1
|
Shi M, Zhang S, Rong J, Heng Z, Xu Y, Wang Y, Zhang Z. Identification of 18β-glycyrrhetinic acid as an AGT inhibitor against LPS-induced myocardial dysfunction via high throughput screening. Biochem Pharmacol 2024; 223:116127. [PMID: 38490519 DOI: 10.1016/j.bcp.2024.116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/21/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Sepsis induced myocardial dysfunction (SIMD) is a serious complication of sepsis. There is increasing evidence that the renin-angiotensin system (RAS) is activated in SIMD. Angiotensinogen (AGT) is a precursor of the RAS, and the inhibition of AGT may have significant cardiovascular benefits. But until now, there have been no reports of small molecule drugs targeting AGT. In this study, we designed a promoter-luciferase based system to screen for novel AGT inhibitors to alleviate SIMD. As a result of high-throughput screening, a total of 5 compounds from 351 medicinal herb-derived natural compounds were found inhibiting AGT. 18β-glycyrrhetinic acid (18βGA) was further identified as a potent suppressor of AGT. In vitro experiments, 18βGA could inhibit the secretion of AGT by HepG2 cells and alleviate the elevated level of mitochondrial oxidative stress in cardiomyocytes co-cultured with HepG2 supernatants. In vivo, 18βGA prolonged the survival rate of SIMD mice, enhanced cardiac function, and inhibited the damage of mitochondrial function and inflammation. In addition, the results showed that 18βGA may reduce AGT transcription by downregulating hepatocyte nuclear factor 4 (HNF4) and that further alleviated SIMD. In conclusion, we provided a more efficient screening strategy for AGT inhibitors and expanded the novel role of 18βGA as a promising lead compound in rescuing cardiovascular disease associated with RAS overactivation.
Collapse
Affiliation(s)
- Mengying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shujing Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jiabing Rong
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zetao Heng
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yinchuan Xu
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Zhaocai Zhang
- Department of Intensive Care Unit, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
2
|
Daugherty A, Sawada H, Sheppard MB, Lu HS. Angiotensinogen as a Therapeutic Target for Cardiovascular and Metabolic Diseases. Arterioscler Thromb Vasc Biol 2024; 44:1021-1030. [PMID: 38572647 PMCID: PMC11225801 DOI: 10.1161/atvbaha.124.318374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
AGT (angiotensinogen) is the unique precursor for the generation of all the peptides of the renin-angiotensin system, but it has received relatively scant attention compared to many other renin-angiotensin system components. Focus on AGT has increased recently, particularly with the evolution of drugs to target the synthesis of the protein. AGT is a noninhibitory serpin that has several conserved domains in addition to the angiotensin II sequences at the N terminus. Increased study is needed on the structure-function relationship to resolve many unknowns regarding AGT metabolism. Constitutive whole-body genetic deletion of Agt in mice leads to multiple developmental defects creating a challenge to use these mice for mechanistic studies. This has been overcome by creating Agt-floxed mice to enable the development of cell-specific deficiencies that have provided considerable insight into a range of cardiovascular and associated diseases. This has been augmented by the recent development of pharmacological approaches targeting hepatocytes in humans to promote protracted inhibition of AGT synthesis. Genetic deletion or pharmacological inhibition of Agt has been demonstrated to be beneficial in a spectrum of diseases experimentally, including hypertension, atherosclerosis, aortic and superior mesenteric artery aneurysms, myocardial dysfunction, and hepatic steatosis. This review summarizes the findings of recent studies utilizing AGT manipulation as a therapeutic approach.
Collapse
Affiliation(s)
- Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Mary B. Sheppard
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY
- Department of Surgery, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
3
|
Li RJ, Wu CY, Ke HL, Wang XP, Zhang YW. Qing Fei Hua Xian Decoction ameliorates bleomycin-induced pulmonary fibrosis by suppressing oxidative stress through balancing ACE-AngII-AT1R/ACE2-Ang-(1-7)-Mas axis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:107-113. [PMID: 36594067 PMCID: PMC9790060 DOI: 10.22038/ijbms.2022.67042.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/01/2022] [Indexed: 01/04/2023]
Abstract
Objectives We aimed to investigate the preventative effect of Qing Fei Hua Xian Decoction (QFHXD) against pulmonary fibrosis (PF) and its potential mechanisms. Materials and Methods Bleomycin (BLM)-induced rats were respectively treated with 413.3, 826.6, and 1239.9 mg/kg of QFHXD and prednisone for 28 days. The lung tissues of rats were collected on day 28 for histological and western blotting analysis. Results QFHXD significantly reduced alveolus inflammation, collagen accumulation, and fibrosis deposition in BLM-induced PF rats (P<0.05). Collagen I and III, vimentin, and α-smooth muscle actin(α-SMA) expression levels were likewise decreased in PF rats treated with QFHXD (P<0.05). Additionally, QFHXD increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) while decreasing NADPH oxidase 4 (NOX4) expression (P<0.05). Furthermore, QFHXD suppressed the PF progression by down-regulating Angiotensin-Converting Enzyme (ACE) -Angiotensin II (AngII) -Angiotensin II Type 1 Receptor (AT1R) axis (P<0.01) and up-regulating Angiotensin-Converting Enzyme 2 (ACE2) -Angiotensin-(1-7) (Ang-(1-7)) -Mas axis (P<0.05). Conclusion QFHXD suppressed inflammatory infiltration and PF brought on by BLM in lung tissues through reducing oxidative stress by maintaining the equilibrium of ACE-AngII-AT1R and ACE2-Ang-(1-7) -Mas axes. This study may provide a novel clinical therapy option for PF.
Collapse
Affiliation(s)
- Rui-jie Li
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China,School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, Hubei, China
| | - Chao-yan Wu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Hao-liang Ke
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Xiu-ping Wang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ying-wen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China,School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, Hubei, China,Corresponding author: Ying-wen Zhang. Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei, China. Tel: +86-27-67813147;
| |
Collapse
|
4
|
Ferrario CM, Saha A, VonCannon JL, Meredith WJ, Ahmad S. Does the Naked Emperor Parable Apply to Current Perceptions of the Contribution of Renin Angiotensin System Inhibition in Hypertension? Curr Hypertens Rep 2022; 24:709-721. [PMID: 36272015 DOI: 10.1007/s11906-022-01229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW To address contemporary hypertension challenges, a critical reexamination of therapeutic accomplishments using angiotensin converting enzyme inhibitors and angiotensin II receptor blockers, and a greater appreciation of evidence-based shortcomings from randomized clinical trials are fundamental in accelerating future progress. RECENT FINDINGS Medications targeting angiotensin II mechanism of action are essential for managing primary hypertension, type 2 diabetes, heart failure, and chronic kidney disease. While the ability of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers to control blood pressure is undisputed, practitioners, hypertension specialists, and researchers hold low awareness of these drugs' limitations in preventing or reducing the risk of cardiovascular events. Biases in interpreting gained knowledge from data obtained in randomized clinical trials include a pervasive emphasis on using relative risk reduction over absolute risk reduction. Furthermore, recommendations for clinical practice in international hypertension guidelines fail to address the significance of a residual risk several orders of magnitude greater than the benefits. We analyze the limitations of the clinical trials that have led to current recommended treatment guidelines. We define and quantify the magnitude of the residual risk in published hypertension trials and explore how activation of alternate compensatory bioprocessing components within the renin angiotensin system bypass the ability of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers to achieve a significant reduction in total and cardiovascular deaths. We complete this presentation by outlining the current incipient but promising potential of immunotherapy to block angiotensin II pathology alone or possibly in combination with other antihypertensive drugs. A full appreciation of the magnitude of the residual risk associated with current renin angiotensin system-based therapies constitutes a vital underpinning for seeking new molecular approaches to halt or even reverse the cardiovascular complications of primary hypertension and encourage investigating a new generation of ACE inhibitors and ARBs with increased capacity to reach the intracellular compartments at which Ang II can be generated.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA.
| | - Amit Saha
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Jessica L VonCannon
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Wayne J Meredith
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Sarfaraz Ahmad
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| |
Collapse
|
5
|
Kahlon T, Carlisle S, Otero Mostacero D, Williams N, Trainor P, DeFilippis AP. Angiotensinogen: More Than its Downstream Products: Evidence From Population Studies and Novel Therapeutics. JACC. HEART FAILURE 2022; 10:699-713. [PMID: 35963818 DOI: 10.1016/j.jchf.2022.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a well-defined pathway playing a key role in maintaining circulatory homeostasis. Abnormal activation of RAAS contributes to development of cardiovascular disease, including heart failure, cardiac hypertrophy, hypertension, and atherosclerosis. Although several key RAAS enzymes and peptide hormones have been thoroughly investigated, the role of angiotensinogen-the precursor substrate of the RAAS pathway-remains less understood. The study of angiotensinogen single-nucleotide polymorphisms (SNPs) has provided insight into associations between angiotensinogen and hypertension, congestive heart failure, and atherosclerotic cardiovascular disease. Targeted drug therapy of RAAS has dramatically improved clinical outcomes for patients with heart failure, myocardial infarction, and hypertension. However, all such therapeutics block RAAS components downstream of angiotensinogen and elicit compensatory pathways that limit their therapeutic efficacy as monotherapy. Upstream RAAS targeting by an angiotensinogen inhibitor has the potential to be more efficacious in patients with suboptimal RAAS inhibition and has a better safety profile than multiagent RAAS blockade. Newly developed therapeutics that target angiotensinogen through antisense oligonucleotides or silencer RNA technologies are providing a novel perspective into the pathobiology of angiotensinogen and show promise as the next frontier in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Tanvir Kahlon
- Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Samantha Carlisle
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
| | - Diana Otero Mostacero
- Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Nina Williams
- Warren Clinic Cardiology of Tulsa, St Francis Hospital, Tulsa, Oklahoma, USA
| | - Patrick Trainor
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
| | - Andrew P DeFilippis
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
6
|
Sawada H, Ohno-Urabe S, Ye D, Franklin MK, Moorleghen JJ, Howatt DA, Mullick AE, Daugherty A, Lu HS. Inhibition of the Renin-Angiotensin System Fails to Suppress β-Aminopropionitrile-Induced Thoracic Aortopathy in Mice-Brief Report. Arterioscler Thromb Vasc Biol 2022; 42:1254-1261. [PMID: 36004642 PMCID: PMC9492637 DOI: 10.1161/atvbaha.122.317712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cross-linking of lysine residues in elastic and collagen fibers is a vital process in aortic development. Inhibition of lysyl oxidase by BAPN (β-aminopropionitrile) leads to thoracic aortopathies in mice. Although the renin-angiotensin system contributes to several types of thoracic aortopathies, it remains unclear whether inhibition of the renin-angiotensin system protects against aortopathy caused by the impairment of elastic fiber/collagen crosslinking. METHODS BAPN (0.5% wt/vol) was started in drinking water to induce aortopathies in male C57BL/6J mice at 4 weeks of age for 4 weeks. Five approaches were used to investigate the impact of the renin-angiotensin system. Bulk RNA sequencing was performed to explore potential molecular mechanisms of BAPN-induced thoracic aortopathies. RESULTS Losartan increased plasma renin concentrations significantly, compared with vehicle-infused mice, indicating effective angiotensin II type 1 receptor inhibition. However, losartan did not suppress BAPN-induced aortic rupture and dilatation. Since losartan is a surmountable inhibitor of the renin-angiotensin system, irbesartan, an insurmountable inhibitor, was also tested. Although increased plasma renin concentrations indicated effective inhibition, irbesartan did not ameliorate aortic rupture and dilatation in BAPN-administered mice. Thus, BAPN-induced thoracic aortopathies were refractory to angiotensin II type 1 receptor blockade. Next, we inhibited angiotensin II production by pharmacological or genetic depletion of AGT (angiotensinogen), the unique precursor of angiotensin II. However, neither suppressed BAPN-induced thoracic aortic rupture and dilatation. Aortic RNA sequencing revealed molecular changes during BAPN administration that were distinct from other types of aortopathies in which angiotensin II type 1 receptor inhibition protects against aneurysm formation. CONCLUSIONS Inhibition of either angiotensin II action or production of the renin-angiotensin system does not attenuate BAPN-induced thoracic aortopathies in mice.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Satoko Ohno-Urabe
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Dien Ye
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Michael K. Franklin
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Jessica J. Moorleghen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | | | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
7
|
Sawada H, Lu HS, Cassis LA, Daugherty A. Twenty Years of Studying AngII (Angiotensin II)-Induced Abdominal Aortic Pathologies in Mice: Continuing Questions and Challenges to Provide Insight Into the Human Disease. Arterioscler Thromb Vasc Biol 2022; 42:277-288. [PMID: 35045728 PMCID: PMC8866209 DOI: 10.1161/atvbaha.121.317058] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AngII (angiotensin II) infusion in mice has been used to provide mechanistic insight into human abdominal aortic aneurysms for over 2 decades. This is a technically facile animal model that recapitulates multiple facets of the human disease. Although numerous publications have reported abdominal aortic aneurysms with AngII infusion in mice, there remain many fundamental unanswered questions such as uniformity of describing the pathological characteristics and which cell type is stimulated by AngII to promote abdominal aortic aneurysms. Extrapolation of the findings to provide insight into the human disease has been hindered by the preponderance of studies designed to determine the effects on initiation of abdominal aortic aneurysms, rather than a more clinically relevant scenario of determining efficacy on the established disease. The purpose of this review is to enhance understanding of AngII-induced abdominal aortic pathologies in mice, thereby providing greater insight into the human disease.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
8
|
Ferrario CM, VonCannon JL, Zhang J, Figueroa JP, Wright KN, Groban L, Saha A, Meredith JW, Ahmad S. Immunoneutralization of human angiotensin-(1-12) with a monoclonal antibody in a humanized model of hypertension. Peptides 2022; 149:170714. [PMID: 34933010 PMCID: PMC8985523 DOI: 10.1016/j.peptides.2021.170714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/02/2023]
Abstract
We engineered a monoclonal antibody (mAb) against the human C-terminus of angiotensin-(1-12) [h-Ang-(1-12)] and performed a biochemical characterization in concert with direct in vivo and ex vivo (carotid artery strips) assessments of h-Ang-(1-12) vasoconstrictor activity in 78 (36 females) transgenic rats expressing the human angiotensinogen gene [TGR(hAGT)L1623] and 26 (10 female) Sprague Dawley (SD) controls. The mAb shows high specificity in neutralizing angiotensin II formation from h-Ang-(1-12) and did not cross-react with human and rat angiotensins. Changes in arterial pressure and heart rate in Inactin® hydrate anesthetized rats were measured before and after h-Ang-(1-12) injections [dose range: 75-300 pmol/kg i.v.] prior to and 30-60 minutes after administration of the h-Ang-(1-12) mAb. Neutralization of circulating Ang-(1-12) inhibited the pressor action of h-Ang-(1-12), prevented Ang-(1-12) constrictor responses in carotid artery rings in both SD and TGR(hAGT)L1623 rats, and caused a fall in the arterial pressure of male and female transgenic rats. The Ang-(1-12) mAb did not affect the response of comparable dose-related pressor responses to Ang II, pre-immune IgG, or the rat sequence of Ang-(1-12). This h-Ang-(1-12) mAb can effectively suppress the pressor actions of the substrate in the circulation of hypertensive rats or in carotid artery strips from both SD and transgenic rats. The demonstration that this Ang-(1-12) mAb by itself, induced a fall in arterial pressure in transgenic hypertensive rats supports further exploring the potential abilities of Ang-(1-12) mAb in the treatment of hypertension.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States.
| | - Jessica L VonCannon
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Jorge P Figueroa
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Kendra N Wright
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Amit Saha
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - J Wayne Meredith
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| |
Collapse
|
9
|
Chen JZ, Sawada H, Ye D, Katsumata Y, Kukida M, Ohno-Urabe S, Moorleghen JJ, Franklin MK, Howatt DA, Sheppard MB, Mullick AE, Lu HS, Daugherty A. Deletion of AT1a (Angiotensin II Type 1a) Receptor or Inhibition of Angiotensinogen Synthesis Attenuates Thoracic Aortopathies in Fibrillin1 C1041G/+ Mice. Arterioscler Thromb Vasc Biol 2021; 41:2538-2550. [PMID: 34407634 PMCID: PMC8458261 DOI: 10.1161/atvbaha.121.315715] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective: A cardinal feature of Marfan syndrome is thoracic aortic aneurysm. The contribution of the renin-angiotensin system via AT1aR (Ang II [angiotensin II] receptor type 1a) to thoracic aortic aneurysm progression remains controversial because the beneficial effects of angiotensin receptor blockers have been ascribed to off-target effects. This study used genetic and pharmacological modes of attenuating angiotensin receptor and ligand, respectively, to determine their roles on thoracic aortic aneurysm in mice with fibrillin-1 haploinsufficiency (Fbn1C1041G/+). Approach and Results: Thoracic aortic aneurysm in Fbn1C1041G/+ mice was found to be strikingly sexual dimorphic. Males displayed aortic dilation over 12 months while aortic dilation in Fbn1C1041G/+ females did not differ significantly from wild-type mice. To determine the role of AT1aR, Fbn1C1041G/+ mice that were either +/+ or -/- for AT1aR were generated. AT1aR deletion reduced expansion of ascending aorta and aortic root diameter from 1 to 12 months of age in males. Medial thickening and elastin fragmentation were attenuated. An antisense oligonucleotide against angiotensinogen was administered to male Fbn1C1041G/+ mice to determine the effects of Ang II depletion. Antisense oligonucleotide against angiotensinogen administration attenuated dilation of the ascending aorta and aortic root and reduced extracellular remodeling. Aortic transcriptome analyses identified potential targets by which inhibition of the renin-angiotensin system reduced aortic dilation in Fbn1C1041G/+ mice. Conclusions: Deletion of AT1aR or inhibition of Ang II production exerted similar effects in attenuating pathologies in the proximal thoracic aorta of male Fbn1C1041G/+ mice. Inhibition of the renin-angiotensin system attenuated dysregulation of genes within the aorta related to pathology of Fbn1C1041G/+ mice.
Collapse
MESH Headings
- Angiotensinogen/genetics
- Angiotensinogen/metabolism
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/prevention & control
- Disease Models, Animal
- Female
- Fibrillin-1/genetics
- Fibrillin-1/metabolism
- Gene Deletion
- Genetic Predisposition to Disease
- Haploinsufficiency
- Male
- Marfan Syndrome/genetics
- Marfan Syndrome/metabolism
- Marfan Syndrome/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Phenotype
- Receptor, Angiotensin, Type 1/deficiency
- Receptor, Angiotensin, Type 1/genetics
- Renin-Angiotensin System/genetics
- Sex Characteristics
- Sex Factors
- Transcriptome
- Mice
Collapse
Affiliation(s)
- Jeff Z. Chen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Dien Ye
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Yuriko Katsumata
- Department Biostatistics, University of Kentucky, Lexington, KY
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Masayoshi Kukida
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Satoko Ohno-Urabe
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Jessica J. Moorleghen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Michael K. Franklin
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Mary B. Sheppard
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY
- Department of Surgery, University of Kentucky, Lexington, KY
| | | | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
10
|
Prieto MC, Gonzalez AA, Visniauskas B, Navar LG. The evolving complexity of the collecting duct renin-angiotensin system in hypertension. Nat Rev Nephrol 2021; 17:481-492. [PMID: 33824491 PMCID: PMC8443079 DOI: 10.1038/s41581-021-00414-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The intrarenal renin-angiotensin system is critical for the regulation of tubule sodium reabsorption, renal haemodynamics and blood pressure. The excretion of renin in urine can result from its increased filtration, the inhibition of renin reabsorption by megalin in the proximal tubule, or its secretion by the principal cells of the collecting duct. Modest increases in circulating or intrarenal angiotensin II (ANGII) stimulate the synthesis and secretion of angiotensinogen in the proximal tubule, which provides sufficient substrate for collecting duct-derived renin to form angiotensin I (ANGI). In models of ANGII-dependent hypertension, ANGII suppresses plasma renin, suggesting that urinary renin is not likely to be the result of increased filtered load. In the collecting duct, ANGII stimulates the synthesis and secretion of prorenin and renin through the activation of ANGII type 1 receptor (AT1R) expressed primarily by principal cells. The stimulation of collecting duct-derived renin is enhanced by paracrine factors including vasopressin, prostaglandin E2 and bradykinin. Furthermore, binding of prorenin and renin to the prorenin receptor in the collecting duct evokes a number of responses, including the non-proteolytic enzymatic activation of prorenin to produce ANGI from proximal tubule-derived angiotensinogen, which is then converted into ANGII by luminal angiotensin-converting enzyme; stimulation of the epithelial sodium channel (ENaC) in principal cells; and activation of intracellular pathways linked to the upregulation of cyclooxygenase 2 and profibrotic genes. These findings suggest that dysregulation of the renin-angiotensin system in the collecting duct contributes to the development of hypertension by enhancing sodium reabsorption and the progression of kidney injury.
Collapse
Affiliation(s)
- Minolfa C. Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA.,
| | - Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - L. Gabriel Navar
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
11
|
Dutta K, Das R, Medeiros J, Kanjilal P, Thayumanavan S. Charge-Conversion Strategies for Nucleic Acid Delivery. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2011103. [PMID: 35832306 PMCID: PMC9275120 DOI: 10.1002/adfm.202011103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 05/05/2023]
Abstract
Nucleic acids are now considered as one of the most potent therapeutic modalities, as their roles go beyond storing genetic information and chemical energy or as signal transducer. Attenuation or expression of desired genes through nucleic acids have profound implications in gene therapy, gene editing and even in vaccine development for immunomodulation. Although nucleic acid therapeutics bring in overwhelming possibilities towards the development of molecular medicines, there are significant loopholes in designing and effective translation of these drugs into the clinic. One of the major pitfalls lies in the traditional design concepts for nucleic acid drug carriers, viz. cationic charge induced cytotoxicity in delivery pathway. Targeting this bottleneck, several pioneering research efforts have been devoted to design innovative carriers through charge-conversion approaches, whereby built-in functionalities convert from cationic to neutral or anionic, or even from anionic to cationic enabling the carrier to overcome several critical barriers for therapeutics delivery, such as serum deactivation, instability in circulation, low transfection and poor endosomal escape. This review will critically analyze various molecular designs of charge-converting nanocarriers in a classified approach for the successful delivery of nucleic acids. Accompanied by the narrative on recent clinical nucleic acid candidates, the review concludes with a discussion on the pitfalls and scope of these interesting approaches.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis 46268, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Pintu Kanjilal
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Sun H, Hodgkinson CP, Pratt RE, Dzau VJ. CRISPR/Cas9 Mediated Deletion of the Angiotensinogen Gene Reduces Hypertension: A Potential for Cure? Hypertension 2021; 77:1990-2000. [PMID: 33813849 PMCID: PMC9896968 DOI: 10.1161/hypertensionaha.120.16870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hualing Sun
- Mandel Center and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Conrad P. Hodgkinson
- Mandel Center and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Richard E. Pratt
- Mandel Center and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Victor J. Dzau
- Mandel Center and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
13
|
Letter to the Editor: Brain renin-angiotensin system and liver-directed siRNA targeted to angiotensinogen. Clin Sci (Lond) 2021; 135:907-910. [PMID: 33835151 DOI: 10.1042/cs20210163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
|
14
|
Shimamura M, Nakagami H, Sanada F, Morishita R. Progress of Gene Therapy in Cardiovascular Disease. Hypertension 2020; 76:1038-1044. [DOI: 10.1161/hypertensionaha.120.14478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gene therapy has been extensively studied in peripheral and cardiac ischemia, heart and vein graft failure, and dyslipidemia, but most clinical trials failed to show their efficacies despite good outcomes in preclinical studies. So far, 2 gene therapies for dyslipidemia and one for critical limb ischemia in peripheral artery disease have been approved. In critical limb ischemia, gene therapy using proangiogenic factors has emerged as a novel therapeutic modality for promoting angiogenesis. Initial researches mainly focused on vascular endothelial growth factor, fibroblast growth factor, or hepatocyte growth factor. After the favorable results of basic research, several phase I and II clinical trials of these proangiogenic factors have shown promising results. However, only a phase III clinical trial of the intramuscular injection of hepatocyte growth factor plasmid DNA has shown successful outcomes, and it was recently approved in Japan for treating patients with critical limb ischemia who have ulcers and for whom no alternative therapeutic options are available. DNA vaccine is another promising modality of gene therapy. An antitumor vaccine suppressing angiogenesis through the inhibition of proangiogenic factors and an antihypertensive vaccine inhibiting the renin–angiotensin system are representative DNA vaccines. The advantage of DNA vaccine is its long-term effectiveness with a few vaccinations; however, the benefits and risks, such as adverse T-cell reaction against self-antigen or long-term side effects, of DNA vaccines should be carefully evaluated. In this review, we discuss the recent advances in proangiogenic gene therapy for critical limb ischemia and DNA vaccine for hypertension.
Collapse
Affiliation(s)
- Munehisa Shimamura
- From the Department of Health Development and Medicine, Japan (M.S., H.N.)
| | - Hironori Nakagami
- From the Department of Health Development and Medicine, Japan (M.S., H.N.)
| | - Fumihiro Sanada
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Japan (F.S., R.M.)
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Japan (F.S., R.M.)
| |
Collapse
|
15
|
Xu Y, Rong J, Zhang Z. The emerging role of angiotensinogen in cardiovascular diseases. J Cell Physiol 2020; 236:68-78. [PMID: 32572956 DOI: 10.1002/jcp.29889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
Angiotensinogen (AGT) is the unique precursor of all angiotensin peptides. Many of the basic understandings of AGT in cardiovascular diseases have come from research efforts to define its effects on blood pressure regulation. The development of novel techniques targeting AGT manipulation such as genetic animal models, adeno-associated viral approaches, and antisense oligonucleotides made it possible to deeply investigate the relationship between AGT and cardiovascular diseases. In this brief review, we provide contemporary insights into the emerging role of AGT in cardiovascular diseases. In light of the recent progress, we emphasize some newly recognized features and mechanisms of AGT in heart failure, hypertension, atherosclerosis, and cardiovascular risk factors.
Collapse
Affiliation(s)
- Yinchuan Xu
- Department of Cardiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiabing Rong
- Department of Cardiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|