1
|
Nejabat M, Motamedifar M, Hashempour A, Heydari M, Foroozanfar Z, Davarpanah MA, Daryabor G. Investigating the relationship between the IL-17 rs2275913, IL-17 rs763780, and the IL-6 rs1800795 genotypes in HIV-positive patients with COVID-19. Mol Biol Rep 2025; 52:420. [PMID: 40268781 DOI: 10.1007/s11033-025-10502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION The people living with HIV with abnormal immune responses have been identified as a population that is particularly susceptibility to contracting COVID-19. We explored the correlation between gene polymorphisms of IL-17A, IL-17F, and IL-6, and the susceptibility to COVID-19 in individuals with HIV infection. METHODS In this cross-sectional study, 337 HIV-positive patients were included. Serological and molecular tests were done using ELISA and PCR-RFLP methods. Allelic frequency, haplotype analyses, linkage disequilibrium were calculated. A linear regression model was used to analyze the interleukin SNP genotypes in HIV patients with and without COVID-19. RESULTS A total of 337 PLWH were recruited for this study, with 170 having COVID-19 and 167 not having it. The mean age and laboratory indicators showed no significant differences between the two groups (P > 0.05). The allele frequency analysis found no significant difference in the IL-17A rs2275913 polymorphism between case and control groups. However, the IL-17F rs763780 and IL-6 rs1800795 had significantly greater frequencies of specific alleles in the case group compared to the control group. The A-A haplotype of IL-17 in SNPs-rs 2,275,913 and rs763780 rising the risk of COVID-19 infection in PLWH by up to 2.398 times compared with the other haplotypes, and the A-G and G-A haplotypes have a protective role against the incidence of COVID-19 infection. CONCLUSION This study is the first to show a significant correlation between the prevalence of COVID-19 and variety polymorphism at IL-17 and IL-6, which suggests that genetic changes in interleukin genes may relate to COVID-19 distribution.
Collapse
Affiliation(s)
- Maryam Nejabat
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Motamedifar
- Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University Medical Science, Shiraz, Iran.
| | - Ava Hashempour
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Heydari
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohre Foroozanfar
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Davarpanah
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Disease Research Center, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Yang C, Fu C, Wang M, Zheng J, Gao Y, Zhu H, Li H, Li D, Guo L, Yu B, Dai Q. Recombinant Antithrombin Alleviated Pulmonary Injury and Inflammation in LPS-Induced ARDS by Inhibiting IL17a/NF-κB Signaling. Immunotargets Ther 2025; 14:433-449. [PMID: 40226836 PMCID: PMC11988198 DOI: 10.2147/itt.s502925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
Background Recombinant antithrombin (rAT) has been shown to protect lungs from ARDS and modulate immune responses, but its anti-inflammatory mechanisms remain unclear. This study aimed to explore the immunomodulatory effects and mechanisms of rAT in LPS-induced ARDS mice. Methods ARDS mouse model was established by intraperitoneally administration of 20 mg/kg LPS. After 3 hours of LPS administration, rAT or PBS was injected intravenously. Lung injury, alveolar permeability, serum inflammatory cytokines, immune cell infiltration in lung tissue, and the proportion of Th17 were assessed 36 hours after rAT administration. The functional roles of the differential expressed genes (DEGs), obtained from LPS-induced ARDS mice treated with or without rAT, were analyzed by GO, KEGG and GSEA enrichment analysis. The activation of NF-κB and NLRP3 inflammasome was evaluated by Western blot and immunofluorescence staining. Results We found that rAT alleviated lung injury, reduced pulmonary permeability, decreased serum inflammatory cytokines, and suppressed immune cell infiltration and NLRP3 inflammasome activation. Moreover, rAT decreased the proportion of Th17 cells in lung tissues and peripheral blood, downregulated IL17a expression, and inhibited NF-κB signaling pathway in lung tissues. Additionally, the administration of IL-17A diminished the efficacy of rAT in mitigating lung injury, suppressing the immune response, and inhibiting the activation of the NF-κB signaling pathway in LPS-induced ARDS mice. Conclusion The findings of this study suggest that rAT alleviates lung injury and suppresses inflammatory responses by inhibiting the IL17a/NF-κB signaling axis, suggesting that rAT may serve as a potential therapeutic agent for mitigating pulmonary inflammation and improving the prognosis of ARDS induced by sepsis. Furthermore, this study provides important research data and theoretical basis for the clinical translation and application of rAT.
Collapse
Affiliation(s)
- Chen Yang
- Department of Anesthesia, the Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Cong Fu
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Mengxue Wang
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Junbo Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Yang Gao
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Huiting Zhu
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Haoxuan Li
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Dongxu Li
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Lichen Guo
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Bing Yu
- Department of Cell Biology, Navy Medical University, Shanghai, People’s Republic of China
| | - Qingqing Dai
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Zhou W, Yuan S, Kang W, Deng X, Zhou H, Ruan J, Feng X, Qi M, Chen B. Replication Study and Meta-Analysis of the Contribution of Seven Genetic Polymorphisms in Immune-Related Genes to the Risk of Gastric and Colorectal Cancers. Int J Immunogenet 2025; 52:39-55. [PMID: 39800859 DOI: 10.1111/iji.12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
Recently, it has been realized that immune processes participate in the pathogenesis of human cancers. A large number of genetic polymorphisms in immune-related genes have been extensively examined for their roles in the susceptibility of gastric cancer (GC) and colorectal cancer (CRC), including IL4 gene rs2070874, IL4RA gene rs1801275, IL18 gene rs187238, IL18RAP gene rs917997, IL17A gene rs8193036, IL23R gene rs1884444 and IL23R gene rs10889677. However, there is no consistent conclusion, which calls for further research. In this case-control study, these 7 genetic polymorphisms were genotyped by Sanger sequencing in a total of 1247 patients with cancer (GC/CRC: 460/787) and 800 healthy individuals. A total of 31 previous studies and our present study were included in this meta-analysis. The case-control study revealed that in Hubei Chinese population, rs2070874, rs187238 and rs10889677 were significantly associated with CRC risk, whereas only rs917997 was significantly associated with GC risk. The meta-analysis showed that rs2070874, rs917997, rs8193036 and rs1884444 were significantly associated with GC risk in Chinese population, whereas rs2070874 in total population, rs1801275 in Asian population and rs187238 in Chinese population were significantly associated with CRC risk. IL4 gene rs2070874, IL18RAP gene rs917997, IL17A gene rs8193036 and IL23R gene rs1884444 may serve as the susceptible factors for GC carcinogenesis in Chinese population. IL4 gene rs2070874 in total population, IL4RA gene rs1801275 in Asian population and IL18 gene rs187238 in Chinese population may be genetic biomarkers for CRC susceptibility.
Collapse
Affiliation(s)
- Weiguang Zhou
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Siqi Yuan
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Wenqiang Kang
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, Hubei, China
| | - Xiangyuan Deng
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, Hubei, China
| | - Hang Zhou
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jiangyi Ruan
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Xianhong Feng
- Department of Clinical Laboratory, Wuhan Xinzhou District People's Hospital, Wuhan, Hubei, China
| | - Meifang Qi
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Bifeng Chen
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Li Q, Chen J, Wang MM, Cao LP, Zhang W, Yang ZZ, Ren Y, Feng J, Han XQ, Nie SN, Sun ZR. Liang-Ge-San Decoction Ameliorates Acute Respiratory Distress Syndrome via Suppressing p38MAPK-NF-κ B Signaling Pathway. Chin J Integr Med 2024:10.1007/s11655-024-3769-6. [PMID: 39636495 DOI: 10.1007/s11655-024-3769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE To explore the potential effects and mechanisms of Liang-Ge-San (LGS) for the treatment of acute respiratory distress syndrome (ARDS) through network pharmacology analysis and to verify LGS activity through biological experiments. METHODS The key ingredients of LGS and related targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. ARDS-related targets were selected from GeneCards and DisGeNET databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed using the Metascape Database. Molecular docking analysis was used to confirm the binding affinity of the core compounds with key therapeutic targets. Finally, the effects of LGS on key signaling pathways and biological processes were determined by in vitro and in vivo experiments. RESULTS A total of LGS-related targets and 496 ARDS-related targets were obtained from the databases. Network pharmacological analysis suggested that LGS could treat ARDS based on the following information: LGS ingredients luteolin, wogonin, and baicalein may be potential candidate agents. Mitogen-activated protein kinase 14 (MAPK14), recombinant V-Rel reticuloendotheliosis viral oncogene homolog A (RELA), and tumor necrosis factor alpha (TNF-α) may be potential therapeutic targets. Reactive oxygen species metabolic process and the apoptotic signaling pathway were the main biological processes. The p38MAPK/NF-κ B signaling pathway might be the key signaling pathway activated by LGS against ARDS. Moreover, molecular docking demonstrated that luteolin, wogonin, and baicalein had a good binding affinity with MAPK14, RELA, and TNF α. In vitro experiments, LGS inhibited the expression and entry of p38 and p65 into the nucleation in human bronchial epithelial cells (HBE) cells induced by LPS, inhibited the inflammatory response and oxidative stress response, and inhibited HBE cell apoptosis (P<0.05 or P<0.01). In vivo experiments, LGS improved lung injury caused by ligation and puncture, reduced inflammatory responses, and inhibited the activation of p38MAPK and p65 (P<0.05 or P<0.01). CONCLUSION LGS could reduce reactive oxygen species and inflammatory cytokine production by inhibiting p38MAPK/NF-κ B signaling pathway, thus reducing apoptosis and attenuating ARDS.
Collapse
Affiliation(s)
- Quan Li
- Department of Intensive Care Unit, Suqian First Hospital, Suqian, Jiangsu Province, 223800, China
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Chen
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng-Meng Wang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
- Department of Emergency Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Li-Ping Cao
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Zhi-Zhou Yang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Emergency Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Jing Feng
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Xiao-Qin Han
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Shi-Nan Nie
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Emergency Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Zhao-Rui Sun
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Emergency Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
| |
Collapse
|
5
|
Vicovan AG, Petrescu DC, Constantinescu D, Iftimi E, Cernescu IT, Ancuta CM, Caratașu CC, Șorodoc L, Ceasovschih A, Solcan C, Ghiciuc CM. Experimental Insights on the Use of Secukinumab and Magnolol in Acute Respiratory Diseases in Mice. Biomedicines 2024; 12:1538. [PMID: 39062111 PMCID: PMC11275060 DOI: 10.3390/biomedicines12071538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigates the combined treatment of secukinumab (SECU) and magnolol (MAGN) in a mouse model of LPS-induced ALI overlapped with allergic pulmonary inflammation, aiming to better understand the mechanism behind this pathology and to assess the therapeutic potential of this novel approach in addressing the severity of ALI. The combined treatment reveals intricate immunomodulatory effects. Both treatments inhibit IL-17 and promote M2 macrophage polarization, which enhances anti-inflammatory cytokine production such as IL-4, IL-5, IL-10, and IL-13, crucial for lung repair and inflammation resolution. However, the combination treatment exacerbates allergic responses and increases OVA-specific IgE, potentially worsening ALI outcomes. MAGN pretreatment alone demonstrates higher potency in reducing neutrophils and enhancing IFN-γ, suggesting its potential in mitigating severe asthma symptoms and modulating immune responses. The study highlights the need for careful consideration in therapeutic applications due to the combination treatment's inability to reduce IL-6 and its potential to exacerbate allergic inflammation. Elevated IL-6 levels correlate with worsened oxygenation and increased mortality in ALI patients, underscoring its critical role in disease severity. These findings offer valuable insights for the advancement of precision medicine within the realm of respiratory illnesses, emphasizing the importance of tailored therapeutic strategies.
Collapse
Affiliation(s)
- Andrei Gheorghe Vicovan
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iași, Romania; (A.G.V.); (I.T.C.); (C.M.G.)
| | - Diana Cezarina Petrescu
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iași, Romania; (A.G.V.); (I.T.C.); (C.M.G.)
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (D.C.); (E.I.)
| | - Elena Iftimi
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (D.C.); (E.I.)
| | - Irina Teodora Cernescu
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iași, Romania; (A.G.V.); (I.T.C.); (C.M.G.)
| | - Codrina Mihaela Ancuta
- 2nd Rheumatology Department, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Str., 700664 Iași, Romania;
- Rheumatology Department, University of Medicine and Pharmacy “Grigore T Popa”, 16 Universitatii Street, 700115 Iași, Romania
| | - Cezar-Cătălin Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universității Street, 700115 Iași, Romania;
| | - Laurențiu Șorodoc
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Street, 700115 Iași, Romania; (L.Ș.); (A.C.)
| | - Alexandr Ceasovschih
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Street, 700115 Iași, Romania; (L.Ș.); (A.C.)
| | - Carmen Solcan
- Department IX—Discipline of Histology, Embryology and Molecular Biology, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Str., 700490 Iași, Romania;
| | - Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iași, Romania; (A.G.V.); (I.T.C.); (C.M.G.)
- Pediatric Emergency Hospital Sf Maria, 700887 Iași, Romania
| |
Collapse
|
6
|
Milentijević M, Katanić N, Joksimović B, Pavlović A, Filimonović J, Anđelković M, Bojović K, Elek Z, Ristić S, Vasiljević M, Stevanović J, Radomirović D, Elez-Burnjaković N, Lalović N, Kulić M, Kulić J, Milić M. The Impact of Cytokines on Coagulation Profile in COVID-19 Patients: Controlled for Socio-Demographic, Clinical, and Laboratory Parameters. Biomedicines 2024; 12:1281. [PMID: 38927488 PMCID: PMC11201770 DOI: 10.3390/biomedicines12061281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Severe coagulation abnormalities are common in patients with COVID-19 infection. We aimed to investigate the relationship between pro-inflammatory cytokines and coagulation parameters concerning socio-demographic, clinical, and laboratory characteristics. Methods: Our study included patients hospitalized during the second wave of COVID-19 in the Republic of Serbia. We collected socio-demographic, clinical, and blood-sample data for all patients. Cytokine levels were measured using flow cytometry. Results: We analyzed data from 113 COVID-19 patients with an average age of 58.15 years, of whom 79 (69.9%) were male. Longer duration of COVID-19 symptoms before hospitalization (B = 69.672; p = 0.002) and use of meropenem (B = 1237.220; p = 0.014) were predictive of higher D-dimer values. Among cytokines, higher IL-5 values significantly predicted higher INR values (B = 0.152; p = 0.040) and longer prothrombin times (B = 0.412; p = 0.043), and higher IL-6 (B = 0.137; p = 0.003) predicted longer prothrombin times. Lower IL-17F concentrations at admission (B = 0.024; p = 0.050) were predictive of higher INR values, and lower IFN-γ values (B = -0.306; p = 0.017) were predictive of higher aPTT values. Conclusions: Our findings indicate a significant correlation between pro-inflammatory cytokines and coagulation-related parameters. Factors such as the patient's level of education, gender, oxygen-therapy use, symptom duration before hospitalization, meropenem use, and serum concentrations of IL-5, IL-6, IL-17F, and IFN-γ were associated with worse coagulation-related parameters.
Collapse
Affiliation(s)
- Milica Milentijević
- Department of Infective Diseases, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (M.M.); (N.K.)
- Clinical Hospital Center Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (M.A.); (Z.E.); (D.R.)
| | - Nataša Katanić
- Department of Infective Diseases, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (M.M.); (N.K.)
| | - Bojan Joksimović
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Aleksandar Pavlović
- Department of Surgery, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Jelena Filimonović
- Department of Epidemiology, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (J.F.); (J.S.)
| | - Milena Anđelković
- Clinical Hospital Center Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (M.A.); (Z.E.); (D.R.)
| | - Ksenija Bojović
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Zlatan Elek
- Clinical Hospital Center Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (M.A.); (Z.E.); (D.R.)
- Department of Surgery, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Siniša Ristić
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Miloš Vasiljević
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Jasmina Stevanović
- Department of Epidemiology, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (J.F.); (J.S.)
| | - Danica Radomirović
- Clinical Hospital Center Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (M.A.); (Z.E.); (D.R.)
| | - Nikolina Elez-Burnjaković
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Nenad Lalović
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Milan Kulić
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Jovan Kulić
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Marija Milić
- Department of Epidemiology, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (J.F.); (J.S.)
| |
Collapse
|
7
|
Tsukalov I, Sánchez-Cerrillo I, Rajas O, Avalos E, Iturricastillo G, Esparcia L, Buzón MJ, Genescà M, Scagnetti C, Popova O, Martin-Cófreces N, Calvet-Mirabent M, Marcos-Jimenez A, Martínez-Fleta P, Delgado-Arévalo C, de Los Santos I, Muñoz-Calleja C, Calzada MJ, González Álvaro I, Palacios-Calvo J, Alfranca A, Ancochea J, Sánchez-Madrid F, Martin-Gayo E. NFκB and NLRP3/NLRC4 inflammasomes regulate differentiation, activation and functional properties of monocytes in response to distinct SARS-CoV-2 proteins. Nat Commun 2024; 15:2100. [PMID: 38453949 PMCID: PMC10920883 DOI: 10.1038/s41467-024-46322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.
Collapse
Affiliation(s)
- Ilya Tsukalov
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Rajas
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Elena Avalos
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | | | - Laura Esparcia
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - María José Buzón
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Camila Scagnetti
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Olga Popova
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noa Martin-Cófreces
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Marta Calvet-Mirabent
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ana Marcos-Jimenez
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Pedro Martínez-Fleta
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ignacio de Los Santos
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - María José Calzada
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro González Álvaro
- Rheumatology Department from Hospital Universitario La Princesa. Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - José Palacios-Calvo
- Department of Pathology, Hospital Universitario Ramón y Cajal. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad de Alcalá. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Ancochea
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Martin-Gayo
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain.
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Li Q, Chen J, Ren Y, Yang Z, Wang M, Zhang W, Cao L, Sun H, Nie S, Sun Z. Protective Effects and Mechanisms of Luteolin against Acute Respiratory Distress Syndrome: Network Pharmacology and In vivo and In vitro Studies. Curr Pharm Des 2024; 30:1404-1418. [PMID: 38616753 DOI: 10.2174/0113816128289341240327072531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Acute Respiratory Distress Syndrome (ARDS) is an acute life-threatening disease, and luteolin has the potential to become a therapeutic agent for ARDS. However, its mechanism of action has not yet been clarified. OBJECTIVE The present study explored the potential effects and mechanisms of luteolin in the treatment of ARDS through network pharmacology analysis and verified them through biological experiments. METHODS The potential targets of luteolin and ARDS were obtained from online databases. Functional enrichment and protein-protein interaction (PPI) analyses were performed to explore the underlying molecular mechanisms and to identify hub targets. Molecular docking was used to verify the relationship between luteolin and target proteins. Finally, the effects of luteolin on key signaling pathways and biological processes were verified by in vitro and in vivo experiments. RESULTS A total of 146 luteolin- and 496 ARDS-related targets were extracted from public databases. The network pharmacological analysis suggested that luteolin could inhibit ARDS through the following potential therapeutic targets: AKT1, RELA, and NFKBIA. Inflammatory and oxidative stress responses were the main biological processes involved, with the AKT/NF-κB signaling pathway being the key signaling pathway targeted by luteolin for the treatment of ARDS. Molecular docking analysis indicated that luteolin had a good binding affinity to AKT1, RELA, and NFKBIA. The in vitro and in vivo experiments revealed that luteolin could regulate the inflammatory response and oxidative stress in the treatment of ARDS by inhibiting the AKT/NF- κB signaling pathway. CONCLUSION Luteolin could reduce the production of reactive oxygen species and inflammatory factors by inhibiting the AKT/NF-κB signaling pathway, thus reducing apoptosis and attenuating ARDS.
Collapse
Affiliation(s)
- Quan Li
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- Department of Intensive Care Unit, Suqian First Hospital, Suqian 223800, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Juan Chen
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
- Department of Emergency Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, PR China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Liping Cao
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Haijun Sun
- Department of Intensive Care Unit, Suqian First Hospital, Suqian 223800, PR China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
- Department of Emergency Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, PR China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
- Department of Emergency Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, PR China
| |
Collapse
|
9
|
Saki N, Javan M, Moghimian-Boroujeni B, Kast RE. Interesting effects of interleukins and immune cells on acute respiratory distress syndrome. Clin Exp Med 2023; 23:2979-2996. [PMID: 37330918 DOI: 10.1007/s10238-023-01118-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a medical condition characterized by widespread inflammation in the lungs with consequent proportional loss of gas exchange function. ARDS is linked with severe pulmonary or systemic infection. Several factors, including secretory cytokines, immune cells, and lung epithelial and endothelial cells, play a role in the development and progression of this disease. The present study is based on Pubmed database information (1987-2022) using the words "Acute respiratory distress syndrome", "Interleukin", "Cytokines" and "Immune cells". Cytokines and immune cells play an important role in this disease, with particular emphasis on the balance between pro-inflammatory and anti-inflammatory factors. Neutrophils are one of several important mediators of Inflammation, lung tissue destruction, and malfunction during ARDS. Some immune cells, such as macrophages and eosinophils, play a dual role in releasing inflammatory mediators, recruitment inflammatory cells and the progression of ARDS, or releasing anti-inflammatory mediators, clearing the lung of inflammatory cells, and helping to improve the disease. Different interleukins play a role in the development or inhibition of ARDS by helping to activate various signaling pathways, helping to secrete other inflammatory or anti-inflammatory interleukins, and playing a role in the production and balance between immune cells involved in ARDS. As a result, immune cells and, inflammatory cytokines, especially interleukins play an important role in the pathogenesis of this disease Therefore, understanding the relevant mechanisms will help in the proper diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Bahareh Moghimian-Boroujeni
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, 61357-15794, Iran.
| | | |
Collapse
|
10
|
Lei F, Wu Y, Li C, Yan B, Chen S, Peng Q, Yang X, Ma P. Mediation of endoplasmic reticulum stress and NF-κB signaling pathway in DINP-exacerbated allergic asthma: A toxicological study with Balb/c mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132392. [PMID: 37657325 DOI: 10.1016/j.jhazmat.2023.132392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Epidemiological evidence indicates a significant relationship between exposure to diisononyl phthalate and allergic asthma. Despite this, the mechanism underlying this association remains unclear. Previous toxicological researches have suggested that the development of allergic asthma may involve the activation of endoplasmic reticulum stress (ERS) and the nuclear factor κ-B (NF-κB) pathways. Nevertheless, it is currently unknown whether these specific signaling pathways are implicated in diisononyl phthalate (DINP)-induced allergic asthma. The objective of this research was to understand how DINP exacerbates allergic asthma in Balb/c mice through ERS and NF-κB pathways. To systematically examine the aggravated effects of DINP in Balb/c mice, we measured airway hyperresponsiveness (AHR), lung tissue pathology, cytokines, and ERS and NF-κB pathway biomarkers. Additionally, we applied the ERS antagonist phenylbutyric acid (4-PBA) or the NF-κB antagonist pyrrolidine dithiocarbamate (PDTC) to verify the mediating effects of ERS and NF-κB on DINP-exacerbated allergic asthma. The results of our experiment show that oral DINP exposure may exacerbate airway hyperresponsiveness and airway remodeling. This deterioration is accompanied by an imbalance in immunoglobulin levels, Th17/Treg cells, ERS, and NF-κB biomarkers, leading to the activation of pro-inflammatory pathways. Furthermore, our study found that the blocking effect of 4-PBA or PDTC can inhibit the Th17/Treg imbalance and effectively alleviate symptoms resembling allergic asthma. In conclusion, ERS and NF-κB signaling pathways play an important role in regulating DINP-induced allergic asthma exacerbations.
Collapse
Affiliation(s)
- Fan Lei
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China; Department of Pharmacy, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Yang Wu
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Chongyao Li
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Biao Yan
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Shaohui Chen
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Qi Peng
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China.
| |
Collapse
|
11
|
Elmadbouly AA, Abdul-Mohymen AM, Eltrawy HH, Elhasan HAA, Althoqapy AA, Amin DR. The association of IL-17A rs2275913 single nucleotide polymorphism with anti-tuberculous drug resistance in patients with pulmonary tuberculosis. J Genet Eng Biotechnol 2023; 21:90. [PMID: 37665411 PMCID: PMC10477154 DOI: 10.1186/s43141-023-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Drug-resistant Tuberculosis (DR-TB) is a global health burden with high morbidity and mortality in developing countries including Egypt. The susceptibility to infection with DR-TB strains may be genetically determined. Several interleukin gene polymorphisms were investigated as risk factors for tuberculosis infection but focusing on their association with DR-TB was limited. Therefore, the objective of this study is to assess the association of IL 17 - 197 G > A (rs2275913) single nucleotide polymorphism (SNP) with susceptibility to DR-TB strains in comparison to drug-sensitive tuberculosis (DS-TB) strains in Egyptian patients with pulmonary TB. This cross-sectional study was conducted on 80 patients with DR-TB strains and 80 with DS-TB strains as a control group. Both age and sex were comparable among the study's groups. IL-17 - 197 G > A (rs2275913) SNP was genotyped by real-time PCR, and IL-17 serum concentration was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The GA and AA genotype frequencies of IL 17 - 197 G > A (rs2275913) SNP were significantly higher in patients with DR-TB strains than those with DS-TB strains (p < 0.001). The frequency of the A allele was significantly (p < 0.001) higher in patients with DR-TB group (32.5%) compared to the control group (13.8%). Substantial higher serum levels of IL-17 were detected in the DR-TB group with significant association with AA and AG genotypes. CONCLUSION Polymorphism in IL-17 -197 G > A (rs2275913) resulted in higher serum levels of IL-17 and Egyptian patients with such polymorphism are three times at risk of infection with DR-TB strains than patients with wild type.
Collapse
Affiliation(s)
- Asmaa A Elmadbouly
- Clinical Pathology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt.
| | | | - Heba H Eltrawy
- Chest Diseases Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Hanaa A Abou Elhasan
- Community Medicine Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Azza Ali Althoqapy
- Medical Microbiology and Immunology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Doaa R Amin
- Biochemistry Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
12
|
Arıkan S, Öztürk O, Duygulu Ş, Atalay EÖ, Atalay A. Associations of IL-17 and IL-17 receptor polymorphisms with Behçet's disease in Denizli Province of Turkey. Immunol Res 2023; 71:600-608. [PMID: 36701075 DOI: 10.1007/s12026-023-09363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
Although the etiopathogenesis of Behçet's disease is not known, studies conducted in different populations show that it is a multifactorial disease that is thought to develop as a result of the interaction of environmental and genetic factors. IL-17 is thought to induce the neutrophilic inflammation and the tissue damage mediated by immune response in patients. Polymorphisms in the gene region encoding IL-17 and IL-17R molecules may play a critical role in the pathogenesis of the disease and contribute to the elucidation of disease mechanism. We aimed to show the association of IL-17A, IL-17F, and IL-17RC polymorphisms and haplotypes in Behçet's disease patients and its clinical features. We genotyped IL-17A (rs4711998 (A/G), rs8193036 (C/T), rs2275913 (A/G), rs3819025 (A/G), rs8193038 (A/G), rs3804513 (A/T), rs1974226 (C/T), rs3748067 (C/T)); IL-17F (rs763780 (T/C), rs2397084 (T/C)); and IL-17R (IL-17RC) (rs708567 (C/T)) polymorphisms in 88 patients with Behçet's disease and 133 healthy controls using PCR-RFLP-based approach. The results of our study showed that polymorphisms of IL-17A, rs8193036 (C/T), rs3819025 (G/A), rs3804513 (A/T), IL-17F rs2397084 (T/C), and IL-17RC rs708567 (C/T) are associated with the susceptibility to the BD. When the haplotype distributions of all loci of IL-17Aand IL-17A/IL-17F together were examined and in contrast to the data obtained from the controls, the GTGGAACC (27.84%) and GTGGAACCTT (25.57%) have the highest frequencies. In conclusion, the allele and genotype frequency differences of the IL-17A, IL-17F, and IL-17R and haplotype frequencies between Behçet's disease and controls indicate that the genetic structure of Behçet's disease may be different.
Collapse
Affiliation(s)
- Sanem Arıkan
- Department of Biophysics, Faculty of Medicine, Pamukkale University, 20070, Denizli, Turkey.
| | - Onur Öztürk
- Department of Biophysics, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkey
| | - Şeniz Duygulu
- Department of Dermatology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Erol Ömer Atalay
- Department of Biophysics, Faculty of Medicine, Pamukkale University, 20070, Denizli, Turkey
| | - Ayfer Atalay
- Department of Biophysics, Faculty of Medicine, Pamukkale University, 20070, Denizli, Turkey
| |
Collapse
|
13
|
Hendawy SR, Wagih Abdelwahab H, Hegazy MA, Elbeltagy AM, Gouda SI, El-Sabbagh AM, Shaltout SW, Sadeq YI. Association of IL-17F Gene Polymorphism and Its Serum Level with SARS-CoV-2 Infection. THORACIC RESEARCH AND PRACTICE 2023; 24:202-207. [PMID: 37485709 PMCID: PMC10544435 DOI: 10.5152/thoracrespract.2023.22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 03/15/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE Although multiple studies have addressed the clinical outcomes of coronavirus disease, little data exist regarding the defi- nition of immune and inflammatory profiles associated with this infection. Its clinical manifestations often worsen in association with hypercytokinemia (elevated interleukin 8 and interleukin 17). We conducted this research to elucidate the effect of interleukin 17 levels and interleukin 17F gene polymorphism on the severity and outcomes of coronavirus disease. MATERIAL AND METHODS Ninety patients with confirmed coronavirus disease and 30 healthy controls were enrolled. Coronavirus disease cases were classified into nonsevere, severe, and critical according to the World Health Organization definition. Approximately 10 mL peripheral blood sample was collected from all patients and controls by venipuncture in-plane and ethylenediaminetetraacetic acid tube. Enzyme-linked immunosorbent assay kits were used for calculating serum interleukin 17 levels, whereas real-time polymerase chain reaction was used for genotyping using the 5'-nuclease allelic discrimination assay for single nucleotide polymorphisms genotyping. RESULTS As regards interleukin 17 levels, there was a significant elevation of interleukin 17 in coronavirus disease cases compared to control healthy persons (P < .001). Moreover, serum interleukin 17 levels tended to be significantly higher with increased disease sever- ity (P = .004). Patients with critical diseases expressed a significant rise of interleukin 17 compared to severe (P = .03) and nonsevere cases (P = .02). We noted no significant difference between the critical, severe, and nonsevere cases regarding different interleukin 17F genotypes. CONCLUSION Coronavirus disease is associated with elevated levels of interleukin 17, which tended to be considerably higher with disease severity. However, different interleukin 17F genotypes do not affect either the predisposition or the severity of coronavirus disease.
Collapse
|
14
|
Liberalesso VYSW, Azevedo MLV, Malaquias MAS, de Paula CBV, Nagashima S, de Souza DG, Neto PC, Gouveia KO, Biscaro LC, Giamberardino ALG, Gonçalves GT, Kondo TTS, Raboni SM, Weiss I, Machado-Souza C, de Noronha L. The role of IL17 and IL17RA polymorphisms in lethal pandemic acute viral pneumonia (Influenza A virus H1N1 subtype). SURGICAL AND EXPERIMENTAL PATHOLOGY 2023; 6:1. [PMCID: PMC9907201 DOI: 10.1186/s42047-023-00126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Background The cytokines play an essential role in acute inflammatory processes, and the IL-17 may be responsible for ambiguous aspects, and the correlation with genetic polymorphisms could improve the search for this critical biomarker. Thus, this study aimed to evaluate the IL-17A and IL-17RA tissue expression and the polymorphisms that codified these proteins in a population that died of pandemic Influenza A virus H1N1 subtype compared to a non-pandemic Influenza virus population. Methods Necropsy lung samples immunohistochemistry was performed to assess the presence of IL-17A and IL-17RA in the pulmonary tissue. Eight single nucleotide polymorphisms were genotyped using TaqMan® technology. Results The Influenza A H1N1 pandemic group had higher tissue expression of IL-17A, higher neutrophil recruitment and shorter survival time between admission and death. Three single nucleotide polymorphisms conferred risk for pandemic influenza A H1N1, the AA genotype of rs3819025 G/A, the CC genotype of rs2241044 A/C, and the TT genotype of rs 2,241,043 C/T. Conclusions One IL17A polymorphism (rs381905) and two IL17RA polymorphisms (rs2241044 and rs2241043) represented biomarkers of worse prognosis in the population infected with pandemic influenza A H1N1. The greater tissue expression of IL-17A shows a Th17 polarization and highlights the aggressiveness of the pandemic influenza virus with its duality in the protection and pathogenesis of the pulmonary infectious process.
Collapse
Affiliation(s)
| | - Marina Luise Viola Azevedo
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Mineia Alessandra Scaranello Malaquias
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Caroline Busatta Vaz de Paula
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Seigo Nagashima
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Daiane Gavlik de Souza
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Plínio Cézar Neto
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Kauana Oliveira Gouveia
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Larissa Cristina Biscaro
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Ana Luisa Garcia Giamberardino
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Gabrielle Tasso Gonçalves
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Thais Teles Soares Kondo
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Sonia Maria Raboni
- grid.411078.b0000 0004 0502 3690Laboratory of Virology, Hospital de Clínicas, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Isabelle Weiss
- Postgraduation Program in Biotechnology Applied in Health of Children and Adolescent, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Cleber Machado-Souza
- Postgraduation Program in Biotechnology Applied in Health of Children and Adolescent, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Lucia de Noronha
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| |
Collapse
|
15
|
Abstract
IL-17 cytokine family members have diverse biological functions, promoting protective immunity against many pathogens but also driving inflammatory pathology during infection and autoimmunity. IL-17A and IL-17F are produced by CD4+ and CD8+ T cells, γδ T cells, and various innate immune cell populations in response to IL-1β and IL-23, and they mediate protective immunity against fungi and bacteria by promoting neutrophil recruitment, antimicrobial peptide production and enhanced barrier function. IL-17-driven inflammation is normally controlled by regulatory T cells and the anti-inflammatory cytokines IL-10, TGFβ and IL-35. However, if dysregulated, IL-17 responses can promote immunopathology in the context of infection or autoimmunity. Moreover, IL-17 has been implicated in the pathogenesis of many other disorders with an inflammatory basis, including cardiovascular and neurological diseases. Consequently, the IL-17 pathway is now a key drug target in many autoimmune and chronic inflammatory disorders; therapeutic monoclonal antibodies targeting IL-17A, both IL-17A and IL-17F, the IL-17 receptor, or IL-23 are highly effective in some of these diseases. However, new approaches are needed to specifically regulate IL-17-mediated immunopathology in chronic inflammation and autoimmunity without compromising protective immunity to infection.
Collapse
Affiliation(s)
- Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
16
|
Liu M, Wang H, Liu L, Cui S, Huo X, Xiao Z, Zhao Y, Wang B, Zhang G, Wang N. Risk of COVID-19 infection, hospitalization and mortality in psoriasis patients treated with interleukin-17 inhibitors: A systematic review and meta-analysis. Front Immunol 2022; 13:1046352. [PMID: 36389759 PMCID: PMC9648142 DOI: 10.3389/fimmu.2022.1046352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) have brought great disaster to mankind, and there is currently no globally recognized specific drug or treatment. Severe COVID-19 may trigger a cytokine storm, manifested by increased levels of cytokines including interleukin-17 (IL-17), so a new strategy to treat COVID-19 may be to use existing IL-17 inhibitors, which have demonstrated efficacy, safety and tolerability in the treatment of psoriasis. However, the use of IL-17 inhibitors in patients with psoriasis during the COVID-19 pandemic remains controversial due to reports that IL-17 inhibitors may increase the risk of respiratory tract infections. OBJECTIVES The systematic review and meta-analysis aimed to evaluate the effect of IL-17 inhibitors on the risk of COVID-19 infection, hospitalization, and mortality in patients with psoriasis. METHODS Databases (including Embase, PubMed, SCI-Web of Science, Scopus, CNKI, and the Cochrane Library) were searched up to August 23, 2022, for studies exploring differences in COVID-19 outcomes between psoriasis patients using IL-17 inhibitors and those using non-biologics. Two authors independently extracted data and assessed the risk of bias in a double-blind manner. The risk ratios (RRs) and 95% confidence intervals (CIs) were calculated and heterogeneities were determined by the Q test and I 2 statistic. And the numbers needed to treat (NNTs) were calculated to assess the clinical value of IL-17 inhibitors in preventing SARS-CoV-2 infection and treating COVID-19. RESULTS Nine observational studies involving 7,106 participants were included. The pooled effect showed no significant differences in the rates of SARS-CoV-2 infection (P = 0.94; I 2 = 19.5%), COVID-19 hospitalization (P = 0.64; I 2 = 0.0%), and COVID-19 mortality (P = 0.32; I 2 = 0.0%) in psoriasis patients using IL-17 inhibitors compared with using non-biologics. Subgroup analyses grouped by age and COVID-19 cases, respectively, revealed consistent results as above. Meanwhile, the pooled NNTs showed no significant differences between the two groups in the clinical value of preventing SARS-CoV-2 infection and treating COVID-19. CONCLUSION The use of IL-17 inhibitors in patients with psoriasis does not increase the risk of SARS-CoV-2 infection or worsen the course of COVID-19. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42022335195.
Collapse
Affiliation(s)
- Meitong Liu
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huijuan Wang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lu Liu
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Saijin Cui
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangran Huo
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhuoyun Xiao
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaning Zhao
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Wang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shijiazhuang, China
| | - Na Wang
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
17
|
Predicting the severity of viral bronchiolitis in children. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.3.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute viral bronchiolitis is one of the common causes of hospitalization and mortality, especially among children in the first year of life who have risk factors (prematurity, congenital heart defects, bronchopulmonary dysplasia, immunosuppression). As factors associated with the severe course of bronchiolitis, along with the traditional ones, single nucleotide polymorphisms of the genes of the immune response molecules can be considered.The aim. Based on the analysis of clinical, laboratory and molecular genetic parameters, to identify prognostic criteria for the severe course of acute viral bronchiolitis in children.Materials and methods. The study included 106 children with acute viral bronchiolitis (severe course – 34, mild course – 72), the etiology of which in 67.9 % was respiratory syncytial virus. Forty-seven anamnestic, clinical, traditional laboratory and molecular genetic parameters were assessed as prognostic criteria. Determination of SNP genes of cytokines IL-4 (C-589T), IL-10 (G-1082A), IL-10 (C-592A), IL-10 (C-819T), TNF-α (G-308A), IL-17A (G197A), IL-17F (His161Arg), TLR2-753ArgGln, TLR6-Ser249Pro in venous blood was carried out by the polymerase chain reaction method.Results. An additional criterion for the risk of developing a severe course of bronchiolitis can be the mutant genotype (AA) SNP of the IL-10 gene (C-592A), which was detected exclusively in the group of patients with severe bronchiolitis, increasing the risk of developing a severe disease by 16.11 times (OR = 16.11; 95 % CI: 0.81–121.22, p = 0.02) in conjunction with already established modifying factors: the presence of congenital heart disease, bronchopulmonary dysplasia, prematurity, birth weight < 1500 g. Based on a comprehensive assessment of the established risk factors, a method has been developed that allows calculate the likelihood of developing a severe course of acute viral bronchiolitis. Conclusion. The use of the developed prediction method will not only increase the likelihood of developing severe acute viral bronchiolitis in children, but also determine the priority group among children with predictors of severe viral bronchiolitis for priority immunoprophylaxis against RS-virus infection.
Collapse
|
18
|
Novel prognostic determinants of COVID-19-related mortality: A pilot study on severely-ill patients in Russia. PLoS One 2022; 17:e0264072. [PMID: 35213582 PMCID: PMC8880431 DOI: 10.1371/journal.pone.0264072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19 pandemic has posed a severe healthcare challenge calling for an integrated approach in determining the clues for early non-invasive diagnostics of the potentially severe cases and efficient patient stratification. Here we analyze the clinical, laboratory and CT scan characteristics associated with high risk of COVID-19-related death outcome in the cohort of severely-ill patients in Russia. The data obtained reveal that elevated dead lymphocyte counts, decreased early apoptotic lymphocytes, decreased CD14+/HLA-Dr+ monocytes, increased expression of JNK in PBMCs, elevated IL-17 and decreased PAI-1 serum levels are associated with a high risk of COVID-19-related mortality thus suggesting them to be new prognostic factors. This set of determinants could be used as early predictors of potentially severe course of COVID-19 for trials of prevention or timely treatment.
Collapse
|
19
|
El-Desoky MM, Tharwat S, Mostafa N, Hewidy AA, Elmorsey RA, Abdelhafez MS, El-Ashry AH, Elhendawi MM, Fathy AA, Hisham FA. Association of Interleukin-17F Polymorphism and Mortality Predictors with the Risk of COVID-19. Int J Clin Pract 2022; 2022:4761631. [PMID: 36349054 PMCID: PMC9633175 DOI: 10.1155/2022/4761631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Th-17 cells, a proinflammatory subset of CD4 T lymphocytes, have been suggested as a possible cause of coronavirus disease-19 (COVID-19)-related immunological injuries. The aim of this study was to investigate the relationship between IL-17F (rs763780) polymorphism and the susceptibility to and outcomes of COVID-19 infection and to determine the clinical and laboratory predictors of COVID-19 death. METHODS This case-control study included 132 COVID-19 patients and 135 healthy age- and sex-matched controls. The participants were tested for IL-17F rs763780 polymorphism via TaqMan-based genotyping and for the expression of IL-17 by enzyme-linked immunosorbent assay. This study also investigated the predictors for COVID-19 mortality. RESULTS A non-statistically significant association was observed between IL-17F alleles and genotypes with COVID-19 (P=0.309, P=0.138, respectively). Moreover, no significant difference in the IL-17F genotypes was observed between non-survivors and survivors (P=0.482). In the multivariate analysis, the participants with the following characteristics had 17.7-, 11.2-, 8-, and 17.9-fold higher odds of exhibiting in-hospital mortality, respectively: (1) hypertension, (2) age of >57 years, (3) WBC count of >12.6 × 103/mm3, and (4) D-dimer of >0.9 ng/ml. The ROC curve analysis showed that IL-17 at a cutoff point of >46 pg/ml was a perfect discriminator of COVID-19 patients from control subjects (AUC = 1.0). CONCLUSION The findings indicate that the IL-17F H161R variant does not influence the risk of COVID-19. However, the IL-17 level is a perfect discriminator of COVID-19 infection. Hypertension, age of >57 years, white blood cell count of >12.6 × 103/mm3, and D-dimer of >0.9 ng/ml are the independent predictors for death among COVID-19 patients.
Collapse
Affiliation(s)
- Manal M. El-Desoky
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Samar Tharwat
- Rheumatology & Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nora Mostafa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Asem A. Hewidy
- Chest Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab A. Elmorsey
- Chest Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona S. Abdelhafez
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amira H. El-Ashry
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona M. Elhendawi
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Aya Ahmed Fathy
- Public Health and Community Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Fatma Azzahraa Hisham
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
20
|
Feng CM, Wang XM, Li MD, Xu Z, Hua DX, Cheng JY, Zheng L, Zhao H, Fu L. Serum interleukin-17 predicts severity and prognosis in patients with community acquired pneumonia: a prospective cohort study. BMC Pulm Med 2021; 21:393. [PMID: 34856971 PMCID: PMC8637026 DOI: 10.1186/s12890-021-01770-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
Background Some studies previously demonstrated that interleukin-17 (IL-17) involves in pulmonary diseases progression. Nevertheless, the role of IL-17 in community-acquired pneumonia (CAP) remains unknown. This study aims to examine the correlations between serum IL-17 with the severity and prognosis in CAP patients through a prospective cohort study. Methods All 239 CAP patients were recruited. Serum IL-17 was detected by enzyme-linked immunosorbent assay (ELISA). The CAP severity was evaluated through CAP severity scores, including CURB-65, CRB-65, PSI, SMART-COP, CURXO and APACHE II. Results Serum IL-17 was gradually increased consistent with the severity of CAP. Correlative analysis suggested that serum IL-17 was associated with clinical physiologic indicators among CAP patients. Logistic regression indicated that serum IL-17 was positively related to CAP severity scores. Additionally, the prognostic outcomes were tracked among CAP patients. The levels of IL-17 on admission were significantly increased in CAP patients with ICU admission, mechanical ventilation, vasoactive agent, death and longer hospitalization days. Logistic regression analyses revealed serum higher IL-17 on admission elevated the risks of vasoactive agent usage and longer hospital stays in CAP patients. The cut-off concentrations of serum IL-17 for death, ICU admission, mechanical ventilation and ≥ 14 hospital stays were 86.80 ng/mL, 84.92 ng/mL, 84.92 ng/mL and 60.29 ng/mL respectively. Conclusions Serum IL-17 on admission is positively associated with the severity and poor prognosis among CAP patients, revealing that IL-17 may implicate in the pathological process of CAP. Therefore, serum IL-17 may become an effective biomarker for diagnosis, prognosis and therapy for CAP patients.
Collapse
Affiliation(s)
- Chun-Mei Feng
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
| | - Xin-Ming Wang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Meng-Die Li
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
| | - Zheng Xu
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
| | - Dong-Xu Hua
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
| | - Jia-Yi Cheng
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
| | - Ling Zheng
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
| | - Hui Zhao
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China.
| | - Lin Fu
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China.
| |
Collapse
|
21
|
Baqer NN, Saheb EJ, Ahmed NS. Genetic polymorphism of IL-17A (rs2275913) in Iraqi women with recurrent abortion and its relationship with susceptibility to toxoplasmosis. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Maione F, Casillo GM, Raucci F, Salvatore C, Ambrosini G, Costa L, Scarpa R, Caso F, Bucci M. Interleukin-17A (IL-17A): A silent amplifier of COVID-19. Biomed Pharmacother 2021; 142:111980. [PMID: 34364043 PMCID: PMC8318692 DOI: 10.1016/j.biopha.2021.111980] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
One of the hallmarks of COVID-19 is the cytokine storm that provokes primarily pneumonia followed by systemic inflammation. Emerging evidence has identified a potential link between elevated interleukin-17A (IL-17A) levels and disease severity and progression. Considering that per se, IL-17A can activate several inflammatory pathways, it is plausible to hypothesize an involvement of this cytokine in COVID-19 clinical outcomes. Thus, IL-17A could represent a marker of disease progression and/or a target to develop therapeutic strategies. This hypothesis paper aims to propose this "unique" cytokine as a silent amplifier of the COVID-19 immune response and (potentially) related therapy.
Collapse
Affiliation(s)
- Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gian Marco Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Cristian Salvatore
- New.Fa.DEm SRL, Viale Ferrovie Dello Stato, 1, 80014 Giugliano in Campania, Naples, Italy
| | - Giovanna Ambrosini
- New.Fa.DEm SRL, Viale Ferrovie Dello Stato, 1, 80014 Giugliano in Campania, Naples, Italy
| | - Luisa Costa
- Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Raffaele Scarpa
- Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Francesco Caso
- Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy.
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
23
|
Karcioglu Batur L, Hekim N. Correlation between interleukin gene polymorphisms and current prevalence and mortality rates due to novel coronavirus disease 2019 (COVID-2019) in 23 countries. J Med Virol 2021; 93:5853-5863. [PMID: 34081354 PMCID: PMC8242628 DOI: 10.1002/jmv.27127] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022]
Abstract
Background The novel coronavirus disease 2019 (COVID‐19) infection may rely on a potential genetic background for the variations in the inflammatory response. We aimed to investigate the possible correlation between polymorphisms in the IL‐6 gene at rs1800796/rs1800795, in IL‐6R at rs2228145, in IL‐10 at rs1800896 and rs1800871, in IL‐17 at rs2275913 and rs763780 loci, and COVID‐19 prevalence and mortality rates among populations of 23 countries. Methods We searched the literature for polymorphisms in China, Japan, India, Spain, Mexico, Sweden, Turkey, Brazil, Russia, Poland, Italy, South Africa, Netherlands, Greece, Germany, UK, Iran, Finland, Czechia, Tunisia, Norway, Egypt, Croatia. We recorded the prevalence and mortality rates (per million) caused by the Coronavirus infection recorded on 7th September 2020 and 6th December 2020. Results There was a significant positive correlation between the frequency of AG genotype of rs1800896 and prevalence recorded on 6th December 2020 (r: 0.53, r2: 0.28, p < .05). There was a significant negative correlation between the mortality rates recorded on 7th September, and the AG genotype of rs2275913 (r: −0.51, r2: 0.26, p < .05). There was a significant positive correlation between the prevalence recorded on 6th December, and TT genotype at rs763780 (r: 0.65, r2:0.42, p < .05) while a negative correlation between prevalence and TC genotype at rs763780 (r: −0.66, r2: 0.43, p < .05). Also, a significant negative correlation was found between mortality rates recorded on 6th December 2020 and CC genotype at rs763780 (r: −0.56, r2: 0.31, p < .05). Conclusion The variations in prevalence of COVID‐19 and its mortality rates among countries may be explained by the polymorphisms at rs1800896 in IL‐10, rs2275913 in IL‐17A, and rs763780 loci in the IL‐17F gene. The variations in prevalence of COVID‐19 and its mortality rates among 23 countries may be explained by the polymorphisms at rs1800896 in IL‐10, rs2275913 in IL‐17A, and rs763780 loci in the IL‐17F gene. AG genotype frequency of rs1800896 was positively correlated with prevalence recorded on 6th December 2020. The mortality rates recorded on 7th September was negatively correlated with AG genotype frequency of rs2275913. The prevalence recorded on 6th December was positively correlated with frequency of TT and negatively with TC genotype at rs763780. The mortality rates recorded on 6th December 2020 was negatively correlated with CC genotype frequency at rs763780.
Collapse
Affiliation(s)
- Lutfiye Karcioglu Batur
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, Turkey
| | - Nezih Hekim
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, Turkey
| |
Collapse
|
24
|
Ramakrishnan RK, Al Heialy S, Hamid Q. Implications of preexisting asthma on COVID-19 pathogenesis. Am J Physiol Lung Cell Mol Physiol 2021; 320:L880-L891. [PMID: 33759572 PMCID: PMC8143784 DOI: 10.1152/ajplung.00547.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic spreading at an alarming rate has taken a heavy toll on the public healthcare systems and economies worldwide. An abnormal and overactivated inflammatory response is occasionally elicited by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and this hyperinflammation is associated with worse prognosis of COVID-19. Theoretically, one would expect patients with asthma to be at a greater risk of SARS-CoV-2 infection considering their increased susceptibility to common respiratory virus-associated exacerbations. Surprisingly, current data do not consistently suggest an increased prevalence of asthma among patients with COVID-19. Considering the high global prevalence of asthma, the characteristics of the disease and/or their conventional therapy might play a role in their potential defense against COVID-19. This may be attributed to the T helper type 2 immune response predominantly seen in patients with asthma. Likewise, asthma therapeutics, including corticosteroids and biologics, may in fact benefit the patients with asthma by alleviating the development of hyperinflammation. On the other hand, elevated IL-17 levels are characteristically seen in a subset of asthma patients with severe disease as well as in patients with COVID-19. Targeting the IL-17 pathway as a treatment strategy could plausibly alleviate acute respiratory distress syndrome (ARDS) in patients with COVID-19 and asthma demonstrating a predominant T helper type 17 response. A clinical trial including a drug targeting this pathway may thus, constitute a logical addition to the global pursuit for effective therapeutics against COVID-19. The complex interplay between the asthma endotypes and COVID-19 is not very well understood and will be discussed in this mini-review.
Collapse
Affiliation(s)
- Rakhee K Ramakrishnan
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, McGill University, Montreal, Quebec, Canada
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Kridin K, Schonmann Y, Solomon A, Damiani G, Tzur Bitan D, Onn E, Weinstein O, Cohen AD. Risk of COVID-19 Infection, Hospitalization, and Mortality in Patients with Psoriasis Treated by Interleukin-17 Inhibitors. J DERMATOL TREAT 2021; 33:2014-2020. [PMID: 33759683 DOI: 10.1080/09546634.2021.1905766] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The risk of the infection and its complications under this drug class remains to be determined. OBJECTIVE To evaluate the risk of COVID-19, COVID-19-associated hospitalization, and mortality among patients with psoriasis treated by IL-17I. METHODS A population-based cohort study was performed to compare psoriasis patients treated by IL-17I (n = 680) with those treated by methotrexate (n = 2,153) and non-systemic/non-immunomodulatory treatments (n = 138,750) regarding the incidence of COVID-19 and its complications. RESULTS The use of IL-17I was not associated with an increased risk of COVID-19 infection [adjusted HR for IL-17I vs. methotrexate: 0.91 (95% CI, 0.48-1.72); IL-17I vs. non-systemic/non-immunomodulatory treatments: 0.92 (95% CI, 0.54-1.59)]. IL-17I was associated with comparable risk of COVID-19-associated hospitalization [adjusted HR for IL-17I vs. methotrexate: 0.42 (95% CI, 0.05-3.39); IL-17I vs. non-systemic/non-immunomodulatory treatments: 0.65 (95% CI, 0.09-4.59)] and COVID-19-associated mortality [adjusted HR for IL-17I vs. methotrexate: 7.57 (95% CI, 0.36-157.36); IL-17I vs. non-systemic/non-immunomodulatory treatments: 7.05 (95% CI, 0.96-51.98)]. In a sensitivity analysis, neither secukinumab nor ixekizumab imposed an elevated risk of any of the outcomes of interests. CONCLUSIONS IL-17I treatment does not confer an increased risk of COVID-19 infection or its complications in patients with psoriasis. Our findings support the continuation of IL-17I treatment during the pandemic.
Collapse
Affiliation(s)
- Khalaf Kridin
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | | | - Giovanni Damiani
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Dana Tzur Bitan
- Department of Behavioral Sciences, Ariel University, Ariel, Israel
| | - Erez Onn
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Baruch Padeh Medical Center, Poriya, Tiberias, Israel
| | - Orly Weinstein
- Clalit Health Services, Tel-Aviv, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Ben-Gurion Ave, Beer Sheva, Israel
| | - Arnon D Cohen
- Clalit Health Services, Tel-Aviv, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Ben-Gurion Ave, Beer Sheva, Israel
| |
Collapse
|
26
|
From sepsis to acute respiratory distress syndrome (ARDS): emerging preventive strategies based on molecular and genetic researches. Biosci Rep 2021; 40:222737. [PMID: 32319516 PMCID: PMC7199454 DOI: 10.1042/bsr20200830] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
A healthy body activates the immune response to target invading pathogens (i.e. viruses, bacteria, fungi, and parasites) and avoid further systemic infection. The activation of immunological mechanisms includes several components of the immune system, such as innate and acquired immunity. Once any component of the immune response to infections is aberrantly altered or dysregulated, resulting in a failure to clear infection, sepsis will develop through a pro-inflammatory immunological mechanism. Furthermore, the severe inflammatory responses induced by sepsis also increase vascular permeability, leading to acute pulmonary edema and resulting in acute respiratory distress syndrome (ARDS). Apparently, potential for improvement exists in the management of the transition from sepsis to ARDS; thus, this article presents an exhaustive review that highlights the previously unrecognized relationship between sepsis and ARDS and suggests a direction for future therapeutic developments, including plasma and genetic pre-diagnostic strategies and interference with proinflammatory signaling.
Collapse
|
27
|
Lee KL, Lai TC, Wang YC, Shih PC, Yang YC, Tsao TCY, Liu TC, Wen YC, Chang LC, Yang SF, Chien MH. Potential Impacts of Interleukin-17A Promoter Polymorphisms on the EGFR Mutation Status and Progression of Non-Small Cell Lung Cancer in Taiwan. Genes (Basel) 2021; 12:genes12030427. [PMID: 33802737 PMCID: PMC8002550 DOI: 10.3390/genes12030427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a typical inflammation-associated cancer, and lung adenocarcinoma (LUAD) is the most common histopathological subtype. Epidermal growth factor receptor (EGFR) mutations are the most common driver mutations of LUAD, and they have been identified as important therapeutic targets by EGFR tyrosine kinase inhibitors. Interleukin (IL)-17A secreted by T-helper 17 lymphocytes is a proinflammatory cytokine that plays an important role in cancer pathogenesis. The present study was designed to investigate the possible associations among IL-17A genetic polymorphisms, EGFR mutation status, and the clinicopathologic development of LUAD in a Taiwanese population. Our study population consisted of 277 LUAD patients harboring the wild-type (WT) EGFR or a mutant (MT) EGFR. Four single-nucleotide polymorphisms (SNPs) of IL-17A in the peripheral blood, including rs8193036(C > T), rs8193037(G > A), rs2275913(G > A), and rs3748067(C > T) loci, were genotyped using a TaqMan allelic discrimination assay. Our results showed that none of these IL-17A SNPs were correlated with the risk of developing mutant EGFR. However, patients with a smoking habit who carried the GA genotype of IL-17A rs8193037 had a significantly lower susceptibility to EGFR mutations (adjusted odds ratio (AOR): 0.225; 95% confidence interval (CI): 0.056~0.900, p = 0.035). Moreover, compared to individuals carrying the CC genotype of rs8193036 at IL-17A, T-allele carriers (CT + TT) were at higher risk of developing more-advanced stages (stage III or IV; p = 0.020). In the WT EGFR subgroup analysis, IL-17A rs8193036 T-allele carriers had higher risks of developing an advanced tumor stage (p = 0.016) and lymphatic invasion (p = 0.049). Further analyses of clinical datasets revealed correlations of IL-17 receptor A (IL-17RA) and IL-17RC expressions with a poor prognosis of LUAD patients with a smoking history or with higher levels of tumor-infiltrating lymphocytes. In conclusion, our results suggested that two functional promoter polymorphisms of IL-17A, i.e., rs8193036 and rs8193037, were associated with the EGFR mutation status and progression in LUAD patients, indicating that these two genetic variants might act as possible markers for predicting patients’ clinical prognoses.
Collapse
Affiliation(s)
- Kai-Ling Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (K.-L.L.); (Y.-C.Y.)
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
| | - Yao-Chen Wang
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-C.W.); (T.C.-Y.T.)
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Pei-Chun Shih
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (K.-L.L.); (Y.-C.Y.)
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 433, Taiwan
| | - Thomas Chang-Yao Tsao
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-C.W.); (T.C.-Y.T.)
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Tu-Chen Liu
- Department of Chest Medicine, Cheng-Ching General Hospital, Taichung 40764, Taiwan;
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lun-Ching Chang
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (S.-F.Y.); (M.-H.C.); Tel.: +886-4-24739595 (ext. 34253) (S.-F.Y.); +886-2-27361661 (ext. 3237) (M.-H.C.); Fax: +886-4-24723229 (S.-F.Y.); +886-2-27390500 (M.-H.C.)
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (K.-L.L.); (Y.-C.Y.)
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (S.-F.Y.); (M.-H.C.); Tel.: +886-4-24739595 (ext. 34253) (S.-F.Y.); +886-2-27361661 (ext. 3237) (M.-H.C.); Fax: +886-4-24723229 (S.-F.Y.); +886-2-27390500 (M.-H.C.)
| |
Collapse
|
28
|
Pojero F, Candore G, Caruso C, Di Bona D, Groneberg DA, Ligotti ME, Accardi G, Aiello A. The Role of Immunogenetics in COVID-19. Int J Mol Sci 2021; 22:2636. [PMID: 33807915 PMCID: PMC7961811 DOI: 10.3390/ijms22052636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is induced by SARS-CoV-2 and may arise as a variety of clinical manifestations, ranging from an asymptomatic condition to a life-threatening disease associated with cytokine storm, multiorgan and respiratory failure. The molecular mechanism behind such variability is still under investigation. Several pieces of experimental evidence suggest that genetic variants influencing the onset, maintenance and resolution of the immune response may be fundamental in predicting the evolution of the disease. The identification of genetic variants behind immune system reactivity and function in COVID-19 may help in the elaboration of personalized therapeutic strategies. In the frenetic look for universally shared treatment plans, those genetic variants that are common to other diseases/models may also help in addressing future research in terms of drug repurposing. In this paper, we discuss the most recent updates about the role of immunogenetics in determining the susceptibility to and the history of SARS-CoV-2 infection. We propose a narrative review of available data, speculating about lessons that we have learnt from other viral infections and immunosenescence, and discussing what kind of aspects of research should be deepened in order to improve our knowledge of how host genetic variability impacts the outcome for COVID-19 patients.
Collapse
Affiliation(s)
- Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - David A. Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Mattia E. Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| |
Collapse
|
29
|
Potential therapeutic effects of interleukin-35 on the differentiation of naïve T cells into Helios +Foxp3 + Tregs in clinical and experimental acute respiratory distress syndrome. Mol Immunol 2021; 132:236-249. [PMID: 33494935 PMCID: PMC8058740 DOI: 10.1016/j.molimm.2021.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Regulatory T lymphocytes are important targets for the treatment of acute respiratory distress syndrome (ARDS). IL-35 is a newly identified IL-12 cytokine family member that plays an important protective role in a variety of immune system diseases by regulating Treg cell differentiation; however, the role of IL-35 in the pathogenesis of ARDS is still unclear. Here, we found that IL-35 was significantly elevated in adult patients with ARDS compared to controls. Additionally, IL-35 was positively and significantly correlated with IL-6, IL-10 and the oxygenation index (PaO2/FiO2 ratio) but negatively correlated with TNF-α, IL-1β and APACHE II score during ARDS. Moreover, the proportion of Treg/CD4+ cells in the peripheral blood of ARDS patients and the expression of NF-κB in PMBCs were significantly higher than in healthy individuals. Recombinant IL-35 improved survival in a murine model of CLP-induced ARDS. Additionally, IL-35 administration decreased the inflammatory response, as reflected by lower levels of cytokines (including IL-2, TNF-α, IL-1β and IL-6) and less lung damage in CLP-induced ARDS. Furthermore, recombinant IL-35 reduced the apoptosis of lung tissue and the expression of NF-κB signalling in a CLP-induced ARDS model and increased the proportion of Treg cells in spleen and peripheral blood. In vitro experiments revealed that IL-35 can affect the phosphorylation of STAT5 during differentiation of naïve CD4+ T lymphocytes into Foxp3+Helios+ Tregs. Our findings suggest that IL-35 attenuates ARDS by promoting the differentiation of naïve CD4+ T cells into Foxp3+Helios+ Tregs, thereby providing a novel tool for anti-ARDS therapy.
Collapse
|
30
|
Bajaj V, Gadi N, Spihlman AP, Wu SC, Choi CH, Moulton VR. Aging, Immunity, and COVID-19: How Age Influences the Host Immune Response to Coronavirus Infections? Front Physiol 2021; 11:571416. [PMID: 33510644 PMCID: PMC7835928 DOI: 10.3389/fphys.2020.571416] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus severe acute respiratory syndrome coronavirus 2 causing the Coronavirus disease (COVID-19) pandemic has ravaged the world with over 72 million total cases and over 1.6 million deaths worldwide as of early December 2020. An overwhelming preponderance of cases and deaths is observed within the elderly population, and especially in those with pre-existing conditions and comorbidities. Aging causes numerous biological changes in the immune system, which are linked to age-related illnesses and susceptibility to infectious diseases. Age-related changes influence the host immune response and therefore not only weaken the ability to fight respiratory infections but also to mount effective responses to vaccines. Immunosenescence and inflamm-aging are considered key features of the aging immune system wherein accumulation of senescent immune cells contribute to its decline and simultaneously increased inflammatory phenotypes cause immune dysfunction. Age-related quantitative and qualitative changes in the immune system affect cells and soluble mediators of both the innate and adaptive immune responses within lymphoid and non-lymphoid peripheral tissues. These changes determine not only the susceptibility to infections, but also disease progression and clinical outcomes thereafter. Furthermore, the response to therapeutics and the immune response to vaccines are influenced by age-related changes within the immune system. Therefore, better understanding of the pathophysiology of aging and the immune response will not only help understand age-related diseases but also guide targeted management strategies for deadly infectious diseases like COVID-19.
Collapse
Affiliation(s)
- Varnica Bajaj
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Medicine, Boston University, Boston, MA, United States
| | - Nirupa Gadi
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Medicine, Boston University, Boston, MA, United States
| | - Allison P. Spihlman
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Medicine, Boston University, Boston, MA, United States
| | - Samantha C. Wu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Medicine, Boston University, Boston, MA, United States
| | - Christopher H. Choi
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Medicine, Boston University, Boston, MA, United States
| | - Vaishali R. Moulton
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Bein K, Ganguly K, Martin TM, Concel VJ, Brant KA, Di YPP, Upadhyay S, Fabisiak JP, Vuga LJ, Kaminski N, Kostem E, Eskin E, Prows DR, Jang AS, Leikauf GD. Genetic determinants of ammonia-induced acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2020; 320:L41-L62. [PMID: 33050709 DOI: 10.1152/ajplung.00276.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this study, a genetically diverse panel of 43 mouse strains was exposed to ammonia, and genome-wide association mapping was performed employing a single-nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was used to help resolve the genetic determinants of ammonia-induced acute lung injury. The encoded proteins were prioritized based on molecular function, nonsynonymous SNP within a functional domain or SNP within the promoter region that altered expression. This integrative functional approach revealed 14 candidate genes that included Aatf, Avil, Cep162, Hrh4, Lama3, Plcb4, and Ube2cbp, which had significant SNP associations, and Aff1, Bcar3, Cntn4, Kcnq5, Prdm10, Ptcd3, and Snx19, which had suggestive SNP associations. Of these genes, Bcar3, Cep162, Hrh4, Kcnq5, and Lama3 are particularly noteworthy and had pathophysiological roles that could be associated with acute lung injury in several ways.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Koustav Ganguly
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Unit of Integrated Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Timothy M Martin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent J Concel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kelly A Brant
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Y P Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Swapna Upadhyay
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Unit of Integrated Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - James P Fabisiak
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Louis J Vuga
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Naftali Kaminski
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Emrah Kostem
- Departments of Computer Science and Human Genetics, University of California, Los Angeles, California
| | - Eleazar Eskin
- Departments of Computer Science and Human Genetics, University of California, Los Angeles, California
| | - Daniel R Prows
- Division of Human Genetics, Cincinnati Children's Hospital and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Ann-Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Ladda M, Lynde C, Fleming P. Severe Acute Respiratory Syndrome Coronavirus 2 and the Use of Biologics in Patients With Psoriasis. J Cutan Med Surg 2020; 24:625-632. [PMID: 32757760 DOI: 10.1177/1203475420945234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID-19), a respiratory disease caused by a novel coronavirus designated severe acute respiratory syndrome coronavirus 2, has rapidly spread worldwide and has been recognized as a pandemic by the World Health Organization. Patients with altered immunologic function are at higher risk of acquiring COVID-19. In patients with psoriasis, inhibition of select pro-inflammatory cytokines through the use of biologic agents has been shown to be an effective treatment option. Pro-inflammatory cytokines have key immunomodulatory effects and are known to be involved in the hosts' immune response to a variety of viral infections. Though little is currently known about the role of inflammatory cytokines in COVID-19, early reports have shown patients with severe disease to have elevated serum levels of select inflammatory cytokines such as tumor necrosis factor alpha. This review will summarize key information that is currently known about COVID-19, the role of select cytokines in viral defense, and important considerations for patients with psoriasis using biologic agents during this pandemic. Currently, there is insufficient evidence to discontinue biologic therapy in patients with psoriasis who have not tested positive for COVID-19. The decision to pause biologic therapy should be considered on a case-by-case basis in patients in higher risk populations, and should take into account individual risk and benefit. Until more is known about the impact of biologic therapy on COVID-19 outcomes, we recommend patients with psoriasis who test positive for COVID-19 be instructed to discontinue or postpone biologic treatment until they have recovered from infection.
Collapse
Affiliation(s)
- Matthew Ladda
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Charles Lynde
- Lynde Institute for Dermatology, Markham, ON, Canada
- 210484 Division of Dermatology, Department of Medicine, University of Toronto, Toronto ON, Canada
| | - Patrick Fleming
- Lynde Institute for Dermatology, Markham, ON, Canada
- 210484 Division of Dermatology, Department of Medicine, University of Toronto, Toronto ON, Canada
| |
Collapse
|
33
|
Abstract
Levels of the cytokine IL-17 positively correlate with disease severity in COVID-19. Here, the authors argue that existing anti-IL-17 therapies should be considered for the treatment of severe COVID-19.
Collapse
|
34
|
IL-38 is a biomarker for acute respiratory distress syndrome in humans and down-regulates Th17 differentiation in vivo. Clin Immunol 2019; 210:108315. [PMID: 31756565 DOI: 10.1016/j.clim.2019.108315] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/21/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
|
35
|
Zhang J, Zhao Z, Bai H, Wang M, Jiao L, Peng W, Wu T, Liu T, Chen H, Song X, Wu L, Hu X, Wu Q, Zhou J, Song J, Lyv M, Ying B. Genetic polymorphisms in PXR and NF-κB1 influence susceptibility to anti-tuberculosis drug-induced liver injury. PLoS One 2019; 14:e0222033. [PMID: 31490979 PMCID: PMC6730870 DOI: 10.1371/journal.pone.0222033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pregnane X receptor (PXR) regulates the expression of drug-metabolizing enzymes and transport enzymes. NF-κB not only plays a role in liver homeostasis and injury-healing processes by regulating inflammatory responses but may also regulate the transcription of PXR. Currently, genetic polymorphisms in PXR are associated with adverse drug effects. Because little is known about the association between NF-κB1 genetic polymorphisms and adverse drug reactions, we explored the association between PXR and NF-κB1 single nucleotide polymorphisms (SNPs) and susceptibility to anti-tuberculosis drug-induced liver injury (ATDILI). MATERIALS AND METHODS A total of 746 tuberculosis patients (118 with ATDILI and 628 without ATDILI) were prospectively enrolled at West China Hospital between December 2014 and April 2018. Nine selected SNPs (rs3814055, rs13059232, rs7643645 and rs3732360 in PXR and rs78872571, rs4647992, rs60371688, rs1598861 and rs3774959 in NF-κB1) were genotyped with a custom-designed 2x48-plex SNP Scan TM Kit. The frequencies of the alleles, genotypes and genetic models of the variants were compared between patients with or without ATDILI, while joint effect analysis of the SNP-SNP interactions was performed using multiplicative and additive models. The odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were calculated. RESULTS The T allele of rs3814055 in PXR was associated with a decreased risk for ATDILI (OR 0.61; 95% CI: 0.42-0.89, p = 0.0098). The T alleles of rs78872571 and rs4647992 in NF-κB1 were significantly associated with an increased risk for ATDILI (OR 1.91; 95% CI: 1.06-3.43, p = 0.028 and OR 1.81; 1.06-3.10, p = 0.029, respectively). The allele, genotype and genetic model frequencies were similar in the two groups for the other six SNPs (all P>0.05). There were no multiplicative or additive interactions between the SNPs. CONCLUSION Our study is the first to reveal that rs3814055 variants in PXR and rs78872571 and rs4647992 variants in NF-κB1 are associated with susceptibility to ATDILI caused by first-line anti-tuberculosis combination treatment in the Han Chinese population.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Hao Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Wu Peng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Lijuan Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xuejiao Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qian Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Mengyuan Lyv
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
36
|
Hernández-Beeftink T, Guillen-Guio B, Villar J, Flores C. Genomics and the Acute Respiratory Distress Syndrome: Current and Future Directions. Int J Mol Sci 2019; 20:E4004. [PMID: 31426444 PMCID: PMC6721149 DOI: 10.3390/ijms20164004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/11/2019] [Indexed: 12/19/2022] Open
Abstract
The excessive hospital mortality associated with acute respiratory distress syndrome (ARDS) in adults mandates an urgent need for developing new therapies and tools for the early risk assessment of these patients. ARDS is a heterogeneous syndrome with multiple different pathogenetic processes contributing differently in different patients depending on clinical as well as genetic factors. Identifying genetic-based biomarkers holds the promise for establishing effective predictive and prognostic stratification methods and for targeting new therapies to improve ARDS outcomes. Here we provide an updated review of the available evidence supporting the presence of genetic factors that are predictive of ARDS development and of fatal outcomes in adult critically ill patients and that have been identified by applying different genomic and genetic approaches. We also introduce other incipient genomics approximations, such as admixture mapping, metagenomics and genome sequencing, among others, that will allow to boost this knowledge and likely reveal new genetic predictors of ARDS susceptibility and prognosis among critically ill patients.
Collapse
Affiliation(s)
- Tamara Hernández-Beeftink
- Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria 35010, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife 38010, Spain
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife 38010, Spain
| | - Jesús Villar
- Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria 35010, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife 38010, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain.
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife 38600, Spain.
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife 38200, Spain.
| |
Collapse
|