1
|
Ge L, Ma J, Xu J, Wang B, Adil A, Xu H. The mechanism of lncRNA PVT1 targeting the miR-30a/Beclin-1 axis to mediate ventricular remodeling in spontaneously hypertensive rats. Cell Signal 2025; 130:111650. [PMID: 39923929 DOI: 10.1016/j.cellsig.2025.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVES Hypertension poses a great health threat globally. We probed the mechanisms of long non-coding RNA plasmacytoma variant translocation 1 (lncRNA PVT1) mediating ventricular remodeling (VR) in spontaneously hypertensive rats (SHR). METHODS PVT1 was down-regulated or miR-30a was inhibited in SHR in vivo. Hypertensive injury model was established in vitro. VR, fibrosis and autophagy-related indicators were detected by echocardiography, HE/WGA/Masson staining, ELISA, and immunohistochemistry. Cell viability, fibrosis markers, autophagy-related markers, and lncRNA PVT1 and miR-30a levels were assessed. Interactions between PVT1, Beclin-1 and miR-30a were verified. RESULTS PVT1 was up-regulated in myocardial tissues of SHR. PVT1 knockdown alleviated VR and myocardial fibrosis (MF) in SHR, as evidenced by decreased systolic blood pressure, left ventricular end-systolic diameter, left ventricular end-systolic diameter, and heart weight index, boosted left ventricular fractional shortening and left ventricular ejection fraction, abated inflammatory infiltration of myocardial tissues, decreased myocardial hypertrophy and interstitial fibrosis, reduced serum angiotensin II (Ang II) and atrial natriuretic peptide, and downregulated collagen I, collagen II, α-smooth muscle actin, and fibronectin protein. PVT1 knockdown down-regulated Beclin 1 and LC3B-II/LC3B-I and up-regulated p62 protein. In vitro, PVT1 knockdown improved fibrosis by inhibiting Ang II-induced cardiomyocyte autophagy. PVT1 acted as a competitive endogenous RNA to competitively bind to miR-30a to target Beclin-1 expression. PVT1 targeted the miR-30a/Beclin-1 axis to mediate autophagy to affect VR and MF in SHR. CONCLUSIONS LncRNA PVT1 promotes cellular autophagy by targeting the miR-30a/Beclin-1 axis, thereby promoting VR and MF in SHR. Knockdown of lncRNA PVT1 attenuates VR and MF in SHR.
Collapse
Affiliation(s)
- Li Ge
- Department of Hypertension, The Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jianjun Ma
- Department of Hypertension, The Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jingxuan Xu
- School of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Bo Wang
- Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Abdusalam Adil
- Department of Hypertension, The Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hongfeng Xu
- Department of Hypertension, The Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
2
|
Zhang X, Shao S, Li Q, Wang Y, Kong M, Zhang C. Roles of Autophagy, Mitophagy, and Mitochondria in Left Ventricular Remodeling after Myocardial Infarction. Rev Cardiovasc Med 2025; 26:28195. [PMID: 40160572 PMCID: PMC11951495 DOI: 10.31083/rcm28195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 04/02/2025] Open
Abstract
This review examines the mechanisms of left ventricular dysfunction, focusing on the interplay between ventricular remodeling, autophagy, and mitochondrial dysfunction following myocardial infarction. Left ventricular dysfunction directly affects the heart's pumping efficiency and can lead to severe clinical outcomes, including heart failure. After myocardial infarction, the left ventricle may suffer from weakened contractility, diastolic dysfunction, and cardiac remodeling, progressing to heart failure. Thus, this article discusses the pathophysiological processes involved in ventricular remodeling, including the injury and repair of infarcted and non-infarcted myocardia, adaptive changes, and specific changes in left ventricular systolic and diastolic functions. Furthermore, the role of autophagy in maintaining cellular energy homeostasis, clearing dysfunctional mitochondria, and the key role of mitochondrial dysfunction in heart failure is addressed. Finally, this article discusses therapeutic strategies targeting mitochondrial dysfunction and enhancing mitophagy, providing clinicians and researchers with the latest insights and future research directions.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Shuai Shao
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Qiuting Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yi Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Mowei Kong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
3
|
Grzeczka A, Graczyk S, Kordowitzki P. Involvement of TGF-β, mTOR, and inflammatory mediators in aging alterations during myxomatous mitral valve disease in a canine model. GeroScience 2025:10.1007/s11357-025-01520-0. [PMID: 39865135 DOI: 10.1007/s11357-025-01520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Inflammaging, a state of chronic low-grade inflammation associated with aging, has been linked to the development and progression of various disorders. Cellular senescence, a state of irreversible growth arrest, is another characteristic of aging that contributes to the pathogenesis of cardiovascular pathology. Senescent cells accumulate in tissues over time and secrete many inflammatory mediators, further exacerbating the inflammatory environment. This senescence-associated secretory phenotype can promote tissue dysfunction and remodeling, ultimately leading to the development of age-related cardiovascular pathologies, such as mitral valve myxomatous degeneration. The species-specific form of canine myxomatous mitral valve disease (MMVD) provides a unique opportunity to investigate the early causes of induction of ECM remodeling in mitral valve leaflets in the human form of MMVD. Studies have shown that in both humans and dogs, the microenvironment of the altered leaflets is inflammatory. More recently, the focus has been on the mechanisms leading to the transformation of resting VICs (qVICs) to myofibroblast-like VICs (aVICs). Cells affected by stress fall into a state of cell cycle arrest and become senescent cells. aVICs, under the influence of TGF-β signaling pathways and the mTOR complex, enhance ECM alteration and accumulation of systemic inflammation. This review aims to create a fresh new view of the complex interaction between aging, inflammation, immunosenescence, and MMVD in a canine model, as the domestic dog is a promising model of human aging and age-related diseases.
Collapse
Affiliation(s)
- Arkadiusz Grzeczka
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Szymon Graczyk
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.
| |
Collapse
|
4
|
de Vere F, Wijesuriya N, Howell S, Elliott MK, Mehta V, Mannakkara NN, Strocchi M, Niederer SA, Rinaldi CA. Optimizing outcomes from cardiac resynchronization therapy: what do recent data and insights say? Expert Rev Cardiovasc Ther 2024; 22:1-18. [PMID: 39695920 PMCID: PMC11716670 DOI: 10.1080/14779072.2024.2445246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION Cardiac Resynchronization Therapy (CRT) is an effective treatment for heart failure (HF) in approximately two-thirds of recipients, with a third remaining CRT 'non-responders.' There is an increasing body of evidence exploring the reasons behind non-response, as well as ways to preempt or counteract it. AREAS COVERED This review will examine the most recent evidence regarding optimizing outcomes from CRT, as well as explore whether traditional CRT indeed remains the best first-line therapy for electrical resynchronization in HF. We will start by discussing methods of preempting non-response, such as refining patient selection and procedural technique, before reviewing how responses can be optimized post-implantation. For the purpose of this review, evidence was gathered from electronic literature searches (via PubMed and GoogleScholar), with a particular focus on primary evidence published in the last 5 years. EXPERT OPINION Ever-expanding research in the field of device therapy has armed physicians with more tools than ever to treat dyssynchronous HF. Newer developments, such as artificial intelligence (AI) guided device programming and conduction system pacing (CSP) are particularly exciting, and we will discuss how they could eventually lead to truly personalized care by maximizing outcomes from CRT.
Collapse
Affiliation(s)
- Felicity de Vere
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Nadeev Wijesuriya
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Sandra Howell
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Mark K. Elliott
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Vishal Mehta
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Nilanka N. Mannakkara
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Marina Strocchi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Steven A. Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Christopher A. Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Ma Y, Niu L, Zhang J, Yu F, Huang W. Endothelial progenitor cells have high predictive value for ventricular remodeling after percutaneous coronary intervention in acute myocardial infarction. Coron Artery Dis 2024:00019501-990000000-00314. [PMID: 39679591 DOI: 10.1097/mca.0000000000001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
OBJECTIVE Acute myocardial infarction (AMI) and the following heart failure are main causes of disability and death across the globe. Endothelial progenitor cell (EPC) levels are linked to AMI. Herein, we assessed the predictive value of EPCs for post-percutaneous coronary intervention (PCI) ventricular remodeling in AMI patients. METHODS This study retrospectively analyzed 215 AMI patients receiving PCI, who were then categorized into the VR ( n = 66) and N-VR ( n = 149) groups as per whether they developed post-PCI ventricular remodeling. Left ventricular ejection fraction (LVEF), N-terminal pro-brain natriuretic peptide (NT-pro-BNP), and EPCs were measured. The correlations of LVEF and NT-pro-BNP with EPCs, the predictive value of EPCs for post-PCI ventricular remodeling, and the risk of post-PCI ventricular remodeling in AMI patients with different EPC levels were analyzed by Spearman's analysis, receiver-operating characteristic curve, and Kaplan-Meier curve. RESULTS LVEF and EPC levels were lower and NT-pro-BNP level was higher in the VR group than the N-VR group. EPC levels in the class III-IV group were lower than those in the class I-II group. EPC levels in AMI patients correlated positively with LVEF ( r = 0.683) and negatively with NT-pro-BNP ( r = -0.761). EPCs exhibited high predictive value for post-PCI ventricular remodeling in AMI [area under the curve (AUC) of 0.822] and anterior MI (AUC = 0.941) patients. AMI and anterior MI patients with low EPC levels had a higher risk of post-PCI ventricular remodeling. CONCLUSION Low EPC levels have high predictive value for post-PCI ventricular remodeling, and increase the risk of post-PCI ventricular remodeling in AMI patients.
Collapse
Affiliation(s)
- Yongxiang Ma
- Department of Cardiology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou City, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
6
|
Luo YP, Gu XX, Liu C, Huang Y, Lu LJ, Zhang SY, Yuan YL. Association between miR-30 polymorphism and ischemic stroke in Chinese population. BMC Med Genomics 2024; 17:269. [PMID: 39538152 PMCID: PMC11562358 DOI: 10.1186/s12920-024-02041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a commonly seen cerebrovascular disease which seriously endangers the health of middle age and old people. However, its etiology and pathogenesis have not yet fully comprehended. miR-30 gene is a novel gene which may be involved in IS. However, no studies have investigated the relationship between IS and the single-nucleotide polymorphisms (SNPs) of miR-30. Therefore, this study examined the relationship between miR-30 polymorphisms (rs2222722, rs1192037, rs10095483 and rs16827546) and the risk of IS. METHODS Totally 248 IS patients and 230 age-, sex- and race-matched controls were involved in this study. Based on SNPscan technique, four polymorphisms (rs2222722, rs1192037, rs10095483 and rs16827546) were genotyped. RESULTS There exists a significant association between rs2222722 polymorphism and the risk of IS according to analyses of genotypes, models and alleles (GA vs. GG: adjusted OR = 1.616, 95% CI: 0.943-2.768, P = 0. 081); (AA vs. GG: adjusted OR = 2.447, 95% CI: 1.233-4.858, P = 0.011); dominant model: adjusted (OR = 1.806, 95% CI, 1.082-3.016, P = 0.024); (G vs. A: adjusted OR = 1.492, 95% CI: 1.148-1.939, P = 0.003). Besides, miR-30a expression was significantly higher in patients undergoing IS relative to that in controls (P < 0.05). CONCLUSIONS To conclude, the rs2222722 polymorphism of the miR-30 gene shows a significant relationship to elevate the risk of IS in Chinese population.
Collapse
Affiliation(s)
- Yan-Ping Luo
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xi-Xi Gu
- Department of Laboratory Medicine, Peking University People's Hospital ,Qingdao; Women and Children's Hospital, QINGDAO UNIVERSITY, Qingdao, Shandong, China
- Department of Laboratory Medicine, Peking University People's Hospital ,Qingdao; Women and Children's Hospital, QINGDAO UNIVERSITY, Qingdao, Shandong, China
| | - Chao Liu
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ying Huang
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li-Jiang Lu
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shu-Yu Zhang
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yu-Lin Yuan
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
7
|
El Khayari A, Hakam SM, Malka G, Rochette L, El Fatimy R. New insights into the cardio-renal benefits of SGLT2 inhibitors and the coordinated role of miR-30 family. Genes Dis 2024; 11:101174. [PMID: 39224109 PMCID: PMC11367061 DOI: 10.1016/j.gendis.2023.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 09/04/2024] Open
Abstract
Sodium-glucose co-transporter inhibitors (SGLTis) are the latest class of anti-hyperglycemic agents. In addition to inhibiting the absorption of glucose by the kidney causing glycosuria, these drugs also demonstrate cardio-renal benefits in diabetic subjects. miR-30 family, one of the most abundant microRNAs in the heart, has recently been linked to a setting of cardiovascular diseases and has been proposed as novel biomarkers in kidney dysfunctions as well; their expression is consistently dysregulated in a variety of cardio-renal dysfunctions. The mechanistic involvement and the potential interplay between miR-30 and SGLT2i effects have yet to be thoroughly elucidated. Recent research has stressed the relevance of this cluster of microRNAs as modulators of several pathological processes in the heart and kidneys, raising the possibility of these small ncRNAs playing a central role in various cardiovascular complications, notably, endothelial dysfunction and pathological remodeling. Here, we review current evidence supporting the pleiotropic effects of SGLT2is in cardiovascular and renal outcomes and investigate the link and the coordinated implication of the miR-30 family in endothelial dysfunction and cardiac remodeling. We also discuss the emerging role of circulating miR-30 as non-invasive biomarkers and attractive therapeutic targets for cardiovascular diseases and kidney diseases. Clinical evidence, as well as metabolic, cellular, and molecular aspects, are comprehensively covered.
Collapse
Affiliation(s)
- Abdellatif El Khayari
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Soukaina Miya Hakam
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Gabriel Malka
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Luc Rochette
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne – Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, Dijon 21000, France
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| |
Collapse
|
8
|
Hou B, Yu D, Bai H, Du X. Research Progress of miRNA in Heart Failure: Prediction and Treatment. J Cardiovasc Pharmacol 2024; 84:136-145. [PMID: 38922572 DOI: 10.1097/fjc.0000000000001588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
ABSTRACT This review summarizes the multiple roles of microRNAs (miRNAs) in the prediction and treatment of heart failure (HF), including the molecular mechanisms regulating cell apoptosis, myocardial fibrosis, cardiac hypertrophy, and ventricular remodeling, and highlights the importance of miRNAs in the prognosis of HF. In addition, the strategies for alleviating HF with miRNA intervention are discussed. On the basis of the challenges and emerging directions in the research and clinical practice of HF miRNAs, it is proposed that miRNA-based therapy could be a new approach for prevention and treatment of HF.
Collapse
Affiliation(s)
- Bingyan Hou
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | | | | | | |
Collapse
|
9
|
Zacharjasz J, Sztachera M, Smuszkiewicz M, Piwecka M. Micromanaging the neuroendocrine system - A review on miR-7 and the other physiologically relevant miRNAs in the hypothalamic-pituitary axis. FEBS Lett 2024; 598:1557-1575. [PMID: 38858179 DOI: 10.1002/1873-3468.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
10
|
Yao X, Huang X, Chen J, Lin W, Tian J. Roles of non-coding RNA in diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23:227. [PMID: 38951895 PMCID: PMC11218407 DOI: 10.1186/s12933-024-02252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 07/03/2024] Open
Abstract
In recent years, the incidence of diabetes has been increasing rapidly, posing a serious threat to human health. Diabetic cardiomyopathy (DCM) is characterized by cardiomyocyte hypertrophy, myocardial fibrosis, apoptosis, ventricular remodeling, and cardiac dysfunction in individuals with diabetes, ultimately leading to heart failure and mortality. However, the underlying mechanisms contributing to DCM remain incompletely understood. With advancements in molecular biology technology, accumulating evidence has shown that numerous non-coding RNAs (ncRNAs) crucial roles in the development and progression of DCM. This review aims to summarize recent studies on the involvement of three types of ncRNAs (micro RNA, long ncRNA and circular RNA) in the pathophysiology of DCM, with the goal of providing innovative strategies for the prevention and treatment of DCM.
Collapse
Affiliation(s)
- Xi Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xinyue Huang
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weiqiang Lin
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China.
| | - Jingyan Tian
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Clinical Trials Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
11
|
Liu M, Tang H, Gao K, Zhang X, Ma Z, Jia Y, Yang Z, Inam M, Gao Y, Wang G, Shan X. Poly (I:C)-Induced microRNA-30b-5p Negatively Regulates the JAK/STAT Signaling Pathway to Mediate the Antiviral Immune Response in Silver Carp ( Hypophthalmichthys molitrix) via Targeting CRFB5. Int J Mol Sci 2024; 25:5712. [PMID: 38891899 PMCID: PMC11172372 DOI: 10.3390/ijms25115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
In aquaculture, viral diseases pose a significant threat and can lead to substantial economic losses. The primary defense against viral invasion is the innate immune system, with interferons (IFNs) playing a crucial role in mediating the immune response. With advancements in molecular biology, the role of non-coding RNA (ncRNA), particularly microRNAs (miRNAs), in gene expression has gained increasing attention. While the function of miRNAs in regulating the host immune response has been extensively studied, research on their immunomodulatory effects in teleost fish, including silver carp (Hyphthalmichthys molitrix), is limited. Therefore, this research aimed to investigate the immunomodulatory role of microRNA-30b-5p (miR-30b-5p) in the antiviral immune response of silver carp (Hypophthalmichthys molitrix) by targeting cytokine receptor family B5 (CRFB5) via the JAK/STAT signaling pathway. In this study, silver carp were stimulated with polyinosinic-polycytidylic acid (poly (I:C)), resulting in the identification of an up-regulated miRNA (miR-30b-5p). Through a dual luciferase assay, it was demonstrated that CRFB5, a receptor shared by fish type I interferon, is a novel target of miR-30b-5p. Furthermore, it was found that miR-30b-5p can suppress post-transcriptional CRFB5 expression. Importantly, this study revealed for the first time that miR-30b-5p negatively regulates the JAK/STAT signaling pathway, thereby mediating the antiviral immune response in silver carp by targeting CRFB5 and maintaining immune system stability. These findings not only contribute to the understanding of how miRNAs act as negative feedback regulators in teleost fish antiviral immunity but also suggest their potential therapeutic measures to prevent an excessive immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yunhang Gao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (M.L.); (H.T.); (K.G.); (X.Z.); (Z.M.); (Y.J.); (Z.Y.); (M.I.); (X.S.)
| | - Guiqin Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (M.L.); (H.T.); (K.G.); (X.Z.); (Z.M.); (Y.J.); (Z.Y.); (M.I.); (X.S.)
| | | |
Collapse
|
12
|
Abdelmaksoud NM, Al-Noshokaty TM, Abdelhamid R, Abdellatif N, Mansour A, Mohamed R, Mohamed AH, Khalil NAE, Abdelhamid SS, Mohsen A, Abdelaal H, Tawfik A, Elshaer SS. Deciphering the role of MicroRNAs in diabetic nephropathy: Regulatory mechanisms and molecular insights. Pathol Res Pract 2024; 256:155237. [PMID: 38492358 DOI: 10.1016/j.prp.2024.155237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
A serious consequence of diabetes mellitus, diabetic nephropathy (DN) which causes gradual damage to the kidneys. Dietary changes, blood pressure control, glucose control, and hyperlipidemia are all important components of DN management. New research, however, points to microRNAs (miRNAs) as having a pivotal role in DN pathogenesis. Miniature non-coding RNA molecules such as miRNAs control gene expression and impact several biological processes. The canonical and non-canonical routes of miRNA biogenesis are discussed in this article. In addition, several important signaling pathways are examined in the study of miRNA regulation in DN. A deeper knowledge of these regulatory mechanisms would allow for a better understanding of the molecular basis of DN and the development of innovative therapeutic strategies. Finally, miRNAs show tremendous potential as DN diagnostic biomarkers and treatment targets, opening up promising avenues for further study and potential clinical use.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reem Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Asmaa Hamouda Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nada Abd Elatif Khalil
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Sara Sobhy Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Alaa Mohsen
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Heba Abdelaal
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Tawfik
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11754, Egypt.
| |
Collapse
|
13
|
Gallo A, Agnese V, Sciacca S, Scardulla C, Cipriani M, Pilato M, Oh JK, Pasta S, Maalouf J, Conaldi PG, Bellavia D. MicroRNA-30d and -483-3p for bi-ventricular remodelling and miR-126-3p for pulmonary hypertension in advanced heart failure. ESC Heart Fail 2024; 11:155-166. [PMID: 37864482 PMCID: PMC10804158 DOI: 10.1002/ehf2.14546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 10/23/2023] Open
Abstract
AIMS MicroRNAs play a role in pathogenic mechanisms leading to heart failure. We measured a panel of 754 miRNAs in the myocardial tissue and in the serum of patients with heart failure with reduced ejection fraction due to dilatative idiopathic cardiomyopathy (DCM, N = 10) or ischaemic cardiomyopathy (N = 3), referred to left ventricular assist device implant. We aim to identify circulating miRNAs with high tissue co-expression, significantly associated to echocardiographic and haemodynamic measures. METHODS AND RESULTS We have measured a panel of 754 miRNAs in the myocardial tissue [left ventricular (LV) apex] and in the serum obtained at the same time in a well selected study population of end-stage heart failure with reduced ejection fraction due to either DCM or ischaemic cardiomyopathy, referred to continuous flow left ventricular assist device implant. We observed moderate agreement for miR-30d, miR-126-3p, and miR-483-3p. MiR-30d was correlated to LV systolic as well as diastolic volumes (r = 0.78, P = 0.001 and r = 0.80, P = 0.005, respectively), while miR-126-3p was associated to mPAP and PCWP (r = -0.79, P = 0.007 and r = -0.80, P = 0.005, respectively). Finally, serum miR-483-3p had an association with right ventricular end diastolic diameter (r = -0.73, P = 0.02) and central venous pressure (CVP) (r - 0.68 p 0.03). CONCLUSIONS In patients with DCM, few miRNAs are co-expressed in serum and tissue: They are related to LV remodelling (miR-30d), post-capillary pulmonary artery pressure (miR-126-3p), and right ventricular remodelling/filling pressures (miR-483-3p). Further studies are needed to confirm their role in diagnosis, prognosis or as therapeutic targets in heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
| | | | - Sergio Sciacca
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic TransplantationIRCCS‐ISMETTPalermoItaly
| | - Cesare Scardulla
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic TransplantationIRCCS‐ISMETTPalermoItaly
| | - Manlio Cipriani
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic TransplantationIRCCS‐ISMETTPalermoItaly
| | - Michele Pilato
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic TransplantationIRCCS‐ISMETTPalermoItaly
| | - Jae K. Oh
- Department of Internal Medicine, Division of Cardiovascular DiseasesMayo Clinic and FoundationRochesterMNUSA
| | | | - Joseph Maalouf
- Department of Internal Medicine, Division of Cardiovascular DiseasesMayo Clinic and FoundationRochesterMNUSA
| | | | | |
Collapse
|
14
|
Liu M, Tang H, Gao K, Zhang X, Yang Z, Gao Y, Shan X. Identification and Characterization of Immune-Associated MicroRNAs in Silver Carp ( Hypophthalmichthys molitrix) Responding to Aeromonas veronii and LPS Stimulation. Animals (Basel) 2024; 14:285. [PMID: 38254454 PMCID: PMC10812751 DOI: 10.3390/ani14020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The ubiquitous Gram-negative bacterial pathogen Aeromonas veronii (A. veronii) can easily cause inflammatory reactions in aquatic organisms, resulting in high mortality and huge economic losses. MicroRNAs (miRNAs) participate in immune regulation and have certain conserved properties. MiRNAs are involved in the immune responses of a variety of teleost fish infected with bacteria, whereas there is no related report in silver carp (Hypophthalmichthys molitrix). Therefore, we identified the expression profiles of miRNA in silver carp stimulated by A. veronii and LPS. Among them, the quantity of differentially expressed miRNAs (DEmiRNAs) obtained in the silver carp challenge group was 73 (A. veronii) and 90 (LPS). The GO enrichment and analysis of KEGG pathways have shown that the predicted target genes are mainly associated with lipid metabolism and the immune response in silver carp. This indicates the possibility that miRNAs play a role in regulating immune-related pathways. In addition, a total of eight DEmiRNAs validated the accuracy of the sequencing result via quantitative real-time PCR (qRT-PCR). Finally, we selected the silver carp head kidney macrophage cells (HKCs) as model cells and proved that miR-30b-5p can regulate the inflammatory response in silver carp HKCs. This study lays the foundation for exploring miRNA regulation in silver carp during pathogenic bacterial infection. In addition, it provides a reference for the future development of non-coding RNA antibacterial drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunhang Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (M.L.); (H.T.); (K.G.); (X.Z.); (Z.Y.)
| | - Xiaofeng Shan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (M.L.); (H.T.); (K.G.); (X.Z.); (Z.Y.)
| |
Collapse
|
15
|
Naguib M, Magdy M, Yousef OAE, Ibrahim W, Gharib DM. Circulating MicroRNA-30a, Beclin1 and Their Association with Different Variables in Females with Metabolically Healthy /Unhealthy Obesity. Diabetes Metab Syndr Obes 2023; 16:3065-3074. [PMID: 37810570 PMCID: PMC10559787 DOI: 10.2147/dmso.s428844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Background Obesity is associated with metabolic and cardiovascular co-morbidities. It is important to determine the factors associated with metabolic derangement in obesity. Autophagy plays a major role in the pathogenesis of metabolic syndrome. MicroRNA-30a targets beclin1, the main regulator of autophagy. Purpose We assess circulating microRNA-30a and serum beclin1 in women with metabolically unhealthy obesity (MUO), women with metabolically healthy obesity (MHO) and non-obese healthy control and determine their relationship with different clinical and metabolic variables in women with obesity. Patients and Methods This cross-sectional study included 34 women with MHO, 34 with MUO, and 20 healthy non-obese women. Blood pressure, body mass index (BMI), and waist circumference were recorded. Glycemic and lipid indices, urinary albumin-to-creatinine ratio, ALT, AST, microRNA-30a expression in serum were measured using real-time polymerase chain reaction and beclin1 by enzyme-linked immunosorbent assay were measured. Results The expression of microRNA-30a was significantly higher, and beclin1 level was significantly lower in women with MUO compared to those in women with MHO (P<0.001; for both). People with MUO were significantly older (P<0.001) and had higher TSH (P=0.006), HbA1c (P<0.001), triglyceride (P<0.001), and ALT (P<0.001) compared to women with MHO. However, there was no significant difference between the two groups in any anthropometric measurements, HDL-C or LDL-C. In univariate analyses, age, ALT, TSH, microRNA-30a, and beclin1 were significantly correlated with the MUO phenotype (P<0.001; for all). Significance was confirmed in the multivariate analysis for microRNA-30a (95% CI 1.317-28.252; P=0.021). Conclusion MicroRNA-30a, beclin1, age, and ALT and TSH levels were significantly associated with the MUO phenotype, among which microRNA-30a was the best indicator of metabolic syndrome in women with obesity.
Collapse
Affiliation(s)
- Mervat Naguib
- Diabetes and Endocrinology Unite, Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Magdy
- Diabetes and Endocrinology Unite, Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Walaa Ibrahim
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Doaa Mostafa Gharib
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Kazakova P, Abasolo N, de Cripan SM, Marquès E, Cereto-Massagué A, Garcia L, Canela N, Tormo R, Torrell H. Gut Microbiome and Small RNA Integrative-Omic Perspective of Meconium and Milk-FED Infant Stool Samples. Int J Mol Sci 2023; 24:ijms24098069. [PMID: 37175775 PMCID: PMC10179101 DOI: 10.3390/ijms24098069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The human gut microbiome plays an important role in health, and its initial development is conditioned by many factors, such as feeding. It has also been claimed that this colonization is guided by bacterial populations, the dynamic virome, and transkingdom interactions between host and microbial cells, partially mediated by epigenetic signaling. In this article, we characterized the bacteriome, virome, and smallRNome and their interaction in the meconium and stool samples from infants. Bacterial and viral DNA and RNA were extracted from the meconium and stool samples of 2- to 4-month-old milk-fed infants. The bacteriome, DNA and RNA virome, and smallRNome were assessed using 16S rRNA V4 sequencing, viral enrichment sequencing, and small RNA sequencing protocols, respectively. Data pathway analysis and integration were performed using the R package mixOmics. Our findings showed that the bacteriome differed among the three groups, while the virome and smallRNome presented significant differences, mainly between the meconium and stool of milk-fed infants. The gut environment is rapidly acquired after birth, and it is highly adaptable due to the interaction of environmental factors. Additionally, transkingdom interactions between viruses and bacteria can influence host and smallRNome profiles. However, virome characterization has several protocol limitations that must be considered.
Collapse
Affiliation(s)
- Polina Kazakova
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| | - Nerea Abasolo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| | - Sara Martinez de Cripan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| | | | - Adrià Cereto-Massagué
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| | - Lorena Garcia
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| | - Ramón Tormo
- ESPGHAN, European Society for Paediatric Gastroenterology, Hepatology and Nutrition, 1201 Geneva, Switzerland
- Gastroenterology and Nutrition Pediatric Center, 08006 Barcelona, Spain
| | - Helena Torrell
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| |
Collapse
|
17
|
Zhang Y, Feng S, Cheng X, Lou K, Liu X, Zhuo M, Chen L, Ye J. The potential value of exosomes as adjuvants for novel biologic local anesthetics. Front Pharmacol 2023; 14:1112743. [PMID: 36778004 PMCID: PMC9909291 DOI: 10.3389/fphar.2023.1112743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
The side effects of anesthetic drugs are a key preoperative concern for anesthesiologists. Anesthetic drugs used for general anesthesia and regional blocks are associated with a potential risk of systemic toxicity. This prompted the use of anesthetic adjuvants to ameliorate these side effects and improve clinical outcomes. However, the adverse effects of anesthetic adjuvants, such as neurotoxicity and gastrointestinal reactions, have raised concerns about their clinical use. Therefore, the development of relatively safe anesthetic adjuvants with fewer side effects is an important area for future anesthetic drug research. Exosomes, which contain multiple vesicles with genetic information, can be released by living cells with regenerative and specific effects. Exosomes released by specific cell types have been found to have similar effects as many local anesthetic adjuvants. Due to their biological activity, carrier efficacy, and ability to repair damaged tissues, exosomes may have a better efficacy and safety profile than the currently used anesthetic adjuvants. In this article, we summarize the contemporary literature about local anesthetic adjuvants and highlight their potential side effects, while discussing the potential of exosomes as novel local anesthetic adjuvant drugs.
Collapse
Affiliation(s)
- Yunmeng Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xin Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xin Liu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ming Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,*Correspondence: Li Chen, ; Junming Ye,
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,*Correspondence: Li Chen, ; Junming Ye,
| |
Collapse
|
18
|
Crossland RE, Albiero A, Sanjurjo‐Rodríguez C, Reis M, Resteu A, Anderson AE, Dickinson AM, Pratt AG, Birch M, McCaskie AW, Jones E, Wang X. MicroRNA profiling of low concentration extracellular vesicle RNA utilizing NanoString nCounter technology. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e72. [PMID: 38938446 PMCID: PMC11080777 DOI: 10.1002/jex2.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/04/2022] [Accepted: 12/21/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EV) and the microRNAs that they contain are increasingly recognised as a rich source of informative biomarkers, reflecting pathological processes and fundamental biological pathways and responses. Their presence in biofluids makes them particularly attractive for biomarker identification. However, a frequent caveat in relation to clinical studies is low abundance of EV RNA content. In this study, we used NanoString nCounter technology to assess the microRNA profiles of n = 64 EV low concentration RNA samples (180-49125 pg), isolated from serum and cell culture media using precipitation reagent or sequential ultracentrifugation. Data was subjected to robust quality control parameters based on three levels of limit of detection stringency, and differential microRNA expression analysis was performed between biological subgroups. We report that RNA concentrations > 100 times lower than the current NanoString recommendations can be successfully profiled using nCounter microRNA assays, demonstrating acceptable output ranges for imaging parameters, binding density, positive/negative controls, ligation controls and normalisation quality control. Furthermore, despite low levels of input RNA, high-level differential expression analysis between biological subgroups identified microRNAs of biological relevance. Our results demonstrate that NanoString nCounter technology offers a sensitive approach for the detection and profiling of low abundance EV-derived microRNA, and may provide a solution for research studies that focus on limited sample material.
Collapse
Affiliation(s)
- Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Anna Albiero
- Division of Trauma and Orthopaedic Surgery, Department of SurgeryUniversity of Cambridge Addenbrooke's HospitalCambridgeUK
| | - Clara Sanjurjo‐Rodríguez
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Physiotherapy, Medicine and Biomedical Sciences department, University of A Coruña; University Hospital Complex from A Coruña (Sergas, CHUACInstitute of Biomedical Research of A Coruña (INIBIC)‐Centre of Advanced Scientific Researches (CICA)A CoruñaSpain
| | - Monica Reis
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Centre for Regenerative Medicine, Institute for Regeneration and RepairThe University of Edinburgh, Edinburgh BioQuarterEdinburghUK
| | - Anastasia Resteu
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Amy E. Anderson
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Arthur G. Pratt
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Musculoskeletal Services DirectorateNewcastle upon Tyne Hospitals NHS Foundation TrustUK
| | - Mark Birch
- Division of Trauma and Orthopaedic Surgery, Department of SurgeryUniversity of Cambridge Addenbrooke's HospitalCambridgeUK
| | - Andrew W. McCaskie
- Division of Trauma and Orthopaedic Surgery, Department of SurgeryUniversity of Cambridge Addenbrooke's HospitalCambridgeUK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal MedicineUniversity of LeedsLeedsUK
| | - Xiao‐nong Wang
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
19
|
Emerging Role of MicroRNA-30c in Neurological Disorders. Int J Mol Sci 2022; 24:ijms24010037. [PMID: 36613480 PMCID: PMC9819962 DOI: 10.3390/ijms24010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of small non-coding RNAs that negatively regulate the expression of target genes by interacting with 3' untranslated regions of target mRNAs to induce mRNA degradation and translational repression. The miR-30 family members are involved in the development of many tissues and organs and participate in the pathogenesis of human diseases. As a key member of the miR-30 family, miR-30c has been implicated in neurological disorders such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke. Mechanistically, miR-30c may act as a multi-functional regulator of different pathogenic processes such as autophagy, apoptosis, endoplasmic reticulum stress, inflammation, oxidative stress, thrombosis, and neurovascular function, thereby contributing to different disease states. Here, we review and discuss the biogenesis, gene regulation, and the role and mechanisms of action of miR-30c in several neurological disorders and therapeutic potential in clinics.
Collapse
|
20
|
Fahmy SA, Dawoud A, Zeinelabdeen YA, Kiriacos CJ, Daniel KA, Eltahtawy O, Abdelhalim MM, Braoudaki M, Youness RA. Molecular Engines, Therapeutic Targets, and Challenges in Pediatric Brain Tumors: A Special Emphasis on Hydrogen Sulfide and RNA-Based Nano-Delivery. Cancers (Basel) 2022; 14:5244. [PMID: 36358663 PMCID: PMC9657918 DOI: 10.3390/cancers14215244] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 09/11/2023] Open
Abstract
Pediatric primary brain tumors represent a real challenge in the oncology arena. Besides the psychosocial burden, brain tumors are considered one of the most difficult-to-treat malignancies due to their sophisticated cellular and molecular pathophysiology. Notwithstanding the advances in research and the substantial efforts to develop a suitable therapy, a full understanding of the molecular pathways involved in primary brain tumors is still demanded. On the other hand, the physiological nature of the blood-brain barrier (BBB) limits the efficiency of many available treatments, including molecular therapeutic approaches. Hydrogen Sulfide (H2S), as a member of the gasotransmitters family, and its synthesizing machinery have represented promising molecular targets for plentiful cancer types. However, its role in primary brain tumors, generally, and pediatric types, particularly, is barely investigated. In this review, the authors shed the light on the novel role of hydrogen sulfide (H2S) as a prominent player in pediatric brain tumor pathophysiology and its potential as a therapeutic avenue for brain tumors. In addition, the review also focuses on the challenges and opportunities of several molecular targeting approaches and proposes promising brain-delivery strategies for the sake of achieving better therapeutic results for brain tumor patients.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Capital City, Cairo 11835, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Yousra Ahmed Zeinelabdeen
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Kerolos Ashraf Daniel
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Omar Eltahtawy
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Miriam Mokhtar Abdelhalim
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| |
Collapse
|
21
|
Chen S, Li Y, Fu S, Li Y, Wang C, Sun P, Li H, Tian J, Du GQ. Melatonin alleviates arginine vasopressin-induced cardiomyocyte apoptosis via increasing Mst1-Nrf2 pathway activity to reduce oxidative stress. Biochem Pharmacol 2022; 206:115265. [DOI: 10.1016/j.bcp.2022.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
|
22
|
Xu M, Ye J, Wang Y, Chu K, Péré M, Xu M, Tang X, Fu J. Vitamin E performs antioxidant effect via PAP retrograde signaling pathway in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 127:918-924. [PMID: 35863536 DOI: 10.1016/j.fsi.2022.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
PAP (3'-phosphoadenosine 5'-phosphate) is a ubiquitous phosphoric acid and a natural inhibitor of the XRN (5'-3'exoribonuclease) family. It was proved to enter the nucleus through the retrograde signaling pathway and inhibit XRN2 to prevent the degradation of miRNA precursors, thus promoting the anti-oxidation miRNA level in Arabidopsis thaliana. Vitamin E (tocopherol) was proved to promote the accumulation of PAP in the plant, which facilitates PAP into the nucleus to accomplish its antioxidant function. However, the relationship between VE and PAP in animals is unclear. To identify the relationship between VE and PAP and to uncover the function of PAP in fish, we investigated the performance of VE and PAP in Nile tilapia by comparing the antioxidant indicators (SOD, GSH-Px, and CAT), the Keap1-Nrf2 signaling pathway, and the miRNA expression profiles. Results showed that the antioxidant effect of VE and PAP showed similar character either in tilapia liver or in serum: the activities of GSH-Px and CAT of both groups were significantly increased (P < 0.05); the SOD activity of the VE group was significantly increased (P < 0.05), and although the result of the PAP group was not so significant (P > 0.05), PAP improved the SOD level, too. The two groups also showed similar character in the tilapia liver; both did not significantly increase the liver δ-VE content (P > 0.05). However, VE significantly increased the content of α-VE and γ-VE (P < 0.05), while the PAP group was insignificant (P > 0.05). Feed with VE and intraperitoneal injection of PAPs reagent both increased the PAP content in the liver of tilapia, and the effect of the VE group was more significant (P < 0.05) than that of the PAP group (P > 0.05). Both groups reduced the expression of Keap1 and Cullin3 genes and improved the level of HO-1 gene expression, with the improved miRNA level of Nrf2. As a logical result, they decreased the expression of XRN1 and XRN2. By profile sequencing, we further identified some antioxidant closely related miRNAs shared in the VE and PAP groups, including miR-30, miR-24, miR-19b, and miR-100. By comparing the regulating mechanism of VE and PAP of feed supply and intraperitoneal injection, we proved that VE and PAP were closely related in fish; VE promoted the gathering of PAP. The latter retrograded into the nucleus of the fish liver to inhibit the expression of XRN genes and to up-regulate antioxidant miRNA levels as it does in plants. Only the PAP can accomplish the antioxidant activities, while VE promotes the process. Our study laid the foundation for the application of PAP as a new antioxidant agent in fish farming and benefit a further understanding of the VE antioxidant function in fish.
Collapse
Affiliation(s)
- Minjun Xu
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Modern Agricultural (Quality and Safety of Aquatic Products) Industrial Technology R&D Center, Guangzhou, 510642, China
| | - Jiawei Ye
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yujie Wang
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Kejie Chu
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Maxime Péré
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Minjie Xu
- Guangdong Modern Agricultural (Quality and Safety of Aquatic Products) Industrial Technology R&D Center, Guangzhou, 510642, China
| | - Xuelian Tang
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Jinghua Fu
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
23
|
Ge T, Zhang Y. Tanshinone IIA reverses oxaliplatin resistance in colorectal cancer through microRNA-30b-5p/AVEN axis. Open Med (Wars) 2022; 17:1228-1240. [PMID: 35892081 PMCID: PMC9281591 DOI: 10.1515/med-2022-0512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/11/2022] [Accepted: 05/28/2022] [Indexed: 12/13/2022] Open
Abstract
This research aims to explore the role of Tanshinone IIA (Tan IIA) and microRNA (miR)-30b-5p in chemoresistance of colorectal cancer (CRC). The expression levels of miR-30b-5p and apoptosis and caspase activation inhibitor (AVEN) was detected by reverse transcription-quantitative polymerase chain reaction assay. The cell proliferation and apoptosis were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays. The target relationship between miR-30b-5p and AVEN was confirmed by Dual-luciferase reporter assay. Transwell assay was performed to assess CRC cells’ metastasis. Western blot was carried out to measure the apoptosis-related protein. The results showed that miR-30b-5p was lowly expressed in oxaliplatin-resistance CRC cells SW480 (SW480/R) compared to SW480 cells. Overexpression of miR-30b-5p significantly suppressed the malignant biological behaviors of SW480/R cells and significantly promoted the sensitivity of SW480/R cells to oxaliplatin by down-regulated AVEN expression. Besides, Tan IIA treatment upregulated miR-30b-5p expression in SW480/R cells. Moreover, miR-30b-5p upregulation strengthened the promoting effect of Tan IIA on the sensitivity of SW480/R cells to oxaliplatin. In conclusion, Tan IIA and miR-30b-5p could reverse oxaliplatin resistance of CRC cells and may thus be potential treatment strategies for treating patients with CRC.
Collapse
Affiliation(s)
- Tingrui Ge
- Department of Colorectal Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Yonggang Zhang
- Department of Colorectal Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| |
Collapse
|
24
|
Bagardi M, Ghilardi S, Zamarian V, Ceciliani F, Brambilla PG, Lecchi C. Circulating MiR-30b-5p is upregulated in Cavalier King Charles Spaniels affected by early myxomatous mitral valve disease. PLoS One 2022; 17:e0266208. [PMID: 35816500 PMCID: PMC9273067 DOI: 10.1371/journal.pone.0266208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/24/2022] [Indexed: 01/12/2023] Open
Abstract
There is a growing interest in developing new molecular markers of heart disease in young dogs affected by myxomatous mitral valve disease. The study aimed to measure 3 circulating microRNAs and their application as potential biomarkers in the plasma of Cavalier King Charles Spaniels with early asymptomatic myxomatous mitral valve disease. The hypothesis is that healthy Cavalier King Charles Spaniels have different microRNA expression profiles than affected dogs in American College of Veterinary Internal Medicine (ACVIM) stage B1. The profiles can differ within the same class among subjects of different ages. This is a prospective cross-sectional study. Thirty-three Cavalier King Charles Spaniels in ACVIM stage B1 were divided into three groups (11 younger than 3 years, 11 older than 3 years and younger than 7 years, and 11 older than 7 years), and 11 healthy (ACVIM stage A) dogs of the same breed were included as the control group. Three circulating microRNAs (miR-1-3p, miR30b-5p, and miR-128-3p) were measured by quantitative real-time PCR using TaqMan® probes. Diagnostic performance was evaluated by calculating the area under the receiver operating curve (AUC). MiR-30b-5p was significantly higher in ACVIM B1 dogs than in ACVIM A subjects, and the area under the receiver operating curve was 0.79. According to the age of dogs, the amount of miR-30b-5p was statistically significantly higher in group B1<3y (2.3 folds, P = 0.034), B1 3-7y (2.2 folds, P = 0.028), and B1>7y (2.7 folds, P = 0.018) than in group A. The area under the receiver operating curves were fair in discriminating between group B1<3y and group A (AUC 0.780), between B1 3-7y and A (AUC 0.78), and good in discriminating between group B1>7y and A (AUC 0.822). Identifying dogs with early asymptomatic myxomatous mitral valve disease through the evaluation of miR-30b-5p represents an intriguing possibility that certainly merits further research. Studies enrolling a larger number of dogs with preclinical stages of myxomatous mitral valve disease are needed to expand further and validate conclusively the preliminary findings from this report.
Collapse
Affiliation(s)
- Mara Bagardi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Sara Ghilardi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | | | - Fabrizio Ceciliani
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Paola G. Brambilla
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
- * E-mail:
| | - Cristina Lecchi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| |
Collapse
|
25
|
The Involvement of Neutrophils in the Pathophysiology and Treatment of Osteoarthritis. Biomedicines 2022; 10:biomedicines10071604. [PMID: 35884909 PMCID: PMC9313259 DOI: 10.3390/biomedicines10071604] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a chronic disability that significantly impairs quality of life. OA is one of the most prevalent joint pathologies in the world, characterized by joint pain and stiffness due to the degeneration of articular cartilage and the remodeling of subchondral bone. OA pathogenesis is unique in that it involves simultaneous reparative and degradative mechanisms. Low-grade inflammation as opposed to high-grade allows for this coexistence. Previously, macrophages and T cells have been identified as playing major roles in the inflammation and destruction of OA joints, but recent studies have demonstrated that neutrophils also contribute to the pathogenesis. Neutrophils are the first immune cells to enter the synovium after joint injury, and neutrophilic activity is indispensably a requisite for the progression of OA. Neutrophils act through multiple mechanisms including tissue degeneration via neutrophil elastase (NE), osteophyte development, and the release of inflammatory cytokines and chemokines. As the actions of neutrophils in OA are discovered, the potential for novel therapeutic targets as well as diagnostic methods are revealed. The use of chondrogenic progenitor cells (CPCs), microRNAs, and exosomes are among the newest therapeutic advances in OA treatment, and this review reveals how they can be used to mitigate destructive neutrophil activity.
Collapse
|
26
|
Flavonoid Extract from Propolis Provides Cardioprotection following Myocardial Infarction by Activating PPAR-γ. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1333545. [PMID: 35928246 PMCID: PMC9345730 DOI: 10.1155/2022/1333545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022]
Abstract
We have previously reported that flavonoid extract from propolis (FP) can improve cardiac function in rats following myocardial infarction (MI). However, the mechanisms responsible for the cardioprotective effects of FP have not been fully elucidated. In the current study, we explored whether FP can reduce inflammatory cytokines and attenuate sympathetic nerve system activity and antiendoplasmic reticulum (ER) stress and whether the cardioprotective effects are related to peroxisome proliferator-activated receptor gamma (PPAR-γ) activation. Sprague Dawley rats were randomly divided into six groups: Sham group received the surgical procedure but no artery was ligated; MI group received ligation of the left anterior descending (LAD) branch of the coronary artery; MI + FP group received FP (12.5 mg/kg/d, intragastrically) seven days prior to LAD ligation; FP group (Sham group + 12.5 mg/kg/d, intragastrically); MI + FP + GW9662 group received FP prior to LAD ligation with the addition of a specific PPAR-γ inhibitor (GW9662), 1 mg/kg/d, orally); and MI + GW9662 group received the PPAR-γ inhibitor and LAD ligation. The results demonstrated that the following inflammatory markers were significantly elevated following MI as compared with expression in sham animals: IL-1β, TNF-α, CRP; markers of sympathetic activation: plasma norepinephrine, epinephrine and GAP43, nerve growth factor, thyroid hormone; and ER stress response markers GRP78 and CHOP. Notably, the above changes were attenuated by FP, and GW9662 was able to alleviate the effect of FP. In conclusion, FP induces a cardioprotective effect following myocardial infarction by activating PPAR-γ, leading to less inflammation, cardiac sympathetic activity, and ER stress.
Collapse
|
27
|
Soci UPR, Cavalcante BRR, Improta-Caria AC, Roever L. The Epigenetic Role of MiRNAs in Endocrine Crosstalk Between the Cardiovascular System and Adipose Tissue: A Bidirectional View. Front Cell Dev Biol 2022; 10:910884. [PMID: 35859891 PMCID: PMC9289671 DOI: 10.3389/fcell.2022.910884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022] Open
Abstract
Overweight and obesity (OBT) is a serious health condition worldwide, and one of the major risk factors for cardiovascular disease (CVD), the main reason for morbidity and mortality worldwide. OBT is the proportional increase of Adipose Tissue (AT) compared with other tissue and fluids, associated with pathological changes in metabolism, hemodynamic overload, cytokine secretion, systemic inflammatory profile, and cardiac metabolism. In turn, AT is heterogeneous in location, and displays secretory capacity, lipolytic activation, insulin sensitivity, and metabolic status, performing anatomic, metabolic, and endocrine functions. Evidence has emerged on the bidirectional crosstalk exerted by miRNAs as regulators between the heart and AT on metabolism and health conditions. Here, we discuss the bidirectional endocrine role of miRNAs between heart and AT, rescuing extracellular vesicles' (EVs) role in cell-to-cell communication, and the most recent results that show the potential of common therapeutic targets through the elucidation of parallel and ⁄or common epigenetic mechanisms.
Collapse
Affiliation(s)
- Ursula Paula Reno Soci
- Biodynamics of the Human Body Movement Department, School of Physical Education and Sports, São Paulo University–USP, São Paulo, Brazil
| | - Bruno Raphael Ribeiro Cavalcante
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
- Physical Education Department, Salvador University (UNIFACS), Salvador, Brazil
| | - Leonardo Roever
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
- Department of Clinical Research, Federal University of Uberlândia, Uberlândia, Brazil
- Faculty of Medicine, Sao Paulo University, Sao Paulo, Brazil
| |
Collapse
|
28
|
Platelet-derived microvesicles deliver miR-30e and promote VSMC apoptosis after balloon injury. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2021.100103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
29
|
Veitch S, Njock MS, Chandy M, Siraj MA, Chi L, Mak H, Yu K, Rathnakumar K, Perez-Romero CA, Chen Z, Alibhai FJ, Gustafson D, Raju S, Wu R, Zarrin Khat D, Wang Y, Caballero A, Meagher P, Lau E, Pepic L, Cheng HS, Galant NJ, Howe KL, Li RK, Connelly KA, Husain M, Delgado-Olguin P, Fish JE. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc Diabetol 2022; 21:31. [PMID: 35209901 PMCID: PMC8876371 DOI: 10.1186/s12933-022-01458-z 10.2174/1566523222666220303102951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is associated with coronary microvascular dysfunction, which is thought to contribute to compromised diastolic function, ultimately culminating in heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms remain incompletely understood, and no early diagnostics are available. We sought to gain insight into biomarkers and potential mechanisms of microvascular dysfunction in obese mouse (db/db) and lean rat (Goto-Kakizaki) pre-clinical models of T2D-associated diastolic dysfunction. METHODS The microRNA (miRNA) content of circulating extracellular vesicles (EVs) was assessed in T2D models to identify biomarkers of coronary microvascular dysfunction/rarefaction. The potential source of circulating EV-encapsulated miRNAs was determined, and the mechanisms of induction and the function of candidate miRNAs were assessed in endothelial cells (ECs). RESULTS We found an increase in miR-30d-5p and miR-30e-5p in circulating EVs that coincided with indices of coronary microvascular EC dysfunction (i.e., markers of oxidative stress, DNA damage/senescence) and rarefaction, and preceded echocardiographic evidence of diastolic dysfunction. These miRNAs may serve as biomarkers of coronary microvascular dysfunction as they are upregulated in ECs of the left ventricle of the heart, but not other organs, in db/db mice. Furthermore, the miR-30 family is secreted in EVs from senescent ECs in culture, and ECs with senescent-like characteristics are present in the db/db heart. Assessment of miR-30 target pathways revealed a network of genes involved in fatty acid biosynthesis and metabolism. Over-expression of miR-30e in cultured ECs increased fatty acid β-oxidation and the production of reactive oxygen species and lipid peroxidation, while inhibiting the miR-30 family decreased fatty acid β-oxidation. Additionally, miR-30e over-expression synergized with fatty acid exposure to down-regulate the expression of eNOS, a key regulator of microvascular and cardiomyocyte function. Finally, knock-down of the miR-30 family in db/db mice decreased markers of oxidative stress and DNA damage/senescence in the microvascular endothelium. CONCLUSIONS MiR-30d/e represent early biomarkers and potential therapeutic targets that are indicative of the development of diastolic dysfunction and may reflect altered EC fatty acid metabolism and microvascular dysfunction in the diabetic heart.
Collapse
Affiliation(s)
- Shawn Veitch
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Makon-Sébastien Njock
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Mark Chandy
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ahsan Siraj
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Lijun Chi
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - HaoQi Mak
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kai Yu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | | | - Zhiqi Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Dakota Gustafson
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sneha Raju
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Ruilin Wu
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Dorrin Zarrin Khat
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Yaxu Wang
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amalia Caballero
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patrick Meagher
- Keenan Biomedical Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Edward Lau
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lejla Pepic
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry S Cheng
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Natalie J Galant
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kathryn L Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kim A Connelly
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mansoor Husain
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Paul Delgado-Olguin
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jason E Fish
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
30
|
Hu HJ, Wang XH, Liu Y, Zhang TQ, Chen ZR, Zhang C, Tang ZH, Qu SL, Tang HF, Jiang ZS. Hydrogen Sulfide Ameliorates Angiotensin II-Induced Atrial Fibrosis Progression to Atrial Fibrillation Through Inhibition of the Warburg Effect and Endoplasmic Reticulum Stress. Front Pharmacol 2021; 12:690371. [PMID: 34950023 PMCID: PMC8689064 DOI: 10.3389/fphar.2021.690371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrosis is the basis for the occurrence and development of atrial fibrillation (AF) and is closely related to the Warburg effect, endoplasmic reticulum stress (ERS) and mitochondrion dysfunctions-induced cardiomyocyte apoptosis. Hydrogen sulfide (H2S) is a gaseous signalling molecule with cardioprotective, anti-myocardial fibrosis and improved energy metabolism effects. Nevertheless, the specific mechanism by which H2S improves the progression of atrial fibrosis to AF remains unclear. A case-control study of patients with and without AF was designed to assess changes in H2S, the Warburg effect, and ERS in AF. The results showed that AF can significantly reduce cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate thiotransferase (3-MST) expression and the H2S level, induce cystathionine-β-synthase (CBS) expression; increase the Warburg effect, ERS and atrial fibrosis; and promote left atrial dysfunction. In addition, AngII-treated SD rats had an increased Warburg effect and ERS levels and enhanced atrial fibrosis progression to AF compared to wild-type SD rats, and these conditions were reversed by sodium hydrosulfide (NaHS), dichloroacetic acid (DCA) or 4-phenylbutyric acid (4-PBA) supplementation. Finally, low CSE levels in AngII-induced HL-1 cells were concentration- and time-dependent and associated with mitochondrial dysfunction, apoptosis, the Warburg effect and ERS, and these effects were reversed by NaHS, DCA or 4-PBA supplementation. Our research indicates that H2S can regulate the AngII-induced Warburg effect and ERS and might be a potential therapeutic drug to inhibit atrial fibrosis progression to AF.
Collapse
Affiliation(s)
- Heng-Jing Hu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China
| | - Xiu-Heng Wang
- Department of Nuclear Medicine Lab, First Affiliated Hospital of University of South China, Hengyang, China
| | - Yao Liu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Tian-Qing Zhang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zheng-Rong Chen
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Chi Zhang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Hui-Fang Tang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhi-Sheng Jiang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China.,Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
31
|
Potential Applications and Functional Roles of Exosomes in Cardiometabolic Disease. Pharmaceutics 2021; 13:pharmaceutics13122056. [PMID: 34959338 PMCID: PMC8703910 DOI: 10.3390/pharmaceutics13122056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Despite diagnostic and therapeutic advances, cardiometabolic disease remains the leading cause of death worldwide. Extracellular vesicles (EVs), which include exosomes and microvesicles, have gained particular interest because of their role in metabolic homeostasis and cardiovascular physiology. Indeed, EVs are recognized as critical mediators of intercellular communication in the cardiovascular system. Exosomes are naturally occurring nanocarriers that transfer biological information in the setting of metabolic abnormalities and cardiac dysfunction. The study of these EVs can increase our knowledge on the pathophysiological mechanisms of metabolic disorders and their cardiovascular complications. Because of their inherent properties and composition, exosomes have been proposed as diagnostic and prognostic biomarkers and therapeutics for specific targeting and drug delivery. Emerging fields of study explore the use exosomes as tools for gene therapy and as a cell-free alternative for regenerative medicine. Furthermore, innovative biomaterials can incorporate exosomes to enhance tissue regeneration and engineering. In this work, we summarize the most recent knowledge on the role of exosomes in cardiometabolic pathophysiology while highlighting their potential therapeutic applications.
Collapse
|
32
|
Wu J, Cao J, Fan Y, Li C, Hu X. Comprehensive analysis of miRNA-mRNA regulatory network and potential drugs in chronic chagasic cardiomyopathy across human and mouse. BMC Med Genomics 2021; 14:283. [PMID: 34844599 PMCID: PMC8628461 DOI: 10.1186/s12920-021-01134-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Chronic chagasic cardiomyopathy (CCC) is the leading cause of heart failure in Latin America and often causes severe inflammation and fibrosis in the heart. Studies on myocardial function and its molecular mechanisms in patients with Chronic chagasic cardiomyopathy are very limited. In order to understand the development and progression of Chronic chagasic cardiomyopathy and find targets for its diagnosis and treatment, the field needs to better understand the exact molecular mechanisms involved in these processes. Methods The mRNA microarray datasets GSE84796 (human) and GSE24088 (mouse) were obtained from the Gene Expression Omnibus (GEO) database. Homologous genes between the two species were identified using the online database mining tool Biomart, followed by differential expression analysis, gene enrichment analysis and protein–protein interaction (PPI) network construction. Cytohubba plug-in of Cytoscape software was used to identify Hub gene, and miRNet was used to construct the corresponding miRNA–mRNA regulatory network. miRNA-related databases: miRDB, Targetscan and miRWalk were used to further evaluate miRNAs in the miRNA–mRNA network. Furthermore, Comparative Toxicogenomics Database (CTD) and L1000 Platform were used to identify hub gene-related drugs. Results A total of 86 homologous genes were significantly differentially expressed in the two datasets, including 73 genes with high expression and 13 genes with low expression. These differentially expressed genes were mainly enriched in the terms of innate immune response, signal transduction, protein binding, Natural killer cell mediated cytotoxicity, Tuberculosis, Chemokine signaling pathway, Chagas disease and PI3K−Akt signaling pathway. The top 10 hub genes LAPTM5, LCP1, HCLS1, CORO1A, CD48, TYROBP, RAC2, ARHGDIB, FERMT3 and NCF4 were identified from the PPI network. A total of 122 miRNAs were identified to target these hub genes and 30 of them regulated two or more hub genes at the same time. miRDB, Targetscan and miRWalk were further analyzed and screened out hsa-miR-34c-5p, hsa-miR-34a-5p and hsa-miR-16-5p as miRNAs regulating these hub genes. Finally, Progesterone, Flutamide, Nimesulide, Methotrexate and Temozolomide were identified to target these hub genes and might be targeted therapies for Chronic chagasic cardiomyopathy. Conclusions In this study, the potential genes associated with Chronic chagasic cardiomyopathy are identified and a miRNA–mRNA regulatory network is constructed. This study explores the molecular mechanisms of Chronic chagasic cardiomyopathy and provides important clues for finding new therapeutic targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01134-3.
Collapse
Affiliation(s)
- Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| | - Yongzhen Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| |
Collapse
|
33
|
An Overview of miRNAs Involved in PASMC Phenotypic Switching in Pulmonary Hypertension. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5765029. [PMID: 34660794 PMCID: PMC8516547 DOI: 10.1155/2021/5765029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Pulmonary hypertension (PH) is occult, with no distinctive clinical manifestations and a poor prognosis. Pulmonary vascular remodelling is an important pathological feature in which pulmonary artery smooth muscle cells (PASMCs) phenotypic switching plays a crucial role. MicroRNAs (miRNAs) are a class of evolutionarily highly conserved single-stranded small noncoding RNAs. An increasing number of studies have shown that miRNAs play an important role in the occurrence and development of PH by regulating PASMCs phenotypic switching, which is expected to be a potential target for the prevention and treatment of PH. miRNAs such as miR-221, miR-15b, miR-96, miR-24, miR-23a, miR-9, miR-214, and miR-20a can promote PASMCs phenotypic switching, while such as miR-21, miR-132, miR-449, miR-206, miR-124, miR-30c, miR-140, and the miR-17~92 cluster can inhibit it. The article reviews the research progress on growth factor-related miRNAs and hypoxia-related miRNAs that mediate PASMCs phenotypic switching in PH.
Collapse
|
34
|
MicroRNA-590-3p relieves hypoxia/reoxygenation induced cardiomyocytes apoptosis and autophagy by targeting HIF-1α. Exp Ther Med 2021; 22:1077. [PMID: 34447470 PMCID: PMC8355641 DOI: 10.3892/etm.2021.10511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy and apoptosis are key factors in myocardial ischemia/reperfusion (I/R) injury. MicroRNAs (miRNAs or miRs) participate in occurrence and development of myocardial I/R injury by regulating autophagy and apoptosis. The purpose of the present study was to investigate the role of miR-590-3p in the regulation of autophagy and apoptosis in hypoxia/reoxygenation (H/R)-treated cardiomyocytes. Following 6 h hypoxia and 6 h reoxygenation in primary rat cardiomyocytes, miR-590-3p was downregulated. Transfection of miR-590-3p mimic inhibited the increased autophagy and apoptosis following H/R treatment. Subsequent experiments demonstrated that miR-590-3p regulated induction of autophagy and apoptosis by targeting hypoxia inducible factor (HIF)-1α. Forced expression of HIF-1α rescued the protective effect of miR-590-3p on H/R-induced cardiomyocytes. In summary, the present study showed that miR-590-3p exhibited a protective effect on H/R-induced cardiomyocyte injury and may be a novel target for the treatment of myocardial ischemia disease.
Collapse
|
35
|
Iannolo G, Sciuto MR, Cuscino N, Carcione C, Coronnello C, Chinnici CM, Raffa GM, Pilato M, Conaldi PG. miRNA expression analysis in the human heart: Undifferentiated progenitors vs. bioptic tissues-Implications for proliferation and ageing. J Cell Mol Med 2021; 25:8687-8700. [PMID: 34390171 PMCID: PMC8435455 DOI: 10.1111/jcmm.16824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/07/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
In developed countries, cardiovascular diseases are currently the first cause of death. Cardiospheres (CSs) and cardiosphere-derived cells (CDCs) have been found to have the ability to regenerate the myocardium after myocardial infarction (MI). In recent years, much effort has been made to gain insight into the human heart repair mechanisms, in which miRNAs have been shown to play an important role. In this regard, to elucidate the involvement of miRNAs, we evaluated the miRNA expression profile across human heart biopsy, CSs and CDCs using microarray and next-generation sequencing (NGS) technologies. We identified several miRNAs more represented in the progenitors, where some of them can be responsible for the proliferation or the maintenance of an undifferentiated state, while others have been found to be downregulated in the undifferentiated progenitors compared with the biopsies. Moreover, we also found a correlation between downregulated miRNAs in CSs/CDCs and patient age (eg miR-490) and an inverse correlation among miRNAs upregulated in CSs/CDCs (eg miR-31).
Collapse
Affiliation(s)
- Gioacchin Iannolo
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| | - Maria Rita Sciuto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Nicola Cuscino
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| | | | | | - Cinzia Maria Chinnici
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy.,Fondazione Ri.MED, Palermo, Italy
| | - Giuseppe Maria Raffa
- Cardiac Surgery and Heart Transplantation Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| | - Michele Pilato
- Cardiac Surgery and Heart Transplantation Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| | - Pier Giulio Conaldi
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| |
Collapse
|
36
|
Li Z, Xu C, Sun D. MicroRNA-488 serves as a diagnostic marker for atherosclerosis and regulates the biological behavior of vascular smooth muscle cells. Bioengineered 2021; 12:4092-4099. [PMID: 34288824 PMCID: PMC8806555 DOI: 10.1080/21655979.2021.1953212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is one of the main causes of cerebral infarction. Researches on AS mainly focus on the gene level, among which microRNA is the research hotspot nowadays. This study investigated the diagnostic value of aberrant serum miR-488 in AS patients, and further explored the effect of abnormally expressed miR-488 on the biological behavior of vascular smooth muscle (VSMCs) cells by cell transfection. The qRT-PCR was used to investigate the expression level of miR-488 in 125 AS patients and 60 healthy controls. The diagnostic value of miR-488 was analyzed by the receiver operator characteristic (ROC) curve. CCK-8 and Transwell assays were used to detect the ability of miR-488 on the proliferation and migration ability of VSMCs cells. Serum expression of miR-488 in AS patients was higher than that in healthy controls. The expression level of miR-488 was significantly positively correlated with the Carotid Intima-Media Thickness (CIMT) value. The AUC of the ROC curve was 0.892, specificity was 99.3%, and sensitivity was 77.6%. In VSMCs cells, overexpression of miR-488 significantly promoted the proliferation and migration ability. The high expression of miR-488 is a good diagnostic marker for AS. The upregulation of miR-488 promotes VSMCs cell proliferation, and migration, which may provide a new theory for the treatment of AS.
Collapse
Affiliation(s)
- Zhen Li
- Department of Cardiology, Shengli Oilfield Central Hospital, Shandong, China
| | - Congjian Xu
- Department of Cardiology, Shengli Oilfield Central Hospital, Shandong, China
| | - Di Sun
- Department of Cardiology, Shengli Oilfield Central Hospital, Shandong, China
| |
Collapse
|
37
|
Kaixin Z, Xuedie G, Jing L, Yiming Z, Khoso PA, Zhaoyi L, Shu L. Selenium-deficient diet induces inflammatory response in the pig adrenal glands by activating TLR4/NF-κB pathway via miR-30d-R_1. Metallomics 2021; 13:6300451. [PMID: 34132350 DOI: 10.1093/mtomcs/mfab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 01/07/2023]
Abstract
Selenium (Se) is an important trace element to maintain the body's dynamic balance. Lack of Se can cause inflammation. Studies have shown that inflammation often leads to disorders of the hypothalamic-pituitary-adrenal axis, but the mechanism by which Se deficiency causes inflammation of the porcine adrenal glands is still unclear. In order to study the effect of Se deficiency on the adrenal glands of pigs, we obtained Se-deficient pig adrenal glands through a low-Se diet. The results of mass spectrometry showed that the Se content in the Se-deficient group was only one-tenth of the control group. We detected the expression of the toll-like receptor 4 (TLR4) and downstream factors by qRT-PCR and Western blotting, and found that the lack of Se affected the TLR4/NF-κB pathway. It is known that miR-155-3p, miR-30d-R_1, and miR-146b have all been verified for targeting relationship with TLR4. We confirmed by qRT-PCR that miR-30d-R_1 decreased most significantly in the Se-deficient pig model. Then we tested 25 selenoproteins and some indicators of oxidative stress. It is confirmed that Se deficiency reduces the antioxidant capacity and induces oxidative stress in pig adrenal tissue. In short, a diet lacking Se induces oxidative stress in pig adrenal tissues and leads to inflammation through the miR-30d-R_1/TLR4 pathway. This study provides a reference for the prevention of adrenal inflammation in pigs from a nutritional point of view.
Collapse
Affiliation(s)
- Zhang Kaixin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Gu Xuedie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lan Jing
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhang Yiming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pervez Ahmed Khoso
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, Pakistan
| | - Liu Zhaoyi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
38
|
Therapies Targeted at Non-Coding RNAs in Prevention and Limitation of Myocardial Infarction and Subsequent Cardiac Remodeling-Current Experience and Perspectives. Int J Mol Sci 2021; 22:ijms22115718. [PMID: 34071976 PMCID: PMC8198996 DOI: 10.3390/ijms22115718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Myocardial infarction is one of the major causes of mortality worldwide and is a main cause of heart failure. This disease appears as a final point of atherosclerotic plaque progression, destabilization, and rupture. As a consequence of cardiomyocytes death during the infarction, the heart undergoes unfavorable cardiac remodeling, which results in its failure. Therefore, therapies aimed to limit the processes of atherosclerotic plaque progression, cardiac damage during the infarction, and subsequent remodeling are urgently warranted. A hopeful therapeutic option for the future medicine is targeting and regulating non-coding RNA (ncRNA), like microRNA, circular RNA (circRNA), or long non-coding RNA (lncRNA). In this review, the approaches targeted at ncRNAs participating in the aforementioned pathophysiological processes involved in myocardial infarction and their outcomes in preclinical studies have been concisely presented.
Collapse
|
39
|
Bao J, Lu Y, She Q, Dou W, Tang R, Xu X, Zhang M, Zhu L, Zhou Q, Li H, Zhou G, Yang Z, Shi S, Liu Z, Zheng C. MicroRNA-30 regulates left ventricular hypertrophy in chronic kidney disease. JCI Insight 2021; 6:138027. [PMID: 33848263 PMCID: PMC8262338 DOI: 10.1172/jci.insight.138027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
Left ventricular hypertrophy (LVH) is a primary feature of cardiovascular complications in patients with chronic kidney disease (CKD). miRNA-30 is an important posttranscriptional regulator of LVH, but it is unknown whether miRNA-30 participates in the process of CKD-induced LVH. In the present study, we found that CKD not only resulted in LVH but also suppressed miRNA-30 expression in the myocardium. Rescue of cardiomyocyte-specific miRNA-30 attenuated LVH in CKD rats without altering CKD progression. Importantly, in vivo and in vitro knockdown of miRNA-30 in cardiomyocytes led to cardiomyocyte hypertrophy by upregulating the calcineurin signaling directly. Furthermore, CKD-related detrimental factors, such as fibroblast growth factor-23, uremic toxin, angiotensin II, and transforming growth factor–β, suppressed cardiac miRNA-30 expression, while miRNA-30 supplementation blunted cardiomyocyte hypertrophy induced by such factors. These results uncover a potentially novel mechanism of CKD-induced LVH and provide a potential therapeutic target for CKD patients with LVH. Downregulation of myocardial miRNA-30 is involved in chronic kidney disease–induced left ventricular hypertrophy, whereas exogenous miRNA-30 rescue inhibits this process.
Collapse
Affiliation(s)
- Jingfu Bao
- National Clinical Research Center of Kidney Diseases, and
| | - Yinghui Lu
- National Clinical Research Center of Kidney Diseases, and
| | - Qinying She
- National Clinical Research Center of Kidney Diseases, and
| | - Weijuan Dou
- National Clinical Research Center of Kidney Diseases, and
| | - Rong Tang
- National Clinical Research Center of Kidney Diseases, and
| | - Xiaodong Xu
- National Clinical Research Center of Kidney Diseases, and
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, and
| | - Ling Zhu
- National Clinical Research Center of Kidney Diseases, and
| | - Qing Zhou
- Department of Pharmacology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hui Li
- Department of Pharmacology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Shaolin Shi
- National Clinical Research Center of Kidney Diseases, and
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, and
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, and
| |
Collapse
|
40
|
Calyeca J, Balderas-Martínez YI, Selman M, Pardo A. Transcriptomic profile of the mice aging lung is associated with inflammation and apoptosis as important pathways. Aging (Albany NY) 2021; 13:12378-12394. [PMID: 33982668 PMCID: PMC8148450 DOI: 10.18632/aging.203039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Aging is a universal biological process characterized by a progressive deterioration in functional capacity and an increased risk of morbidity and mortality over time. In the lungs, there are considerable changes in lung structure and function with advancing age; however, research on the transcriptomic profile implicated in this process is scanty. In this study, we addressed the lung transcriptome changes during aging, through a global gene expression analysis of normal lungs of mice aged 4- and 18-months old. Functional pathway enrichment analysis by Ingenuity Pathway Analysis (IPA) revealed that the most enriched signaling pathways in aged mice lungs are involved in the regulation of cell apoptosis, senescence, development, oxidative stress, and inflammation. We also found 25 miRNAs significantly different in the lungs of old mice compared with their younger littermates, eight of them upregulated and 17 downregulated. Using the miRNet database we identified TNFα, mTOR, TGFβ, WNT, FoxO, Apoptosis, Cell cycle, and p53 signaling pathways as the potential targets of several of the dysregulated miRNAs supporting that old lungs have increased susceptibility for apoptosis, inflammation, and fibrosis. These findings reveal differential expression profiles of genes and miRNAs affecting cell survival and the inflammatory response during lung aging.
Collapse
Affiliation(s)
- Jazmin Calyeca
- Division of Pulmonary Allergy and Critical Care Medicine, Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio 43210, USA
| | - Yalbi I Balderas-Martínez
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México 14080, México
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México 14080, México
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
41
|
Wu X, Huang L, Liu J. Relationship between oxidative stress and nuclear factor-erythroid-2-related factor 2 signaling in diabetic cardiomyopathy (Review). Exp Ther Med 2021; 22:678. [PMID: 33986843 PMCID: PMC8111863 DOI: 10.3892/etm.2021.10110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of death worldwide, and oxidative stress was discovered to serve an important role in the pathophysiology of the condition. An imbalance between free radicals and antioxidant defenses is known to be associated with cellular dysfunction, leading to the development of various types of cardiac disease. Nuclear factor-erythroid-2-related factor 2 (NRF2) is a transcription factor that controls the basal and inducible expression levels of various antioxidant genes and other cytoprotective phase II detoxifying enzymes, which are ubiquitously expressed in the cardiac system. Kelch-like ECH-associated protein 1 (Keap1) serves as the main intracellular regulator of NRF2. Emerging evidence has revealed that NRF2 is a critical regulator of cardiac homeostasis via the suppression of oxidative stress. The activation of NRF2 was discovered to enhance specific endogenous antioxidant defense factors, one of which is antioxidant response element (ARE), which was subsequently illustrated to detoxify and counteract oxidative stress-associated DCM. The NRF2 signaling pathway is closely associated with the development of various types of cardiac disease, including ischemic heart disease, heart failure, myocardial infarction, atrial fibrillation and myocarditis. Therefore, it is hypothesized that drugs targeting this pathway may be developed to inhibit the activation of NRF2 signaling, thereby preventing the occurrence of DCM and effectively treating the disease.
Collapse
Affiliation(s)
- Xia Wu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Leitao Huang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China
| | - Jichun Liu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
42
|
Cardiac MicroRNA Expression Profile After Experimental Brain Death Is Associated With Myocardial Dysfunction and Can Be Modulated by Hypertonic Saline. Transplantation 2021; 106:289-298. [PMID: 33859149 DOI: 10.1097/tp.0000000000003779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Brain death (BD) is associated with systemic inflammatory compromise, which might affect the quality of the transplanted organs. This study investigated the expression profile of cardiac microRNAs (miRNAs) after BD, and their relationship with the observed decline in myocardial function and with the changes induced by hypertonic saline solution (HSS) treatment. METHODS Wistar rats were assigned to sham-operation (SHAM) or submitted to BD with and without the administration of HSS. Cardiac function was assessed for 6h with left ventricular (LV) pressure-volume analysis. We screened 641 rodent miRNAs to identify differentially expressed miRNAs (DEMs) in the heart and computational and functional analysis were performed to compare the DEMs and find their putative targets and their related enriched canonical pathways. RESULTS An enhanced expression in canonical pathways related to inflammation and myocardial apoptosis was observed in BD induced group, with two miRNAs, miR-30a-3p and miR-467f, correlating with the level of LV dysfunction observed after BD. Conversely, HSS treated after BD and SHAM groups showed similar enriched pathways related to the maintenance of heart homeostasis regulation, in agreement with the observation that both groups did not have significant changes in LV function. CONCLUSIONS These findings highlight the potential of miRNAs as biomarkers for assessing damage in BD donor hearts and to monitor the changes induced by therapeutic measures like HSS, opening a perspective to improve graft quality and to better understand the pathophysiology of BD. The possible relation of BD induced miRNA's on early and late cardiac allograft function must be investigated.Supplemental Visual Abstract; http://links.lww.com/TP/C210.
Collapse
|
43
|
Sun Q, Liu S, Feng J, Kang Y, Zhou Y, Guo S. Current Status of MicroRNAs that Target the Wnt Signaling Pathway in Regulation of Osteogenesis and Bone Metabolism: A Review. Med Sci Monit 2021; 27:e929510. [PMID: 33828067 PMCID: PMC8043416 DOI: 10.12659/msm.929510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The directional differentiation of bone mesenchymal stem cells (BMSCs) is regulated by a variety of transcription factors and intracellular signaling pathways. In the past, it was thought that the directional differentiation of BMSCs was related to transforming growth factors, such as bone morphogenetic protein (BMP) and MAPK pathway. However, in recent years, some scholars have pointed out that the Wnt signaling pathway, which is a necessary complex network of protein interactions for biological growth and development, takes a significant role in this process and plays a major part in regulating the development of osteoblasts by exerting signal transduction into cells. Also, they have proved the Wnt protein therapeutic truly have positive effects on the viability and osteogenic capacity of bone graft. Recent studies have shown that microRNAs (miRNAs) play an important regulatory role in this process. MiRNAs such as miRNA-218, miRNA-335, miRNA-29, microRNA-30 and other miRNAs exert negative or positive effects on some crucial molecules in the Wnt/β-catenin pathway, which in turn affect bone metabolism and osteopathy. Thus, miRNAs have been suggested as therapeutic targets for some metabolic bone diseases. This article aims to provide an update on the current status of microRNAs that target the Wnt signaling pathway in the regulation of osteogenesis and bone metabolism and includes a discussion of future areas of research, which can be a theoretical basis for bone metabolism-related diseases.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Plastic Surgery, The First Hopital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Siyu Liu
- Department of Plastic Surgery, The First Hopital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jingyi Feng
- Department of Plastic Surgery, The First Hopital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yue Kang
- Department of Plastic Surgery, The First Hopital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - You Zhou
- Department of Plastic Surgery, The First Hopital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Shu Guo
- Department of Plastic Surgery, The First Hopital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
44
|
Zhang Y, Cai S, Ding X, Lu C, Wu R, Wu H, Shang Y, Pang M. MicroRNA-30a-5p silencing polarizes macrophages toward M2 phenotype to alleviate cardiac injury following viral myocarditis by targeting SOCS1. Am J Physiol Heart Circ Physiol 2021; 320:H1348-H1360. [PMID: 33416455 DOI: 10.1152/ajpheart.00431.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/01/2021] [Indexed: 02/02/2023]
Abstract
Viral myocarditis (VMC) is a life-threatening disease characterized by severe cardiac inflammation generally caused by coxsackievirus B3 (CVB3) infection. Several microRNAs (miRNAs or miRs) are known to play crucial roles in the pathogenesis of VMC. The study aimed to decipher the role of miR-30a-5p in the underlying mechanisms of VMC pathogenesis. We first quantified miR-30a-5p expression in a CVB3-induced mouse VMC model. The physiological characteristics of mouse cardiac tissues were then detected by hematoxylin and eosin (HE) and Picrosirius red staining. We established the correlation between miR-30a-5p and SOCS1, using dual-luciferase gene assay and Pearson's correlation coefficient. The expression of inflammatory factors (IFN-γ, IL-6, IL-10, and IL-13), M1 polarization markers [TNF-α, inducible nitric oxide synthase (iNOS)], M2 polarization markers (Arg-1, IL-10), and myocardial hypertrophy markers [atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP)] was detected by RT-qPCR and Western blot analysis. miR-30a-5p was found to be highly expressed in VMC mice. Silencing of miR-30a-5p improved the cardiac function index and reduced heart weight-to-body weight ratio, myocardial tissue pathological changes and fibrosis degree, serological indexes, as well as proinflammatory factor levels, while enhancing anti-inflammatory factor levels in VMC mice. Furthermore, silencing of miR-30a-5p inhibited M1 polarization of macrophages while promoting M2 polarization in vivo and in vitro. SOCS1 was a target gene of miR-30a-5p, and the aforementioned cardioprotective effects of miR-30a-5p silencing were reversed upon silencing of SOCS1. Overall, this study shows that silencing of miR-30a-5p may promote M2 polarization of macrophages and improve cardiac injury following VMC via SOCS1 upregulation, constituting a potential therapeutic target for VMC treatment.NEW & NOTEWORTHY We found in this study that microRNA (miR)-30a-5p inhibition might improve cardiac injury following viral myocarditis (VMC) by accelerating M2 polarization of macrophages via SOCS1 upregulation. Furthermore, the anti-inflammatory mechanisms of miR-30a-5p inhibition may contribute to the development of new therapeutic strategies for VMC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Magnetic Resonance Imaging, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Shengbao Cai
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Xiaoxue Ding
- Department of Cardiology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Can Lu
- Department of Cardiology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Ruodan Wu
- Department of Cardiology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Haiyan Wu
- Department of Cardiology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yiyi Shang
- Medical School of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Mingjie Pang
- Department of Cardiology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| |
Collapse
|
45
|
Gutierrez-Carretero E, Mayoral-González I, Jesús Morón F, Fernández-Quero M, Domínguez-Rodríguez A, Ordóñez A, Smani T. miR-30b-5p Downregulation as a Predictive Biomarker of Coronary In-Stent Restenosis. Biomedicines 2021; 9:354. [PMID: 33808387 PMCID: PMC8066146 DOI: 10.3390/biomedicines9040354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
In-stent restenosis (ISR) is one of the main limitations of percutaneous coronary intervention (PCI) therapy with drug-eluting stents (DES) implantation. The aim of this study was to determine if circulating microRNAs (miRNAs) have diagnostic capability for determining ISR in a cohort of matched patients. Blood samples were collected from 55 patients who underwent previously PCI and were readmitted for a new coronary angiography. Patients were divided into subgroups comprising patients who presented ISR or not (non-ISR). A microarray analysis determined that up to 49 miRNAs were differentially expressed between ISR and non-ISR patients. Of these, 10 miRNAs are related to vascular smooth muscle and endothelial cells proliferation, migration, and differentiation, well-known hallmarks of vascular remodeling. Additionally, we identified that the expression of miR-30b-5p is significantly lower in serum samples of ISR patients, as compared to non-ISR. A further analysis demonstrated that miR-30b-5p provides better values of the receiver operator characteristic curve than other miRNAs and biochemical parameters. Finally, the in-silico analysis suggests that miR-30b-5p is predicted to target 62 genes involved in different signaling pathways involved in vascular remodeling. In conclusion, we determined for the first time that circulating mi-R30b-5p can reliably prognose restenosis in patient with implanted DES, which could be potentially helpful in the establishment of an early diagnosis and therapy of ISR.
Collapse
Affiliation(s)
- Encarnación Gutierrez-Carretero
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CSIC, 41013 Seville, Spain; (E.G.-C.); (I.M.-G.); (A.D.-R.); (A.O.)
- Department of Surgery, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
- University Hospital Virgen del Rocío, 41013 Sevilla, Spain;
| | - Isabel Mayoral-González
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CSIC, 41013 Seville, Spain; (E.G.-C.); (I.M.-G.); (A.D.-R.); (A.O.)
- Department of Surgery, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
| | - Francisco Jesús Morón
- Genomic Facility, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CSIC, 41013 Seville, Spain;
| | | | - Alejandro Domínguez-Rodríguez
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CSIC, 41013 Seville, Spain; (E.G.-C.); (I.M.-G.); (A.D.-R.); (A.O.)
| | - Antonio Ordóñez
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CSIC, 41013 Seville, Spain; (E.G.-C.); (I.M.-G.); (A.D.-R.); (A.O.)
- Department of Surgery, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
| | - Tarik Smani
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CSIC, 41013 Seville, Spain; (E.G.-C.); (I.M.-G.); (A.D.-R.); (A.O.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| |
Collapse
|
46
|
Niderla-Bielińska J, Ścieżyńska A, Moskalik A, Jankowska-Steifer E, Bartkowiak K, Bartkowiak M, Kiernozek E, Podgórska A, Ciszek B, Majchrzak B, Ratajska A. A Comprehensive miRNome Analysis of Macrophages Isolated from db/db Mice and Selected miRNAs Involved in Metabolic Syndrome-Associated Cardiac Remodeling. Int J Mol Sci 2021; 22:2197. [PMID: 33672153 PMCID: PMC7926522 DOI: 10.3390/ijms22042197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/10/2023] Open
Abstract
Cardiac macrophages are known from various activities, therefore we presume that microRNAs (miRNAs) produced or released by macrophages in cardiac tissue have impact on myocardial remodeling in individuals with metabolic syndrome (MetS). We aim to assess the cardiac macrophage miRNA profile by selecting those miRNA molecules that potentially exhibit regulatory functions in MetS-related cardiac remodeling. Cardiac tissue macrophages from control and db/db mice (an animal model of MetS) were counted and sorted with flow cytometry, which yielded two populations: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. Total RNA was then isolated, and miRNA expression profiles were evaluated with Next Generation Sequencing. We successfully sequenced 1400 miRNAs in both macrophage populations: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. Among the 1400 miRNAs, about 150 showed different expression levels in control and db/db mice and between these two subpopulations. At least 15 miRNAs are possibly associated with MetS pathology in cardiac tissue due to direct or indirect regulation of the expression of miRNAs for proteins involved in angiogenesis, fibrosis, or inflammation. In this paper, for the first time we describe the miRNA transcription profile in two distinct macrophage populations in MetS-affected cardiac tissue. Although the results are preliminary, the presented data provide a foundation for further studies on intercellular cross-talk/molecular mechanism(s) involved in the regulation of MetS-related cardiac remodeling.
Collapse
Affiliation(s)
- Justyna Niderla-Bielińska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Aneta Moskalik
- Postgraduate School of Molecular Medicine, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Krzysztof Bartkowiak
- Student Scientific Group, Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (K.B.); (M.B.)
| | - Mateusz Bartkowiak
- Student Scientific Group, Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (K.B.); (M.B.)
- Department of History of Medicine, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Ewelina Kiernozek
- Department of Immunology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Anna Podgórska
- Molecular Biology Laboratory, Department of Medical Biology, Cardinal Stefan Wyszyński Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Bogdan Ciszek
- Department of Clinical Anatomy, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Barbara Majchrzak
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Anna Ratajska
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| |
Collapse
|
47
|
Role of Selected miRNAs as Diagnostic and Prognostic Biomarkers in Cardiovascular Diseases, Including Coronary Artery Disease, Myocardial Infarction and Atherosclerosis. J Cardiovasc Dev Dis 2021; 8:jcdd8020022. [PMID: 33669699 PMCID: PMC7923109 DOI: 10.3390/jcdd8020022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide in different cohorts. It is well known that miRNAs have a crucial role in regulating the development of cardiovascular physiology, thus impacting the pathophysiology of heart diseases. MiRNAs also have been reported to be associated with cardiac reactions, leading to myocardial infarction (MCI) and ultimately heart failure (HF). To prevent these heart diseases, proper and timely diagnosis of cardiac dysfunction is pivotal. Though there are many symptoms associated with an irregular heart condition and though there are some biomarkers available that may indicate heart disease, authentic, specific and sensitive markers are the need of the hour. In recent times, miRNAs have proven to be promising candidates in this regard. They are potent biomarkers as they can be easily detected in body fluids (blood, urine, etc.) due to their remarkable stability and presence in apoptotic bodies and exosomes. Existing studies suggest the role of miRNAs as valuable biomarkers. A single biomarker may be insufficient to diagnose coronary artery disease (CAD) or acute myocardial infarction (AMI); thus, a combination of different miRNAs may prove fruitful. Therefore, this review aims to highlight the role of circulating miRNA as diagnostic and prognostic biomarkers in cardiovascular diseases such as coronary artery disease (CAD), myocardial infarction (MI) and atherosclerosis.
Collapse
|
48
|
Langlo KAR, Silva GJJ, Overrein TS, Adams V, Wisløff U, Dalen H, Rolim N, Hallan SI. Circulating microRNAs May Serve as Biomarkers for Hypertensive Emergency End-Organ Injuries and Address Underlying Pathways in an Animal Model. Front Cardiovasc Med 2021; 7:626699. [PMID: 33644125 PMCID: PMC7906971 DOI: 10.3389/fcvm.2020.626699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 11/20/2022] Open
Abstract
There is an incomplete understanding of the underlying pathophysiology in hypertensive emergencies, where severely elevated blood pressure causes acute end-organ injuries, as opposed to the long-term manifestations of chronic hypertension. Furthermore, current biomarkers are unable to detect early end-organ injuries like hypertensive encephalopathy and renal thrombotic microangiopathy. We hypothesized that circulating microRNAs (c-miRs) could identify acute and chronic complications of severe hypertension, and that combinations of c-miRs could elucidate important pathways involved. We studied the diagnostic accuracy of 145 c-miRs in Dahl salt-sensitive rats fed either a low-salt (N = 20: 0.3% NaCl) or a high-salt (N = 60: 8% NaCl) diet. Subclinical hypertensive encephalopathy and thrombotic microangiopathy were diagnosed by histopathology. In addition, heart failure with preserved ejection fraction was evaluated with echocardiography and N-terminal pro-brain natriuretic peptide; and endothelial dysfunction was studied using acetylcholine-induced aorta ring relaxation. Systolic blood pressure increased severely in animals on a high-salt diet (high-salt 205 ± 20 mm Hg vs. low-salt 152 ± 18 mm Hg, p < 0.001). Partial least squares discriminant analysis revealed 68 c-miRs discriminating between animals with and without hypertensive emergency complications. Twenty-nine c-miRs were strongly associated with hypertensive encephalopathy, 24 c-miRs with thrombotic microangiopathy, 30 c-miRs with heart failure with preserved ejection fraction, and 28 c-miRs with endothelial dysfunction. Hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction were associated with deviations in many of the same c-miRs, whereas endothelial dysfunction was associated with a different set of c-miRs. Several of these c-miRs demonstrated fair to good diagnostic accuracy for a composite outcome of hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction in receiver-operating-curve analyses (area-under-curve 0.75–0.88). Target prediction revealed an enrichment of genes related to several pathways relevant for cardiovascular disease (e.g., mucin type O-glycan biosynthesis, MAPK, Wnt, Hippo, and TGF-beta signaling). C-miRs could potentially serve as biomarkers of severe hypertensive end-organ injuries and elucidate important pathways involved.
Collapse
Affiliation(s)
- Knut Asbjørn Rise Langlo
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Nephrology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gustavo Jose Justo Silva
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tina Syvertsen Overrein
- Division of Pathology and Medical Genetics, Department of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Volker Adams
- Department of Cardiology, Heart Center Dresden, TU Dresden, Dresden, Germany
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,School of Human Movement & Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Håvard Dalen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Natale Rolim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stein Ivar Hallan
- Department of Nephrology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
49
|
Yan Z, Qi Z, Yang X, Ji N, Wang Y, Shi Q, Li M, Zhang J, Zhu Y. The NLRP3 inflammasome: Multiple activation pathways and its role in primary cells during ventricular remodeling. J Cell Physiol 2021; 236:5547-5563. [PMID: 33469931 DOI: 10.1002/jcp.30285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Inflammasomes are a group of multiprotein signaling complexes located in the cytoplasm. Several inflammasomes have been identified, including NLRP1, NLRP2, NLRP3, AIM2, and NLRC4. Among them, NLRP3 was investigated in most detail, and it was reported that it can be activated by many different stimuli. Increased NLRP3 protein expression and inflammasome assembly lead to caspase-1 mediated maturation and release of IL-1β, which triggers inflammation and pyroptosis. The activation of the NLRP3 inflammasome has been widely reported in studies of tumors and neurological diseases, but relatively few studies on the cardiovascular system. Ventricular remodeling (VR) is an important factor contributing to heart failure (HF) after myocardial infarction (MI). Consequently, delaying VR is of great significance for improving heart function. Studies have shown that the NLRP3 inflammasome plays an essential role in the process of VR. Here, we reviewed the latest studies on the activation pathway of the NLRP3 inflammasome, focusing on the effects of the NLRP3 inflammasome in primary cells during VR, and finally discuss future research directions in this field.
Collapse
Affiliation(s)
- Zhipeng Yan
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhongwen Qi
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yueyao Wang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Shi
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaping Zhu
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
50
|
Guo H, Ma K, Hao W, Jiao Y, Li P, Chen J, Xu C, Xu F, Lau WB, Du J, Ma X, Li Y. mir15a/mir16-1 cluster and its novel targeting molecules negatively regulate cardiac hypertrophy. Clin Transl Med 2020; 10:e242. [PMID: 33377640 PMCID: PMC7737755 DOI: 10.1002/ctm2.242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In response to pathological stimuli, the heart develops ventricular hypertrophy that progressively decompensates and leads to heart failure. miRNAs are increasingly recognized as pathogenic factors, clinically relevant biomarkers, and potential therapeutic targets. We identified that mir15a/mir16-1 cluster was negatively correlated with hypertrophic severity in patients with hypertrophic cardiomyopathy. The mir15a/mir16-1 expression was enriched in cardiomyocytes (CMs), decreased in hypertrophic human hearts, and decreased in mouse hearts after transverse aortic constriction (TAC). CM-specific mir15a/mir16-1 knockout promoted cardiac hypertrophy and dysfunction after TAC. CCAAT/enhancer binding protein (C/EBP)β was responsible for the downregulation of mir15a/mir16-1 cluster transcription. Mechanistically, mir15a/mir16-1 cluster attenuated the insulin/IGF1 signal transduction cascade by inhibiting multiple targets, including INSR, IGF-1R, AKT3, and serum/glucocorticoid regulated kinase 1 (SGK1). Pro-hypertrophic response induced by mir15a/mir16-1 inhibition was abolished by knockdown of insulin receptor (INSR), insulin like growth factor 1 receptor (IGF1R), AKT3, or SGK1. In vivo systemic delivery of mir15a/mir16-1 by nanoparticles inhibited the hypertrophic phenotype induced by TAC. Importantly, decreased serum mir15a/mir16-1 levels predicted the occurrence of left ventricular hypertrophy in a cohort of patients with hypertension. Therefore, mir15a/mir16-1 cluster is a promising therapeutic target and biomarker for cardiac hypertrophy.
Collapse
Affiliation(s)
- Hongchang Guo
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Ke Ma
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Wenjing Hao
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Yao Jiao
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Ping Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Jing Chen
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering, and Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
| | - Fu‐jian Xu
- State Key Laboratory of Chemical Resource Engineering, and Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
| | - Wayne Bond Lau
- Department of Emergency MedicineThomas Jefferson UniversityPhiladelphiaPennsylvania
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Xin‐liang Ma
- Department of Emergency MedicineThomas Jefferson UniversityPhiladelphiaPennsylvania
| | - Yulin Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| |
Collapse
|