deoxycholate > chenodeoxycholate > ursodeoxycholate). Treatment with the putative chemopreventive agent curcumin, which decreased AP-1 activity, also decreased MUC2 transcription. Cotransfection with a dominant negative AP-1 vector decreased MUC2 transcription, confirming the significance of AP-1 in MUC2 induction by deoxycholate. Calphostin C, a specific inhibitor of protein kinase C (PKC), greatly decreased bile acid-induced MUC2 transcription and AP-1 activity, whereas inhibitors of MAP kinase had no effect. CONCLUSIONS Bile acids induced mucin expression in human colon carcinoma cells by increasing MUC2 transcription through a process involving MAP kinase-independent, PKC-dependent activation of AP-1.
Collapse
Affiliation(s)
- Shumei Song
- Department of Gastrointestinal Medicine and Nutrition, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | |
Collapse
|
15
|
Ueland T, Yndestad A, Øie E, Florholmen G, Halvorsen B, Frøland SS, Simonsen S, Christensen G, Gullestad L, Aukrust P. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation 2005; 111:2461-8. [PMID: 15883214 DOI: 10.1161/01.cir.0000165119.62099.14] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Persistent inflammation appears to play a role in the development of heart failure (HF). Osteoprotegerin (OPG), the receptor activator of nuclear factor-kappaB (RANK), and RANK ligand (RANKL) are newly discovered members of the tumor necrosis factor superfamily that are critical regulators in bone metabolism but appear also to be involved in immune responses. We hypothesized that the OPG/RANK/RANKL axis could be involved in the pathogenesis of heart failure (HF), and this hypothesis was investigated in both experimental and clinical studies. METHODS AND RESULTS Our main and novel findings were as follows: (1) In a rat model of postinfarction HF, we found persistently increased gene expression of OPG, RANK, and RANKL in the ischemic part of the left ventricle (LV) and, for OPG, in the nonischemic part that involved both noncardiomyocyte and in particular cardiomyocyte tissue. (2) Enhanced myocardial protein levels of OPG, RANK, and RANKL, in particular, were also seen in human HF, and using immunohistochemistry, we localized these mediators to cardiomyocytes within the LV in both experimental and clinical HF. (3) In human HF, we also found increased systemic expression of RANKL (T cells and serum) and OPG (serum), with increasing levels according to functional, hemodynamic, and neurohormonal disease severity. (4) RANKL increased total matrix metalloproteinase activity in human fibroblasts, which indicates a matrix-degrading net effect and suggests a potential mechanism by which enhanced RANKL expression in HF may contribute to LV dysfunction. CONCLUSIONS These findings suggest a potential role for known mediators of bone homeostasis in the pathogenesis of HF and possibly represents new targets for therapeutic intervention in this disorder.
Collapse
Affiliation(s)
- Thor Ueland
- Research Institute for Internal Medicine, Medical Department, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pai R, Tarnawski AS, Tran T. Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell 2004; 15:2156-2163. [PMID: 15004225 PMCID: PMC404012 DOI: 10.1091/mbc.e03-12-0894] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 02/19/2004] [Accepted: 02/20/2004] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is often lethal when invasion and/or metastasis occur. Tumor progression to the metastatic phenotype is mainly dependent on tumor cell invasiveness. Secondary bile acids, particularly deoxycholic acid (DCA), are implicated in promoting colon cancer growth and progression. Whether DCA modulates beta-catenin and promotes colon cancer cell growth and invasiveness remains unknown. Because beta-catenin and its target genes urokinase-type plasminogen activator receptor (uPAR) and cyclin D1 are overexpressed in colon cancers, and are linked to cancer growth, invasion, and metastasis, we investigated whether DCA activates beta-catenin signaling and promotes colon cancer cell growth and invasiveness. Our results show that low concentrations of DCA (5 and 50 microM) significantly increase tyrosine phosphorylation of beta-catenin, induce urokinase-type plasminogen activator, uPAR, and cyclin D1 expression and enhance colon cancer cell proliferation and invasiveness. These events are associated with a substantial loss of E-cadherin binding to beta-catenin. Inhibition of beta-catenin with small interfering RNA significantly reduced DCA-induced uPAR and cyclin D1 expression. Blocking uPAR with a neutralizing antibody significantly suppressed DCA-induced colon cancer cell proliferation and invasiveness. These findings provide evidence for a novel mechanism underlying the oncogenic effects of secondary bile acids.
Collapse
Affiliation(s)
- Rama Pai
- Medical Service, Department of Veterans Affairs Medical Center, Long Beach, California, USA.
| | | | | |
Collapse
|
17
|
Abstract
Invasion causes cancer malignancy. We review recent data about cellular and molecular mechanisms of invasion, focusing on cross-talk between the invaders and the host. Cancer disturbs these cellular activities that maintain multicellular organisms, namely, growth, differentiation, apoptosis, and tissue integrity. Multiple alterations in the genome of cancer cells underlie tumor development. These genetic alterations occur in varying orders; many of them concomitantly influence invasion as well as the other cancer-related cellular activities. Examples discussed are genes encoding elements of the cadherin/catenin complex, the nonreceptor tyrosine kinase Src, the receptor tyrosine kinases c-Met and FGFR, the small GTPase Ras, and the dual phosphatase PTEN. In microorganisms, invasion genes belong to the class of virulence genes. There are numerous clinical and experimental observations showing that invasion results from the cross-talk between cancer cells and host cells, comprising myofibroblasts, endothelial cells, and leukocytes, all of which are themselves invasive. In bone metastases, host osteoclasts serve as targets for therapy. The molecular analysis of invasion-associated cellular activities, namely, homotypic and heterotypic cell-cell adhesion, cell-matrix interactions and ectopic survival, migration, and proteolysis, reveal branching signal transduction pathways with extensive networks between individual pathways. Cellular responses to invasion-stimulatory molecules such as scatter factor, chemokines, leptin, trefoil factors, and bile acids or inhibitory factors such as platelet activating factor and thrombin depend on activation of trimeric G proteins, phosphoinositide 3-kinase, and the Rac and Rho family of small GTPases. The role of proteolysis in invasion is not limited to breakdown of extracellular matrix but also causes cleavage of proinvasive fragments from cell surface glycoproteins.
Collapse
Affiliation(s)
- Marc Mareel
- Laboratory of Experimental Cancerology, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, Belgium.
| | | |
Collapse
|
18
|
Waehre T, Halvorsen B, Damås JK, Yndestad A, Brosstad F, Gullestad L, Kjekshus J, Frøland SS, Aukrust P. Inflammatory imbalance between IL-10 and TNFalpha in unstable angina potential plaque stabilizing effects of IL-10. Eur J Clin Invest 2002; 32:803-10. [PMID: 12423320 DOI: 10.1046/j.1365-2362.2002.01069.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The pathogenesis of atherosclerosis and acute coronary syndromes involves inflammation and immunological mechanisms. We hypothesized that patients with unstable angina may have an imbalance between inflammatory and anti-inflammatory cytokines. DESIGN Plasma levels of tumour necrosis factor (TNF)alpha and interleukin (IL)-10 were analyzed in 44 patients with stable angina, 29 patients with unstable angina and 20 controls. mRNA levels of these cytokines were analyzed in peripheral blood mononuclear cells (PBMC). We also studied the in vitro effects of IL-10 in PBMC from unstable angina patients. RESULTS Our main findings were: (1) the angina patients and particularly those with unstable disease had significantly raised TNFalpha in comparison with the controls, both at the protein and mRNA level; (2) in contrast, the levels of IL-10 were not different in the angina patients in comparison with the healthy controls, resulting in a markedly enhanced TNFalpha:IL-10 ratio, particularly in the unstable angina patients; (3) while exogenously added IL-10 markedly inhibited the release of TNFalpha, IL-8 and tissue factor as well as impairing the gelatinolytic activity and mRNA production of matrix metalloproteinase-9, it enhanced the tissue inhibitor of this metalloproteinase (i.e. TIMP-1) in PBMC from the unstable angina patients. CONCLUSION Patients with unstable angina appear to have an imbalance between TNFalpha and IL-10, possibly favouring inflammatory net effects. IL-10 may have beneficial effects on mechanisms that are important in plaque rupture and thrombus formation.
Collapse
MESH Headings
- Adult
- Aged
- Angina Pectoris/blood
- Angina Pectoris/drug therapy
- Angina, Unstable/blood
- Angina, Unstable/drug therapy
- Angina, Unstable/immunology
- Case-Control Studies
- Cells, Cultured
- Female
- Humans
- Interleukin-10/blood
- Interleukin-10/genetics
- Interleukin-10/pharmacology
- Interleukin-8/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Male
- Matrix Metalloproteinase 9/genetics
- Middle Aged
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Stimulation, Chemical
- Thromboplastin/metabolism
- Tissue Inhibitor of Metalloproteinase-1/metabolism
- Tumor Necrosis Factor-alpha/analysis
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- T Waehre
- Research Institute for Internal Medicine, Rikshospitalet, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Debruyne PR, Bruyneel EA, Karaguni IM, Li X, Flatau G, Müller O, Zimber A, Gespach C, Mareel MM. Bile acids stimulate invasion and haptotaxis in human colorectal cancer cells through activation of multiple oncogenic signaling pathways. Oncogene 2002; 21:6740-50. [PMID: 12360401 DOI: 10.1038/sj.onc.1205729] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2002] [Revised: 05/16/2002] [Accepted: 06/07/2002] [Indexed: 12/19/2022]
Abstract
Bile acids are implicated in colorectal carcinogenesis as evidenced by epidemiological and experimental studies. We examined whether bile acids stimulate cellular invasion of human colorectal and dog kidney epithelial cells at different stages of tumor progression. Colon PC/AA/C1, PCmsrc, and HCT-8/E11 cells and kidney MDCKT23 cells were seeded on top of collagen type I gels and invasive cells were counted after 24 h incubation. Activation of the Rac1 and RhoA small GTPases was investigated by pull-down assays. Haptotaxis was analysed with modified Boyden chambers. Lithocholic acid, chenodeoxycholic acid, cholic acid and deoxycholic acid stimulated cellular invasion of SRC- and RhoA-transformed PCmsrc and MDCKT23-RhoAV14 cells, and of HCT-8/E11 cells originating from a sporadic tumor, but were ineffective in premalignant PC/AA/C1 and MDCKT23 cells. Bile acid-stimulated invasion occurred through stimulation of haptotaxis and was dependent on the RhoA/Rho-kinase pathway and signaling cascades using protein kinase C, mitogen-activated protein kinase, and cyclooxygenase-2. Accordingly, BA-induced invasion was associated with activation of the Rac1 and RhoA GTPases and expression of the farnesoid X receptor. We conclude that bile acids stimulate invasion and haptotaxis in colorectal cancer cells via several cancer invasion signaling pathways.
Collapse
Affiliation(s)
- P R Debruyne
- Laboratory of Experimental Cancerology, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|