1
|
Xu X, Qing H, Jiang C, Zhao X, Wei J. Influence of the lncRNA SLC9A3-AS1 on colon cancer and the biological activities of colon cancer cells. Discov Oncol 2025; 16:358. [PMID: 40106182 PMCID: PMC11923312 DOI: 10.1007/s12672-025-02134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Circulating long non-coding RNAs expression was associated with diagnosis and therapies of various diseases. The current study investigated the expression of lncRNA SLC9A3-AS1 in the serum samples from colon cancer patients and explored its potential functions in colon cancer cells. METHODS Serum expression levels of SLC9A3-AS1 and miR-486 were measured in 130 patients with colon cancer and 96 healthy individuals using RT-qPCR. The influence of SLC9A3-AS1 expression and miR-486 expression on colon cancer cellular behaviors was detected by MTT assay and Transwell chamber assays. Pearson correlation analysis was used to analyze the association between SLC9A3-AS1 and miR-486. RESULTS We found serum expression levels of SLC9A3-AS1 were overexpressed in sera of colon cancer patients. ROC curve analysis showed that SLC9A3-AS1 had a high area under the ROC curve value for early detection of colon cancer patients from a healthy control. The proliferation potential, migration, and invasion behaviors were weakened by si-SLC9A3-AS1 and reversed by the miR-486 inhibitor. CONCLUSION Serum SLC9A3-AS1 may be used as a non-invasive diagnostic predictor for the early screening of colon cancer. LncRNA SLC9A3-AS1 affects colon cancer cellular activities by negatively modulating miR-486. A major limitation of this study is the small sample size, and in addition, the lack of longitudinal data prevented us from conducting an in-depth analysis of long-term changes in variables.
Collapse
Affiliation(s)
- Xiulian Xu
- Department of Gastrointestinal Surgery I, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Hongyi Qing
- Department of Gastrointestinal Surgery I, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Chunyan Jiang
- Department of Gastrointestinal Tumor Surgery, Xingtai People's Hospital, Xingtai, 054001, China
| | - Xiaofeng Zhao
- Department of Gastrointestinal Tumor Surgery, Xingtai People's Hospital, Xingtai, 054001, China
| | - Jinlai Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
2
|
Hosseini Farzad S, Lashkarboloki M, Mowla SJ, Soltani BM. LncRNA DANCR-V1 is a novel regulator of Wnt/β-catenin and TGF-β1/SMAD signaling pathways in colorectal cancer: an in vitro and in silico study. Mol Biol Rep 2024; 52:36. [PMID: 39643825 DOI: 10.1007/s11033-024-10128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND DANCR is an oncogenic lncRNA associated with advanced colorectal cancer, one of the most common malignancies worldwide. This lncRNA has a new variant, DANCR-V1, whose function is not yet understood. In this study, we aimed to evaluate the expression pattern of DANCR-V1 and its regulatory mechanism in colorectal cancer. METHOD AND RESULT Bioinformatics analysis and RT-qPCR showed that DANCR-V1 expression was higher in colorectal cancer tissues than in normal pairs obtained from microarray data and 20 samples, respectively. LncRNA subcellular localization and hsa-miR-222 binding sites were predicted using bioinformatics tools. Dual luciferase assays confirmed that miR-222-mediated downregulation of DANCR-V1 through its targeting, and RT-qPCR showed that overexpression of miR-222 decreased the level of DANCR-V1. Functionally, Wnt/β-catenin and TGF-β1/SMAD-related genes changed under DANCR-V1 overexpression in the SW480 cell line, while their expression was reversed following miR-222 overexpression. Finally, at the cellular level, overexpression of DANCR-V1 elevated the proliferation and migration rates of SW480 cells, as determined using flow cytometry, western blotting and scratch assays. CONCLUSION Our data suggest that DANCR-V1 is a novel transcript variant that has crucial crosstalk with miR-222 via negative feedback and plays a critical role in colorectal cancer progression through Wnt/β-catenin and TGF-β1/SMAD signaling modulation.
Collapse
Affiliation(s)
- Sana Hosseini Farzad
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Lashkarboloki
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Peng XC, Ma LL, Miao JY, Xu SQ, Shuai ZW. Differential lncRNA profiles of blood plasma-derived exosomes from systemic lupus erythematosus. Gene 2024; 927:148713. [PMID: 38906394 DOI: 10.1016/j.gene.2024.148713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
INTRODUCTION Long non-coding RNAs (lncRNAs) dysregulation is key in the pathogenesis of systemic lupus erythematosus (SLE), but the role of exosomal lncRNAs in SLE has not been well studied. We elucidated the profiles of plasma exosomal lncRNAs expression in patients with SLE and predictd their potential clinical significance in SLE. METHODS In the screening stage, six newly diagnosed and untreated patients with SLE and six healthy controls were examined by high-throughput sequencing technology, and differential exosomal lncRNA profiles were constructed. In the validation phase, two differentially selected exosomal lncRNAs from 20 patients each with active and stable SLE and 20 healthy controls were verified with RT-qPCR. The correlation between the selected exosomal lncRNAs and SLE clinical indicators was examined. The diagnostic value of the selected exosomal lncRNAs in SLE was analyzed by the receiver operator characteristic (ROC) curve. RESULTS Exosomes were successfully extracted from the patients and controls. Sequencing-phase sequencing demonstrated 528 upregulated lncRNAs and 7491 downregulated lncRNAs. In the validation stage, exosomal LINC00667 and DANCR were significantly upregulated in the patients, and positively correlated with Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2 K). Exosomal DANCR expression between the active and stable SLE patients was different. The area under the curve(AUC) of exosomal LINC00667 and DANCR for SLE diagnosis was 0.815 and 0.759, respectively. CONCLUSIONS Exosomal LINC00667 and DANCR were upregulated in SLE, and might be new biomarkers thereof. Exosomal DANCR was associated with SLE activity.
Collapse
Affiliation(s)
- Xin-Chen Peng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Ling-Li Ma
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Jie-Yu Miao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Sheng-Qian Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Zong-Wen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
4
|
Shang X, Wang H, Gu J, Zhao X, Zhang J, Sun B, Zhu X. Ferroptosis-related gene transferrin receptor protein 1 expression correlates with the prognosis and tumor immune microenvironment in cervical cancer. PeerJ 2024; 12:e17842. [PMID: 39131609 PMCID: PMC11313409 DOI: 10.7717/peerj.17842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Background Ferroptosis is a non-apoptotic iron-dependent form of cell death implicated in various cancer pathologies. However, its precise role in tumor growth and progression of cervical cancer (CC) remains unclear. Transferrin receptor protein 1 (TFRC), a key molecule associated with ferroptosis, has been identified as influencing a broad range of pathological processes in different cancers. However, the prognostic significance of TFRC in CC remains unclear. The present study utilized bioinformatics to explore the significance of the ferroptosis-related gene TFRC in the progression and prognosis of CC. Methods We obtained RNA sequencing data and corresponding clinical information on patients with CC from The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx) and Gene Expression Omnibus (GEO) databases. Using least absolute shrinkage and selection operator (LASSO) Cox regression, we then generated a multigene signature of five ferroptosis-related genes (FRGs) for the prognostic prediction of CC. We investigated the relationship between TFRC gene expression and immune cell infiltration by employing single-sample GSEA (ssGSEA) analysis. The potential functional role of the TFRC gene was evaluated through gene set enrichment analysis (GSEA). Immunohistochemistry and qPCR was employed to assess TFRC mRNA and protein expression in 33 cases of cervical cancer. Furthermore, the relationship between TFRC mRNA expression and overall survival (OS) was investigated in patients. Results CC samples had significantly higher TFRC gene expression levels than normal tissue samples. Higher TFRC gene expression levels were strongly associated with higher cancer T stages and OS events. The findings of multivariate analyses illustrated that the OS in CC patients with high TFRC expression is shorter than in patients with low TFRC expression. Significant increases were observed in the levels of TFRC mRNA and protein expression in patients diagnosed with CC. Conclusion Increased TFRC expression in CC was associated with disease progression, an unfavorable prognosis, and dysregulated immune cell infiltration. In addition, it highlights ferroptosis as a promising therapeutic target for CC.
Collapse
Affiliation(s)
- Xiujuan Shang
- Department of Laboratory Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, Jiangsu, China
| | - Hongdong Wang
- Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China
| | - Jin Gu
- Department of Laboratory Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, Jiangsu, China
| | - Xiaohui Zhao
- Department of Laboratory Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, Jiangsu, China
| | - Jing Zhang
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bohao Sun
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinming Zhu
- Department of Laboratory Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, Jiangsu, China
| |
Collapse
|
5
|
Yuan R, Xu ZJ, Zhang SK, Cao XY, Dai AG, Song L. New evidence for a role of DANCR in cancers: a comprehensive review. J Transl Med 2024; 22:569. [PMID: 38877534 PMCID: PMC11177382 DOI: 10.1186/s12967-024-05246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/28/2024] [Indexed: 06/16/2024] Open
Abstract
Cancer remains a leading cause of mortality and poses a substantial threat to public health. Studies have revealed that Long noncoding RNA DANCR is a cytoplasmic lncRNA whose aberrant expression plays a pivotal role in various cancer types. Within tumour biology, DANCR exerts regulatory control over crucial processes such as proliferation, invasion, metastasis, angiogenesis, inflammatory responses, cellular energy metabolism reprogramming, and apoptosis. By acting as a competitive endogenous RNA for miRNAs and by interacting with proteins and mRNAs at the molecular level, DANCR contributes significantly to cancer progression. Elevated DANCR levels have also been linked to heightened resistance to anticancer drugs. Moreover, the detection of circulating DANCR holds promise as a valuable biomarker for aiding in the clinical differentiation of different cancer types. This article offers a comprehensive review and elucidation of the primary functions and molecular mechanisms through which DANCR influences tumours.
Collapse
Affiliation(s)
- Rong Yuan
- School of Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
| | - Zhao-Jun Xu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Hunan University of Chinese Medicine, 97 Shaoshan Road, Changsha, 410007, Hunan, China
| | - Sheng-Kang Zhang
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Hunan University of Chinese Medicine, 97 Shaoshan Road, Changsha, 410007, Hunan, China
| | - Xian-Ya Cao
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ai-Guo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China.
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China.
| | - Lan Song
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
6
|
Saeinasab M, Atlasi Y, M Matin M. Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS J 2024; 291:1353-1385. [PMID: 36282516 DOI: 10.1111/febs.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
7
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
8
|
Zou Z, Li H, Xu G, Hu Y, Zhang W, Tian K. Current Knowledge and Future Perspectives of Exosomes as Nanocarriers in Diagnosis and Treatment of Diseases. Int J Nanomedicine 2023; 18:4751-4778. [PMID: 37635911 PMCID: PMC10454833 DOI: 10.2147/ijn.s417422] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
Exosomes, as natural nanocarriers, characterized with low immunogenicity, non-cytotoxicity and targeted delivery capability, which have advantages over synthetic nanocarriers. Recently, exosomes have shown great potential as diagnostic markers for diseases and are also considered as a promising cell-free therapy. Engineered exosomes have significantly enhanced the efficacy and precision of delivering therapeutic agents, and are currently being extensively employed in targeted therapeutic investigations for various ailments, including oncology, inflammatory disorders, and degenerative conditions. Particularly, engineered exosomes enable therapeutic agent loading, targeted modification, evasion of MPS phagocytosis, intelligent control, and bioimaging, and have been developed as multifunctional nano-delivery platforms in recent years. The utilization of bioactive scaffolds that are loaded with exosome delivery has been shown to substantially augment retention, extend exosome release, and enhance efficacy. This approach has advanced from conventional hydrogels to nanocomposite hydrogels, nanofiber hydrogels, and 3D printing, resulting in superior physical and biological properties that effectively address the limitations of natural scaffolds. Additionally, plant-derived exosomes, which can participate in gut flora remodeling via oral administration, are considered as an ideal delivery platform for the treatment of intestinal diseases. Consequently, there is great interest in exosomes and exosomes as nanocarriers for therapeutic and diagnostic applications. This comprehensive review provides an overview of the biogenesis, composition, and isolation methods of exosomes. Additionally, it examines the pathological and diagnostic mechanisms of exosomes in various diseases, including tumors, degenerative disorders, and inflammatory conditions. Furthermore, this review highlights the significance of gut microbial-derived exosomes. Strategies and specific applications of engineered exosomes and bioactive scaffold-loaded exosome delivery are further summarized, especially some new techniques such as large-scale loading technique, macromolecular loading technique, development of multifunctional nano-delivery platforms and nano-scaffold-loaded exosome delivery. The potential benefits of using plant-derived exosomes for the treatment of gut-related diseases are also discussed. Additionally, the challenges, opportunities, and prospects of exosome-based nanocarriers for disease diagnosis and treatment are summarized from both preclinical and clinical viewpoints.
Collapse
Affiliation(s)
- Zaijun Zou
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Han Li
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Gang Xu
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Yunxiang Hu
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Weiguo Zhang
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Kang Tian
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| |
Collapse
|
9
|
Ponomaryova AA, Rykova EY, Solovyova AI, Tarasova AS, Kostromitsky DN, Dobrodeev AY, Afanasiev SA, Cherdyntseva NV. Genomic and Transcriptomic Research in the Discovery and Application of Colorectal Cancer Circulating Markers. Int J Mol Sci 2023; 24:12407. [PMID: 37569782 PMCID: PMC10419249 DOI: 10.3390/ijms241512407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) is the most frequently occurring malignancy in the world. However, the mortality from CRC can be reduced through early diagnostics, selection of the most effective treatment, observation of the therapy success, and the earliest possible diagnosis of recurrences. A comprehensive analysis of genetic and epigenetic factors contributing to the CRC development is needed to refine diagnostic, therapeutic, and preventive strategies and to ensure appropriate decision making in managing specific CRC cases. The liquid biopsy approach utilizing circulating markers has demonstrated its good performance as a tool to detect the changes in the molecular pathways associated with various cancers. In this review, we attempted to brief the main tendencies in the development of circulating DNA and RNA-based markers in CRC such as cancer-associated DNA mutations, DNA methylation changes, and non-coding RNA expression shifts. Attention is devoted to the existing circulating nucleic acid-based CRC markers, the possibility of their application in clinical practice today, and their future improvement. Approaches to the discovery and verification of new markers are described, and the existing problems and potential solutions for them are highlighted.
Collapse
Affiliation(s)
- Anastasia A. Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Elena Yu. Rykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Engineering Problems of Ecology, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Anastasia I. Solovyova
- Department of Biochemistry, Medico-Biological Faculty, Siberian State Medical University, 634050 Tomsk, Russia
| | - Anna S. Tarasova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Dmitry N. Kostromitsky
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alexey Yu. Dobrodeev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Sergey A. Afanasiev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Nadezhda V. Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
- Faculty of Chemistry, National Research Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
10
|
Kan CM, Pei XM, Yeung MHY, Jin N, Ng SSM, Tsang HF, Cho WCS, Yim AKY, Yu ACS, Wong SCC. Exploring the Role of Circulating Cell-Free RNA in the Development of Colorectal Cancer. Int J Mol Sci 2023; 24:11026. [PMID: 37446204 PMCID: PMC10341751 DOI: 10.3390/ijms241311026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Circulating tumor RNA (ctRNA) has recently emerged as a novel and attractive liquid biomarker. CtRNA is capable of providing important information about the expression of a variety of target genes noninvasively, without the need for biopsies, through the use of circulating RNA sequencing. The overexpression of cancer-specific transcripts increases the tumor-derived RNA signal, which overcomes limitations due to low quantities of circulating tumor DNA (ctDNA). The purpose of this work is to present an up-to-date review of current knowledge regarding ctRNAs and their status as biomarkers to address the diagnosis, prognosis, prediction, and drug resistance of colorectal cancer. The final section of the article discusses the practical aspects involved in analyzing plasma ctRNA, including storage and isolation, detection technologies, and their limitations in clinical applications.
Collapse
Affiliation(s)
- Chau-Ming Kan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (C.-M.K.); (H.F.T.)
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (X.M.P.); (M.H.Y.Y.)
| | - Martin Ho Yin Yeung
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (X.M.P.); (M.H.Y.Y.)
| | - Nana Jin
- Codex Genetics Limited, Shatin, Hong Kong SAR, China; (N.J.); (A.K.-Y.Y.); (A.C.-S.Y.)
| | - Simon Siu Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (C.-M.K.); (H.F.T.)
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China;
| | - Aldrin Kay-Yuen Yim
- Codex Genetics Limited, Shatin, Hong Kong SAR, China; (N.J.); (A.K.-Y.Y.); (A.C.-S.Y.)
| | - Allen Chi-Shing Yu
- Codex Genetics Limited, Shatin, Hong Kong SAR, China; (N.J.); (A.K.-Y.Y.); (A.C.-S.Y.)
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (X.M.P.); (M.H.Y.Y.)
| |
Collapse
|
11
|
Vejdandoust F, Moosavi R, Fattahi Dolatabadi N, Zamani A, Tabatabaeian H. MIMT1 and LINC01550 are uncharted lncRNAs down-regulated in colorectal cancer. Int J Exp Pathol 2023; 104:107-116. [PMID: 36727289 PMCID: PMC10182369 DOI: 10.1111/iep.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Incomplete knowledge of the molecular basis of colorectal cancer, with subsequent limitations in early diagnosis and effective treatment, has contributed to this form of malignancy becoming the second most common cause of cancer-related death worldwide. With the advances in high-throughput profiling techniques and the availability of public data sets such as The Cancer Genome Atlas Program (TCGA), a broad range of coding transcripts have been profiled and their underlying modes of action have been mapped. However, there is still a huge gap in our understanding of noncoding RNA dysregulation. To this end, we used a bioinformatics approach to shortlist and evaluate yet-to be-profiled long noncoding RNAs (lncRNAs) in colorectal cancer. We analysed the TCGA RNA-seq data and followed this by validating the expression patterns using a qPCR technique. Analysing in-house clinical samples, the real-time PCR method revealed that the shortlisted lncRNAs, that is MER1 Repeat Containing Imprinted Transcript 1 (MIMT1) and Non-Protein Coding RNA 1550 (LINC01550), were down-regulated in colorectal cancer tumours compared with the paired adjacent normal tissues. Mechanistically, the in silico results suggest that LINC01550 could form a complex competitive endogenous RNA (ceRNA) network leading to the subsequent regulation of colorectal cancer-related genes, such as CUGBP Elav-Like Family Member (CELF2), Polypyrimidine Tract Binding Protein 1 (PTBP1) and ELAV Like RNA Binding Protein 1 (ELAV1). The findings of this work indicate that MIMT1 and LINC01550 could be novel tumour suppressor genes that can be studied further to assess their roles in regulating the cancer signalling pathway(s).
Collapse
Affiliation(s)
| | - Rahmaneh Moosavi
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterDevonUK
| | | | - Atefeh Zamani
- Gene Raz Bu AliGenetics and Biotechnology AcademyIsfahanIran
| | - Hossein Tabatabaeian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
- Anahid Cancer ClinicIsfahan Healthcare CityIsfahanIran
| |
Collapse
|
12
|
He J, Wu W. Comprehensive landscape and future perspectives of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC): Based on a bibliometric analysis. Noncoding RNA Res 2023; 8:33-52. [PMID: 36311994 PMCID: PMC9582894 DOI: 10.1016/j.ncrna.2022.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
This review aimed to use bibliometric analysis to sort out, analyze and summarize the knowledge foundation and hot topics in the field of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC), and point out future trends to inspire related research and innovation. We used CiteSpace to analyze publication outputs, countries, institutions, authors, journals, references, and keywords. Knowledge foundations, hotspots, and future trends were then depicted. The overall research showed the trend of biomedical-oriented multidisciplinary. Much evidence indicates that lncRNA plays the role of oncogene or tumor suppressor in the occurrence and development of CRC. Besides, many lncRNAs have multiple mechanisms. lncRNAs and metastasis of CRC, lncRNAs and drug resistance of CRC, and the clinical application of lncRNAs in CRC are current research hotspots. Through insight into the development trend of lncRNAs in CRC, this study will help researchers extract hidden valuable information for further research.
Collapse
Affiliation(s)
- Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| | - Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Chen LJ, Chen X, Niu XH, Peng XF. LncRNAs in colorectal cancer: Biomarkers to therapeutic targets. Clin Chim Acta 2023; 543:117305. [PMID: 36966964 DOI: 10.1016/j.cca.2023.117305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in men and women worldwide. As early detection is associated with lower mortality, novel biomarkers are urgently needed for timely diagnosis and appropriate management of patients to achieve the best therapeutic response. Long noncoding RNAs (lncRNAs) have been reported to play essential roles in CRC progression. Accordingly, the regulatory roles of lncRNAs should be better understood in general and for identifying diagnostic, prognostic and predictive biomarkers in CRC specifically. In this review, the latest advances on the potential diagnostic and prognostic lncRNAs as biomarkers in CRC samples were highlighted, Current knowledge on dysregulated lncRNAs and their potential molecular mechanisms were summarized. The potential therapeutic implications and challenges for future and ongoing research in the field were also discussed. Finally, novel insights on the underlying mechanisms of lncRNAs were examined as to their potential role as biomarkers and therapeutic targets in CRC. This review may be used to design future studies and advanced investigations on lncRNAs as biomarkers for the diagnosis, prognosis and therapy in CRC.
Collapse
Affiliation(s)
- Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiang Chen
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Hua Niu
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
14
|
Shi ZL, Zhou GQ, Guo J, Yang XL, Yu C, Shen CL, Zhu XG. Identification of a Prognostic Colorectal Cancer Model Including LncRNA FOXP4-AS1 and LncRNA BBOX1-AS1 Based on Bioinformatics Analysis. Cancer Biother Radiopharm 2022; 37:893-906. [PMID: 33481661 PMCID: PMC9805880 DOI: 10.1089/cbr.2020.4242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Knowledge about the prognostic role of long noncoding RNA (lncRNA) in colorectal cancer (CRC) is limited. Therefore, we constructed a lncRNA-related prognostic model based on data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Materials and Methods: CRC transcriptome and clinical data were downloaded from the GSE20916 dataset and the TCGA database, respectively. R software was used for data processing and analysis. The differential lncRNA expression within the two datasets was first screened, and then intersections were measured. Cox regression and the Kaplan-Meier method were used to evaluate the effects of various factors on prognosis. The area under the curve (AUC) of the receiver operating characteristic curve and a nomogram based on multivariate Cox analysis were used to estimate the prognostic value of the lncRNA-related model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to elucidate the significantly involved biological functions and pathways. Results: A total of 11 lncRNAs were crossed. The univariate Cox analysis screened out two lncRNAs, which were analyzed in the multivariate Cox analysis. A nomogram based on the two lncRNAs and other clinicopathological risk factors was constructed. The AUC of the nomogram was 0.56 at 3 years and 0.71 at 5 years. The 3-year nomogram model was compared with the ideal model, which showed that some indices of the 3-year model were consistent with the ideal model, suggesting that our model was highly accurate. The GO and KEGG enrichment analyses showed that positive regulation of secretion by cells, positive regulation of secretion, positive regulation of exocytosis, endocytosis, and the calcium signaling pathway were differentially enriched in the two-lncRNA-associated phenotype. Conclusions: A two-lncRNA prognostic model of CRC was constructed by bioinformatics analysis. The model had moderate prediction accuracy. LncRNA BBOX1-AS1 and lncRNA FOXP4-AS1 were identified as prognostic biomarkers.
Collapse
Affiliation(s)
- Zhi-Liang Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Guo-Qiang Zhou
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Jian Guo
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Xiao-Ling Yang
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Cheng Yu
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Cheng-Long Shen
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Xin-Guo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Address correspondence to: Xin-Guo Zhu; Department of General Surgery, The First Affiliated Hospital of Soochow University; 188 Shizi Street, Gusu District, Suzhou City, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
15
|
Sattar RSA, Verma R, Nimisha, Kumar A, Dar GM, Apurva, Sharma AK, Kumari I, Ahmad E, Ali A, Mahajan B, Saluja SS. Diagnostic and prognostic biomarkers in colorectal cancer and the potential role of exosomes in drug delivery. Cell Signal 2022; 99:110413. [PMID: 35907519 DOI: 10.1016/j.cellsig.2022.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer with the second most frequent cause of death worldwide. One fourth to one fifth of the CRC cases are detected at advance stage. Early detection of colorectal cancer might help in decreasing mortality and morbidity worldwide. CRC being a heterogeneous disease, new non-invasive approaches are needed to complement and improve the screening and management of CRC. Reliable and early detectable biomarkers would improve diagnosis, prognosis, therapeutic responses, and will enable the prediction of drug response and recurrence risk. Over the past decades molecular research has demonstrated the potentials of CTCs, ctDNAs, circulating mRNAs, ncRNAs, and exosomes as tumor biomarkers. Non-invasive screening approaches using fecal samples for identification of altered gut microbes in CRC is also gaining attention. Exosomes can be potential candidates that can be employed in the drug delivery system. Further, the integration of in vitro, in vivo and in silico models that involve CRC biomarkers will help to understand the interactions occurring at the cellular level. This review summarizes recent update on CRC biomarkers and their application along with the nanoparticles followed by the application of organoid culture in CRC.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Indu Kumari
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
16
|
Luan L, Dai Y, Shen T, Yang C, Chen Z, Liu S, Jia J, Li Z, Fang S, Qiu H, Cheng X, Yang Z. Development of a novel hypoxia-immune–related LncRNA risk signature for predicting the prognosis and immunotherapy response of colorectal cancer. Front Immunol 2022; 13:951455. [PMID: 36189298 PMCID: PMC9516397 DOI: 10.3389/fimmu.2022.951455] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common digestive system tumors worldwide. Hypoxia and immunity are closely related in CRC; however, the role of hypoxia-immune–related lncRNAs in CRC prognosis is unknown. Methods Data used in the current study were sourced from the Gene Expression Omnibus and The Cancer Genome Atlas (TCGA) databases. CRC patients were divided into low- and high-hypoxia groups using the single-sample gene set enrichment analysis (ssGSEA) algorithm and into low- and high-immune groups using the Estimation of STromal and Immune cells in MAlignant Tumours using Expression data (ESTIMATE) algorithm. Differentially expressed lncRNAs (DElncRNAs) between low- and high-hypoxia groups, low- and high-immune groups, and tumor and control samples were identified using the limma package. Hypoxia-immune–related lncRNAs were obtained by intersecting these DElncRNAs. A hypoxia-immune–related lncRNA risk signature was developed using univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses. The tumor microenvironments in the low- and high-risk groups were evaluated using ssGSEA, ESTIMATE, and the expression of immune checkpoints. The therapeutic response in the two groups was assessed using TIDE, IPS, and IC50. A ceRNA network based on signature lncRNAs was constructed. Finally, we used RT-qPCR to verify the expression of hypoxia-immune–related lncRNA signatures in normal and cancer tissues. Results Using differential expression analysis, and univariate Cox and LASSO regression analyses, ZNF667-AS1, LINC01354, LINC00996, DANCR, CECR7, and LINC01116 were selected to construct a hypoxia-immune–related lncRNA signature. The performance of the risk signature in predicting CRC prognosis was validated in internal and external datasets, as evidenced by receiver operating characteristic curves. In addition, we observed significant differences in the tumor microenvironment and immunotherapy response between low- and high-risk groups and constructed a CECR7–miRNA–mRNA regulatory network in CRC. Furthermore, RT-qPCR results confirmed that the expression patterns of the six lncRNA signatures were consistent with those in TCGA-CRC cohort. Conclusion Our study identified six hypoxia-immune–related lncRNAs for predicting CRC survival and sensitivity to immunotherapy. These findings may enrich our understanding of CRC and help improve CRC treatment. However, large-scale long-term follow-up studies are required for verification.
Collapse
Affiliation(s)
- Likun Luan
- Department of Gastric and Intestinal Surgery, The Third Affiliated Hospital of Kunming Medical University/Yunnan Tumor Hospital, Kunming, China
| | - Youguo Dai
- Department of Gastric and Intestinal Surgery, The Third Affiliated Hospital of Kunming Medical University/Yunnan Tumor Hospital, Kunming, China
| | - Tao Shen
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University/Yunnan Tumor Hospital, Kunming, China
| | - Changlong Yang
- Department of Gastric and Intestinal Surgery, The Third Affiliated Hospital of Kunming Medical University/Yunnan Tumor Hospital, Kunming, China
| | - Zhenpu Chen
- Tumor Institute, The Third Affiliated Hospital of Kunming Medical University/Yunnan Tumor Hospital, Kunming, China
| | - Shan Liu
- Departments of Combination of Traditional Chinese and Western Medicine, The Third Affiliated Hospital of Kunming Medical University/Yunnan Tumor Hospital, Kunming, China
| | - Junyi Jia
- Department of Gastric and Intestinal Surgery, The Third Affiliated Hospital of Kunming Medical University/Yunnan Tumor Hospital, Kunming, China
| | - Zhenhui Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Tumor Hospital, Kunming, China
| | - Shaojun Fang
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University/Yunnan Tumor Hospital, Kunming, China
| | - Hengqiong Qiu
- Department of Surgery Teaching Management, The Third Affiliated Hospital of Kunming Medical University/Yunnan Tumor Hospital, Kunming, China
| | - Xianshuo Cheng
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University/Yunnan Tumor Hospital, Kunming, China
- *Correspondence: Xianshuo Cheng, ; Zhibin Yang,
| | - Zhibin Yang
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University/Yunnan Tumor Hospital, Kunming, China
- *Correspondence: Xianshuo Cheng, ; Zhibin Yang,
| |
Collapse
|
17
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Taheri M, Samadian M. A review on the role of DANCR in the carcinogenesis. Cancer Cell Int 2022; 22:194. [PMID: 35590326 PMCID: PMC9118872 DOI: 10.1186/s12935-022-02612-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
DANCR is an RNA gene located on chr4. This gene has several splice variants. Up-regulation of DANCR has been reported in many types of cancers. This lncRNA is mainly located in the cytoplasm and regulates genes expression at post-transcriptional level. In fact, it acts as a molecular sponge for a variety of miRNAs, including miR-874-3P, miR-335, miR-149, miR-4319, miR-758-3p, miR-216a-5p, miR-874-3p, miR-33a-5p, miR-335-5p, miR-145-3p, miR-665, miR-345-5p and miR-125b-5p. DANCR also regulates activity of PI3K/AKT/NF-κB, Wnt/β-catenin, ERK/SMAD, MAPK, IL-6/JAK1/STAT3, Smad2/3, p53, FAK/PI3K/AKT/GSK3β/Snail pathways. In the current narrative review article, we summarize the roles of DANCR in the carcinogenesis, with an especial emphasis on its role in the development of osteosarcoma and lung, liver, pancreatic and colorectal cancers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Potentials of long non-coding RNAs as biomarkers of colorectal cancer. Clin Transl Oncol 2022; 24:1715-1731. [PMID: 35581419 DOI: 10.1007/s12094-022-02834-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor worldwide and the fourth major cause of cancer-related death, with high morbidity and increased mortality year by year. Although significant progress has been made in the therapy strategies for CRC, the great difficulty in early diagnosis, feeble susceptibility to radiotherapy and chemotherapy, and high recurrence rates have reduced therapeutic efficacy resulting in poor prognosis. Therefore, it is urgent to understand the pathogenesis of CRC and unravel novel biomarkers to improve the early diagnosis, treatment and prediction of CRC recurrence. Long non-coding RNAs (lncRNAs) are non-coding RNAs with a length of more than 200 nucleotides, which are abnormally expressed in tumor tissues and cell lines, activating or inhibiting specific genes through multiple mechanisms including transcription and translation. A growing number of studies have shown that lncRNAs are important regulators of microRNAs (miRNAs, miRs) expression in CRC and may be promising biomarkers and potential therapeutic targets in the research field of CRC. This review mainly summarizes the potential application value of lncRNAs as novel biomarkers in CRC diagnosis, radiotherapy, chemotherapy and prognosis. Additionally, the significance of lncRNA SNHGs family and lncRNA-miRNA networks in regulating the occurrence and development of CRC is mentioned, aiming to provide some insights for understanding the pathogenesis of CRC and developing new diagnostic and therapeutic strategies.
Collapse
|
19
|
Colorectal Cancer Diagnosis: The Obstacles We Face in Determining a Non-Invasive Test and Current Advances in Biomarker Detection. Cancers (Basel) 2022; 14:cancers14081889. [PMID: 35454792 PMCID: PMC9029324 DOI: 10.3390/cancers14081889] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is one of the most common cancers in the western world. CRC originates from precursor adenomatous polyps, which may over time develop into cancer. Endoscopic evaluation remains the gold-standard investigation for the disease. In the absence of molecular tools for early detection, the removal of neoplastic adenomas via polypectomy remains an important measure to prevent dysplastic adenomas from evolving into invasive carcinoma. Colonoscopy is an intrusive procedure that provides an uncomfortable experience for patients. Kits for testing for the presence of blood hemoglobin in the stool are now widely used, and DNA methylation-based detection kits have been approved in the USA for testing the stool and plasma, but few other molecular biomarkers have found their way into medical practice. This review summarizes current trends in the detection and screening of CRC and provides a definitive review of emerging molecular biomarkers for CRC. Abstract Globally, colorectal cancer (CRC) is the third most common cancer, with 1.4 million new cases and over 700,000 deaths per annum. Despite being one of the most common cancers, few molecular approaches to detect CRC exist. Carcinoembryonic antigen (CEA) is a known serum biomarker that is used in CRC for monitoring disease recurrence or response to treatment. However, it can also be raised in multiple benign conditions, thus having no value in early detection or screening for CRC. Molecular biomarkers play an ever-increasing role in the diagnosis, prognosis, and outcome prediction of disease, however, only a limited number of biomarkers are available and none are suitable for early detection and screening of CRC. A PCR-based Epi proColon® blood plasma test for the detection of methylated SEPT9 has been approved by the USFDA for CRC screening in the USA, alongside a stool test for methylated DNA from CRC cells. However, these are reserved for patients who decline traditional screening methods. There remains an urgent need for the development of non-invasive molecular biomarkers that are highly specific and sensitive to CRC and that can be used routinely for early detection and screening. A molecular approach to the discovery of CRC biomarkers focuses on the analysis of the transcriptome of cancer cells to identify differentially expressed genes and proteins. A systematic search of the literature yielded over 100 differentially expressed CRC molecular markers, of which the vast majority are overexpressed in CRC. In terms of function, they largely belong to biological pathways involved in cell division, regulation of gene expression, or cell proliferation, to name a few. This review evaluates the current methods used for CRC screening, current availability of biomarkers, and new advances within the field of biomarker detection for screening and early diagnosis of CRC.
Collapse
|
20
|
Raza A, Khan AQ, Inchakalody VP, Mestiri S, Yoosuf ZSKM, Bedhiafi T, El-Ella DMA, Taib N, Hydrose S, Akbar S, Fernandes Q, Al-Zaidan L, Krishnankutty R, Merhi M, Uddin S, Dermime S. Dynamic liquid biopsy components as predictive and prognostic biomarkers in colorectal cancer. J Exp Clin Cancer Res 2022; 41:99. [PMID: 35292091 PMCID: PMC8922757 DOI: 10.1186/s13046-022-02318-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The diagnosis, prognosis and therapeutic monitoring of CRC depends largely on tissue biopsy. However, due to tumor heterogeneity and limitations such as invasiveness, high cost and limited applicability in longitudinal monitoring, liquid biopsy has gathered immense attention in CRC. Liquid biopsy has several advantages over tissue biopsy including ease of sampling, effective monitoring, and longitudinal assessment of treatment dynamics. Furthermore, the importance of liquid biopsy is signified by approval of several liquid biopsy assays by regulatory bodies indicating the powerful approach of liquid biopsy for comprehensive CRC screening, diagnostic and prognostics. Several liquid biopsy biomarkers such as novel components of the microbiome, non-coding RNAs, extracellular vesicles and circulating tumor DNA are extensively being researched for their role in CRC management. Majority of these components have shown promising results on their clinical application in CRC including early detection, observe tumor heterogeneity for treatment and response, prediction of metastases and relapse and detection of minimal residual disease. Therefore, in this review, we aim to provide updated information on various novel liquid biopsy markers such as a) oral microbiota related bacterial network b) gut microbiome-associated serum metabolites c) PIWI-interacting RNAs (piRNAs), microRNA(miRNAs), Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and d) circulating tumor DNAs (ctDNA) and circulating tumor cells (CTC) for their role in disease diagnosis, prognosis, treatment monitoring and their applicability for personalized management of CRC.
Collapse
Affiliation(s)
- Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | | | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
21
|
Integrated Analysis of DNA Repair Genes Identifies SLC6A1 as a New Marker for the Clinical Outcome of Patients with Colorectal Cancer. DISEASE MARKERS 2022; 2022:4952812. [PMID: 35251372 PMCID: PMC8889403 DOI: 10.1155/2022/4952812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022]
Abstract
Colorectal cancer (CRC) remains an important malignancy worldwide with poor prognosis. It has been known that DNA repair genes are involved in the development and progression of various tumors. Therefore, the purpose of this study was to explore DNA repair gene-based prognostic biomarkers for CRC. In this study, the expressing pattern and prognostic values of DNA repair genes in CRC patients were analyzed using TCGA database. GO and KEGG enrichment analyses were conducted to clarify the functional roles of dysregulated genes. We observed 358 differentially expressed DNA repair genes in CRC specimens, including 84 downregulated genes and 275 upregulated genes. 36 survival-related DNA repair genes were correlated with CRC patients' five-year survival, including 6 low-risk genes and 30 high-risk genes. Among the 10 overlapping genes, we focused on SLC6A1 which was highly expressed in CRC, and multivariate analysis confirmed that SLC6A1 expression as well as age and clinical stage could be regarded as an independent predicting factor for CRC prognosis. KEGG assays revealed that SLC6A1 may influence the clinical progression via regulating TGF-beta and PI3K-Akt signaling pathways. In addition, we observed that SLC6A1 was negatively regulated by SLC6A1 methylation, leading to its low expression in CRC specimens. Overall, SLC6A1 is upexpressed in CRC and can be used as a marker of poor prognosis in CRC patients.
Collapse
|
22
|
An F, Yin Y, Ju W. Long noncoding RNA DANCR expression and its predictive value in patients with atherosclerosis. Bioengineered 2022; 13:6919-6928. [PMID: 35235755 PMCID: PMC8974009 DOI: 10.1080/21655979.2022.2033408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) act crucial roles in the progression of vascular diseases, including atherosclerosis. This study aims to investigate the expression levels of the atherosclerosis-associated lncRNA DANCR in patients diagnosed with atherosclerosis and whether its abnormal expression affects the progress of atherosclerosis. The expression of DANCR in the serum samples of all study participants was quantified using RT-qPCR. Then, the predictive capacities of DANCR for the detection of atherosclerosis patients were evaluated via receiver operating characteristic (ROC) curve analysis. The effects of DANCR on vascular smooth muscle cells (VSMCs) proliferation and migration were then explored using cell counting kit-8 (CCK-8) and Transwell migration assays. The DANCR exhibited increased expression trends in patients with atherosclerosis than healthy controls. Moreover, there were differences in the levels of low-density lipoprotein cholesterol (LDL-C), homocysteine (Hcy), and C-reactive protein (CRP) between the healthy controls and atherosclerosis patients. The DANCR expression was positively correlated with serum LDL-C, Hcy, and CRP levels. DANCR expression could distinguish patients with atherosclerosis from healthy individuals with a high area under the ROC curve (AUC), sensitivity, and specificity. Additionally, knockdown of DANCR weakened the proliferative abilities and migration capacities of VSMCs. It was also shown that DANCR could compete with miR-335-5p binding. Herein, it appears that the LncRNA DANCR was closely associated with the progression of atherosclerosis by targeting miR-335-5p, which might be a potential detective predictor and target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Fengxia An
- Department of Health, Dongying People's Hospital, Shandong, China
| | - Yanliang Yin
- Department of Health, Dongying People's Hospital, Shandong, China
| | - Weixian Ju
- Department of Health, Dongying People's Hospital, Shandong, China
| |
Collapse
|
23
|
Jafari N, Nasiran Najafabadi A, Hamzei B, Ataee N, Ghasemi Z, Sadeghian-Rizi T, Honardoost MA, Zamani A, Dolatabadi NF, Tabatabaeian H. ESRG, LINC00518 and PWRN1 are newly-identified deregulated lncRNAs in colorectal cancer. Exp Mol Pathol 2022; 124:104732. [PMID: 34896077 DOI: 10.1016/j.yexmp.2021.104732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 01/05/2023]
Abstract
Colorectal cancer is the 2nd leading cause of death in humans because of cancer. This rank of death could be due to the high rate of incidence from one hand, and the lack of sufficient diagnostic and therapeutic approaches from the other hand. Thus, molecular tools have been emerging as the potential biomarker to improve the early diagnosis and therapeutic management that subsequently could lead to the heightened survival rate of colorectal cancer patients. Long non-coding RNA (lncRNAs) have shown promising capabilities to be used in clinics. The profiling methods could identify novel aberrantly expressed lncRNAs in colorectal cancer. We, thus, performed a comprehensive and unbiased approach to shortlist the dysregulated lncRNAs based on the colon adenocarcinoma TCGA data. An unbiased in silico method was used to rank the yet to profiled lncRNAs in colorectal cancer. qPCR was used to measure the expression level of selected lncRNAs. Our results nominated ESRG, LINC00518, PWRN1, and TTTY14 lncRNAs as the top-hit novel lncRNAs with aberrant expression in colon cancer. The qPCR method was used to profile these lncRNAs that showed the up-regulation of ESRG and LINC00518, and down-regulation of TTTY14 in thirty paired colorectal cancer specimens. The statistical analyses demonstrated that ESRG, LINC00518 and PWRN1 could distinguish the tumor from normal samples. Moreover, ESRG showed a negative correlation with the overall survival of patients. These diagnostic and prognostic results suggest that profiling ESRG, LINC00518 and PWRN1 s may have implications in clinics.
Collapse
Affiliation(s)
- Nasrin Jafari
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Arezo Nasiran Najafabadi
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Behnaz Hamzei
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran
| | - Nioosha Ataee
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Zahra Ghasemi
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Tahereh Sadeghian-Rizi
- Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Mohammad Amin Honardoost
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Atefeh Zamani
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran
| | | | - Hossein Tabatabaeian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Anahid Cancer Clinic, Isfahan Healthcare City, Isfahan, Iran.
| |
Collapse
|
24
|
Wang M, Gu J, Zhang X, Yang J, Zhang X, Fang X. Long Non-coding RNA DANCR in Cancer: Roles, Mechanisms, and Implications. Front Cell Dev Biol 2021; 9:753706. [PMID: 34722539 PMCID: PMC8554091 DOI: 10.3389/fcell.2021.753706] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNA (lncRNA) DANCR (also known as ANCR)—differentiation antagonizing non-protein coding RNA, was first reported in 2012 to suppress differentiation of epithelial cells. Emerging evidence demonstrates that DANCR is a cancer-associated lncRNA abnormally expressed in many cancers (e.g., lung cancer, gastric cancer, breast cancer, hepatocellular carcinoma). Increasing studies suggest that the dysregulation of DANCR plays critical roles in cancer cell proliferation, apoptosis, migration, invasion, and chemoresistance in vitro and tumor growth and metastasis in vivo. Mechanistic analyses show that DANCR can serve as miRNA sponges, stabilize mRNAs, and interact with proteins. Recent research reveals that DANCR can be detected in many body fluids such as serum, plasma, and exosomes, providing a quick and convenient method for cancer monitor. Thus DANCR can be used as a promising diagnostic and prognostic biomarker and therapeutic target for various types of cancer. This review focuses on the role and mechanism of DANCR in cancer progression with an emphasis on the clinical significance of DANCR in human cancers.
Collapse
Affiliation(s)
- Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianping Yang
- Department of Orthopedics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Xiaoxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinjian Fang
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| |
Collapse
|
25
|
Wu SC, Chi SY, Rau CS, Kuo PJ, Huang LH, Wu YC, Wu CJ, Lin HP, Hsieh CH. Identification of circulating biomarkers for differentiating patients with papillary thyroid cancers from benign thyroid tumors. J Endocrinol Invest 2021; 44:2375-2386. [PMID: 33646556 DOI: 10.1007/s40618-021-01543-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/25/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND This study aimed to identify the potential circulating biomarkers of protein, mRNAs, and long non-coding RNAs (lncRNAs) to differentiate the papillary thyroid cancers from benign thyroid tumors. METHODS The study population of 100 patients was classified into identification (10 patients with papillary thyroid cancers and 10 patients with benign thyroid tumors) and validation groups (45 patients with papillary thyroid cancers and 35 patients with benign thyroid tumors). The Sengenics Immunome Protein Array-combined data mining approach using the Open Targets Platform was used to identify the putative protein biomarkers, and their expression validated using the enzyme-linked immunosorbent assay. Next-generation sequencing by Illumina HiSeq was used for the detection of dysregulated mRNAs and lncRNAs. The website Timer v2.0 helped identify the putative mRNA biomarkers, which were significantly over-expressed in papillary thyroid cancers than in adjacent normal thyroid tissue. The mRNA and lncRNA biomarker expression was validated by a real-time polymerase chain reaction. RESULTS Although putative protein and mRNA biomarkers have been identified, their serum expression could not be confirmed in the validation cohorts. In addition, seven lncRNAs (TCONS_00516490, TCONS_00336559, TCONS_00311568, TCONS_00321917, TCONS_00336522, TCONS_00282483, and TCONS_00494326) were identified and validated as significantly downregulated in patients with papillary thyroid cancers compared to those with benign thyroid tumors. These seven lncRNAs showed moderate accuracy based on the area under the curve (AUC = 0.736) of receiver operating characteristic in predicting the occurrence of papillary thyroid cancers. CONCLUSIONS We identified seven downregulated circulating lncRNAs with the potential for predicting the occurrence of papillary thyroid cancers.
Collapse
Affiliation(s)
- S-C Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - S-Y Chi
- Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - C-S Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - P-J Kuo
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No.123, Ta-Pei Road, Niao-Song District, Kaohsiung City 833, Taiwan
| | - L-H Huang
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No.123, Ta-Pei Road, Niao-Song District, Kaohsiung City 833, Taiwan
| | - Y-C Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No.123, Ta-Pei Road, Niao-Song District, Kaohsiung City 833, Taiwan
| | - C-J Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No.123, Ta-Pei Road, Niao-Song District, Kaohsiung City 833, Taiwan
| | - H-P Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No.123, Ta-Pei Road, Niao-Song District, Kaohsiung City 833, Taiwan
| | - C-H Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No.123, Ta-Pei Road, Niao-Song District, Kaohsiung City 833, Taiwan.
| |
Collapse
|
26
|
Ranjan S, Jain S, Bhargava A, Shandilya R, Srivastava RK, Mishra PK. Lateral flow assay-based detection of long non-coding RNAs: A point-of-care platform for cancer diagnosis. J Pharm Biomed Anal 2021; 204:114285. [PMID: 34333453 DOI: 10.1016/j.jpba.2021.114285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Lateral flow assay (LFA) is a flexible, simple, low-costpoint-of-care platform for rapid detection of disease-specific biomarkers. Importantly, the ability of the assay to capture the circulating bio-molecules has gained significant attention, as it offers a potential minimal invasive system for early disease diagnosis and prognosis. In the present article, we review an innovative concept of LFA-based detection of circulating long non-coding RNAs (lncRNAs), one of the key regulators of fundamental biological processes. In addition, their disease-specific expression pattern and presence in biological fluids at differential levels make them excellent biomarker candidates for cancer detection. Our article also provides an update on the requirements for developing and improving such systems and discusses the key aspects of material selection, operational concepts, principles and conceptual design. We assume that the reviewed points will be helpful to improve the diagnostic applicability of LFA based lncRNA detection in cancer diagnosis.
Collapse
Affiliation(s)
- Shashi Ranjan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Surbhi Jain
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
27
|
Dastjerdi S, Valizadeh M, Nemati R, Honardoost MA, Dolatabadi NF, Zamani A, Tabatabaeian H. Highly expressed TLX1NB and NPSR1-AS1 lncRNAs could serve as diagnostic tools in colorectal cancer. Hum Cell 2021; 34:1765-1774. [PMID: 34406628 DOI: 10.1007/s13577-021-00597-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/14/2021] [Indexed: 01/05/2023]
Abstract
Colorectal cancer is the main cause of human death due to cancer. This fact could be due to the insufficiency of early diagnosis or poor therapeutic strategies. Various molecular tools have been utilized in studies to assess their potentials as diagnostic biomarkers or determining factors in precision medicine. Among these molecules, long non-coding RNAs (lncRNA) have been emerging as accurate and potent transcripts to improve the detection of cancer. The overexpressed lncRNAs could also be deeply studied as the molecules for the targeted therapy in different malignancies, in particular colorectal cancer. Thus, we utilized an unbiased approach to select the up-regulated lncRNAs in colon adenocarcinoma via analyzing the TCGA dataset. Then, we validated the overexpression of two first-ranked lncRNAs, i.e., NPSR1-AS1 and TLX1NB, in our in-house colorectal cancer samples as compared to the paired adjacent normal tissues. The analyses revealed that these lncRNAs could significantly distinguish the tumor against the normal samples. The results may have implications in the early diagnosis and targeted therapy of colorectal cancer.
Collapse
Affiliation(s)
- Shaghayegh Dastjerdi
- Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran.,Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Valizadeh
- Unit of Genomics Research, Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rasoul Nemati
- Department of Internal Medicine, School of Medicine and Allied Medical Sciences, Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Amin Honardoost
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Atefeh Zamani
- Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | - Hossein Tabatabaeian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran. .,Anahid Cancer Clinic, Isfahan Healthcare City, Isfahan, Iran.
| |
Collapse
|
28
|
He J, Wu F, Han Z, Hu M, Lin W, Li Y, Cao M. Biomarkers (mRNAs and Non-Coding RNAs) for the Diagnosis and Prognosis of Colorectal Cancer - From the Body Fluid to Tissue Level. Front Oncol 2021; 11:632834. [PMID: 33996548 PMCID: PMC8118670 DOI: 10.3389/fonc.2021.632834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, the diagnosis and treatment of colorectal cancer (CRC) have been continuously improved, but the mortality rate continues to be high, especially in advanced patients. CRC patients usually have no obvious symptoms in the early stage and are already in the advanced stage when they are diagnosed. The 5-year survival rate is only 10%. The blood markers currently used to screen for CRC, such as carcinoembryonic antigen and carbohydrate antigen 19-9, have low sensitivity and specificity, whereas other methods are invasive or too expensive. As a result, recent research has shifted to the development of minimally invasive or noninvasive biomarkers in the form of body fluid biopsies. Non-coding RNA molecules are composed of microRNAs, long non-coding RNAs, small nucleolar RNAs, and circular RNAs, which have important roles in the occurrence and development of diseases and can be utilized for the early diagnosis and prognosis of tumors. In this review, we focus on the latest findings of mRNA-ncRNA as biomarkers for the diagnosis and prognosis of CRC, from fluid to tissue level.
Collapse
Affiliation(s)
- Jinhua He
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Feifeng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zeping Han
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Min Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weida Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuguang Li
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Ghafouri-Fard S, Hussen BM, Gharebaghi A, Eghtedarian R, Taheri M. LncRNA signature in colorectal cancer. Pathol Res Pract 2021; 222:153432. [PMID: 33857856 DOI: 10.1016/j.prp.2021.153432] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is among the most frequent cancers and is associated with high mortality particularly when being diagnosed in advanced stages. Although several environmental and intrinsic risk factors have been identified, the underlying cause of CRC is not clear in the majority of cases. Several studies especially in the recent decade have pointed to the role of epigenetic factors in this kind of cancer. Long non-coding RNAs (lncRNAs) as important contributors in the epigenetic mechanisms are involved in the initiation, progression and metastasis of CRC. Tens of oncogenic lncRNAs and a lower number of tumor suppressor lncRNAs have been recently identified to be dysregulated in CRC cells and tissues. Notably, expressions of a number of these transcripts have been dysregulated in serum samples of CRC patients, providing a non-invasive route for detection of this kind of cancer. The involvement of lncRNAs in the regulation of autophagy has provided them the ability to modulate response of CRC cells to chemotherapeutic modalities. In the current manuscript, we review the studies which evaluated the role of lncRNAs in the pathogenesis and progression of CRC to appraise their application as diagnostic/ prognostic markers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Alireza Gharebaghi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reyhane Eghtedarian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Liao Z, Nie H, Wang Y, Luo J, Zhou J, Ou C. The Emerging Landscape of Long Non-Coding RNAs in Colorectal Cancer Metastasis. Front Oncol 2021; 11:641343. [PMID: 33718238 PMCID: PMC7947863 DOI: 10.3389/fonc.2021.641343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers, with extremely high rates of morbidity and mortality. The main cause of death in CRC is distant metastasis; it affects patient prognosis and survival and is one of the key challenges in the treatment of CRC. Long non-coding RNAs (lncRNAs) are a group of non-coding RNA molecules with more than 200 nucleotides. Abnormal lncRNA expression is closely related to the occurrence and progression of several diseases, including cancer. Recent studies have shown that numerous lncRNAs play pivotal roles in the CRC metastasis, and reversing the expression of these lncRNAs through artificial means can reduce the malignant phenotype of metastatic CRC to some extent. This review summarizes the major mechanisms of lncRNAs in CRC metastasis and proposes lncRNAs as potential therapeutic targets for CRC and molecular markers for early diagnosis.
Collapse
Affiliation(s)
- Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Luo
- Teaching and Research Room of Biochemistry and Molecular Biology, Medical School of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Lu W, Huang Z, Wang J, Liu H. Long non-coding RNA DANCR accelerates colorectal cancer progression via regulating the miR-185-5p/HMGA2 axis. J Biochem 2021; 171:389-398. [PMID: 33481014 DOI: 10.1093/jb/mvab011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial players in tumor progression. Herein, this work was designated to decipher the clinical significance, function and molecular mechanism of an lncRNA, differentiation antagonizing non-coding RNA (DANCR) in colorectal cancer (CRC). Quantitative real-time PCR (qRT-PCR) was adopted to examine DANCR, miR-185-5p and HMGA2 mRNA expressions in CRC tissues and cells. Both gain-of-function and loss-of-function cell models for DANCR were established, and then MTT, wound healing and Transwell, flow cytometry assays were carried out to detect the proliferation, migration, invasion, cell cycle and apoptosis of CRC cells. Dual luciferase reporter gene assay and RIP assay were utilized to validate the targeting relationships between DANCR and miR-185-5p. Western blot was employed for detecting high mobility group A2 (HMGA2) expressions in CRC cells. In this study, we demonstrated that the expression of DANCR was elevated in CRC tissues and cell lines, and its high expression was significantly associated with increased TNM stage and positive lymph node metastasis. DANCR overexpression promoted CRC cell proliferation, migration, invasion and cell cycle progression, but inhibited apoptosis; while knocking down DANCR caused the opposite effects. DANCR was further identified as a molecular sponge for miR-185-5p, and DANCR could indirectly increase the expression of HMGA2 via repressing miR-185-5p. In conclusion, DANCR/miR-185-5p/HMGA2 axis participated in the progression of CRC.
Collapse
Affiliation(s)
- Weiqun Lu
- Department of Gastrointestinal Surgical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Zhiliang Huang
- Department of Gastrointestinal Surgical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Jia Wang
- Department of Gastrointestinal Surgical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Haiying Liu
- Department of Gastrointestinal Surgical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
32
|
Chen B, Zhang RN, Fan X, Wang J, Xu C, An B, Wang Q, Wang J, Leung ELH, Sui X, Wu Q. Clinical diagnostic value of long non-coding RNAs in Colorectal Cancer: A systematic review and meta-analysis. J Cancer 2020; 11:5518-5526. [PMID: 32742499 PMCID: PMC7391206 DOI: 10.7150/jca.46358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Histopathological diagnosis remains the gold standard for the diagnosis of cancer, including colorectal cancer, but it is infeasible when tumor tissue is not available. With the recognition of long non-coding RNAs (lncRNAs), the expression of lncRNAs in serum or tissue samples has been reported as a diagnosis method for some cancers, however, the diagnostic value of lncRNAs for colorectal cancer remains unclear. Methods: A systematic review and meta-analysis were conducted. Eligible studies were identified through a comprehensive literature search in PubMed, PubMed Central, Web of Science, Embase, and Cochrane Library (up to May 05, 2020) according to the selection criteria. Meta-DiSc, Review Manager and STATA were used to analyze the association between lncRNAs expression and the diagnosis of colorectal cancer. Results: Fifteen studies that analyzed the expression of 15 lncRNAs in 1434 CRC patients were included. The summary area under the curve (AUC) of lncRNA for the diagnosis efficacy between patients with and without CRC was estimated to be 0.8629, corresponding to a weighted sensitivity of 0.75 (95% CI: 0.72 - 0.77), specificity of 0.80 (95%CI: 0.78 - 0.82). Subgroup analysis illustrated that the AUC of blood-based detection of lncRNA showed 0.8820, pooled DOR: 18.57, while tissue-based analysis showed 0.8203, pooled DOR: 10.47. Blood-based tests were then divided into two categories, plasma-based and serum-based lncRNA testing. Results revealed that the AUC of serum-based detection was 0.9077, pooled DOR: 26.64, and plasma-based detection was 0.5000, pooled DOR: 11.80. Conclusions: This meta-analysis indicates that the aberrantly expressed lncRNAs might serve as potential diagnostic biomarkers for CRC patients and blood-based lncRNA analysis is of higher diagnostic accuracy than tissue-based testing. Moreover, serum-based lncRNA testing achieved higher diagnostic efficacy than plasma-based analysis.
Collapse
Affiliation(s)
- Bi Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicines, (Macau University of Science and Technology), Taipa, Macau, P. R. China.,Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ruo Nan Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicines, (Macau University of Science and Technology), Taipa, Macau, P. R. China.,Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xingxing Fan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicines, (Macau University of Science and Technology), Taipa, Macau, P. R. China
| | - Jue Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicines, (Macau University of Science and Technology), Taipa, Macau, P. R. China
| | - Cong Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicines, (Macau University of Science and Technology), Taipa, Macau, P. R. China
| | - Bo An
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, P.R. China
| | - Qiao Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, P.R. China
| | - Jing Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, P.R. China
| | - Elaine Lai-Han Leung
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicines, (Macau University of Science and Technology), Taipa, Macau, P. R. China
| | - Xinbing Sui
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qibiao Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicines, (Macau University of Science and Technology), Taipa, Macau, P. R. China
| |
Collapse
|
33
|
Guo F, Zhu X, Zhao Q, Huang Q. miR‑589‑3p sponged by the lncRNA TINCR inhibits the proliferation, migration and invasion and promotes the apoptosis of breast cancer cells by suppressing the Akt pathway via IGF1R. Int J Mol Med 2020; 46:989-1002. [PMID: 32705168 PMCID: PMC7388824 DOI: 10.3892/ijmm.2020.4666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
The long non-coding (lnc)RNA named tissue differentiation inducing non-protein coding RNA (TINCR) is a tumor marker that has not been studied in breast cancer. The present study aimed to investigate the TINCR-targeting micro (mi)RNAs and the regulatory mechanisms of TINCR in breast cancer. Following prediction by TargetScan and confirmation by dual-luciferase reporter assay, TINCR was demonstrated to be a target gene for miR-589-3p. The expression of TINCR and miR-589-3p in breast cancer and adjacent tissues was detected by reverse transcription-quantitative (RT-q)PCR, and the correlation between TINCR and miR-589-3p expression was determined by using Spearman correlation analysis. The 5-years survival was analyzed in patients with breast cancer according to TINCR expression (high or low). The effects of TINCR and miR-589-3p on the proliferation, apoptosis, migratory and invasive abilities of some breast cancer cell lines were detected by MTT assay, flow cytometry, wound healing assay and Transwell assay. The target gene of miR-589-3p was predicted and verified by TargetScan and dual-luciferase reporter assay, and the mechanism of miR-589-3p involvement in breast cancer cells was explored by overexpression or downregulation of miR-589-3p in breast cancer cells. RT-qPCR and western blotting were used to determine the expression of the insulin-like growth factor 1 receptor (IGF1R)/AKT pathway-related genes. The results demonstrated that TINCR expression level was negatively correlated with miR-589-3p expression level in breast cancer tissues and that patients with high expression of TINCR presented with lower survival rates. In addition, TINCR overexpression in cancer cells inhibited miR-589-3p expression, and cell transfection with miR-589-3p mimic partially reversed the effect of TINCR overexpression on the promotion of cancer cell proliferation, migration and invasion, and on the inhibition of cancer cell apoptosis. Furthermore, IGF1R, which is a target gene of miR-589-3p, increased cancer cell proliferation, migration and invasion and inhibited cancer cell apoptosis; however, these effects were partially reversed by miR-589-3p mimic. Furthermore, the results demonstrated that miR-589-3p mimic could downregulate the protein expression of IGF1R and p-AKT. In addition, TINCR overexpression downregulated miR-589-3p expression level. miR-589-3p partially reversed the effects of TINCR overexpression on cancer cell proliferation, migration and invasion, and inhibited cancer cell apoptosis by inhibiting the IGF1R-Akt pathway. The results from the present study demonstrated that TINCR may sponge miR-589-3p in order to inhibit IGF1R-Akt pathway activation in breast cancer cells, promoting therefore cancer cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Fangdong Guo
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xiaoyu Zhu
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Qingquan Zhao
- Department of Breast and Thyroid Surgery, The 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Qirong Huang
- Department of Breast and Thyroid Surgery, Chengdu Dongli Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|