1
|
Flowers E, Stroebel B, Gong X, Lewis KA, Aouizerat BE, Gadgil M, Kanaya AM, Zhang L. Longitudinal associations between microRNAs and weight in the diabetes prevention program. Front Endocrinol (Lausanne) 2024; 15:1419812. [PMID: 39359416 PMCID: PMC11445047 DOI: 10.3389/fendo.2024.1419812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Objective Circulating microRNAs show cross-sectional associations with overweight and obesity. Few studies provided data to differentiate between a snapshot perspective on these associations versus how microRNAs characterize prodromal risk from disease pathology and complications. This study assessed longitudinal relationships between circulating microRNAs and weight at multiple time-points in the Diabetes Prevention Program trial. Research design and methods A subset of participants (n=150) from the Diabetes Prevention Program were included. MicroRNAs were measured from banked plasma using a Fireplex Assay. We used generalized linear mixed models to evaluate relationships between microRNAs and changes in weight at baseline, year-1, and year-2. Logistic regression was used to evaluate whether microRNAs at baseline were associated with weight change after 2 years. Results In fully adjusted models that included relevant covariates, seven miRs (i.e., miR-126, miR-15a, miR-192, miR-23a, and miR-27a) were statistically associated with weight over 2 years. MiR-197 and miR-320a remained significant after adjustment for multiple comparisons. Baseline levels of let-7f, miR-17, and miR-320c were significantly associated with 3% weight loss after 2 years in fully adjusted models. Discussion This study provided evidence for longitudinal relationships between circulating microRNAs and weight. Because microRNAs characterize the combined effects of genetic determinants and responses to behavioral determinants, they may provide insights about the etiology of overweight and obesity in the context or risk for common, complex diseases. Additional studies are needed to validate the potential genes and biological pathways that might be targeted by these microRNA biomarkers and have mechanistic implications for weight loss and disease prevention.
Collapse
Affiliation(s)
- Elena Flowers
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Benjamin Stroebel
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Xingyue Gong
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Kimberly A. Lewis
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Bradley E. Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
- Department of Oral and Maxillofacial Surgery, New York University, New York, NY, United States
| | - Meghana Gadgil
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Alka M. Kanaya
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Li Zhang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Flowers E, Stroebel B, Gong X, Lewis K, Aouizerat BE, Gadgil M, Kanaya AM, Zhang L. Longitudinal Associations Between MicroRNAs and Weight in the Diabetes Prevention Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597590. [PMID: 38895330 PMCID: PMC11185725 DOI: 10.1101/2024.06.05.597590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Circulating microRNAs show cross-sectional associations with overweight and obesity. Few studies provided data to differentiate between a snapshot perspective on these associations versus how microRNAs characterize prodromal risk from disease pathology and complications. This study assessed longitudinal relationships between circulating microRNAs and weight at multiple time-points in the Diabetes Prevention Program trial. RESEARCH DESIGN AND METHODS A subset of participants (n=150) from the Diabetes Prevention Program were included. MicroRNAs were measured from banked plasma using a Fireplex Assay. We used generalized linear mixed models to evaluate relationships between microRNAs and changes in weight at baseline, year-1, and year-2. Logistic regression was used to evaluate whether microRNAs at baseline were associated with weight change after 2 years. RESULTS In fully adjusted models that included relevant covariates, seven miRs (i.e., miR-126, miR-15a, miR-192, miR-23a, and miR-27a) were statistically associated with weight over 2 years. MiR-197 and miR-320a remained significant after adjustment for multiple comparisons. Baseline levels of let-7f, miR-17, and miR-320c were significantly associated with 3% weight loss after 2 years in fully adjusted models. DISCUSSION This study provided evidence for longitudinal relationships between circulating microRNAs and weight. Because microRNAs characterize the combined effects of genetic determinants and responses to behavioral determinants, they may provide insights about the etiology of overweight and obesity in the context or risk for common, complex diseases. Additional studies are needed to validate the potential genes and biological pathways that might be targeted by these microRNA biomarkers and have mechanistic implications for weight loss and disease prevention.
Collapse
|
4
|
Shen Y, Zhang Y, Wang Q, Jiang B, Jiang X, Luo B. MicroRNA-877-5p promotes osteoblast differentiation by targeting EIF4G2 expression. J Orthop Surg Res 2024; 19:134. [PMID: 38342889 PMCID: PMC10860299 DOI: 10.1186/s13018-023-04396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/20/2023] [Indexed: 02/13/2024] Open
Abstract
Stimulating bone formation potentially suggests therapeutics for orthopedic diseases including osteoporosis and osteoarthritis. Osteoblasts are key to bone remodeling because they act as the only bone-forming cells. miR-877-5p has a chondrocyte-improving function in osteoarthritis, but its effect on osteoblast differentiation is unknown. Here, miR-877-5p-mediated osteoblast differentiation was studied. Real-time reverse transcriptase-polymerase chain reaction was performed to measure miR-877-5p expression during the osteogenic differentiation of MC3T3-E1 cells. Osteoblast markers, including alkaline phosphatase (ALP), collagen type I a1 chain, and osteopontin, were measured and detected by alizarin red staining and ALP staining. Potential targets of miR-877-5p were predicted from three different algorithms: starBase ( http://starbase.sysu.edu.cn/ ), PITA ( http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html ), and miRanda ( http://www.microrna.org/microrna/home.do ). It was further verified by dual luciferase reporter gene assay. The experimental results found that miR-877-5p was upregulated during the osteogenic differentiation of MC3T3-E1 cells. Overexpression of miR-877-5p promoted osteogenic differentiation, which was characterized by increased cell mineralization, ALP activity, and osteogenesis-related gene expression. Knockdown of miR-877-5p produced the opposite result. Dual luciferase reporter gene assay showed that miR-877-5p directly targeted eukaryotic translation initiation factor 4γ2 (EIF4G2). Overexpression of EIF4G2 inhibited osteogenic differentiation and reversed the promoting effect of overexpression of miR-135-5p on osteogenic differentiation. These results indicate that miR-877-5p might have a therapeutic application related to its promotion of bone formation through targeting EIF4G2.
Collapse
Affiliation(s)
- YingChao Shen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, ChangShu City, 215500, China
| | - Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu City, 215500, Jiangsu, China
| | - Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, ChangShu City, 215500, China
| | - Bo Jiang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu Province, No. 1055 Sanxiang Road, Suzhou City, 215004, China.
| | - XiaoWei Jiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, ChangShu City, 215500, China.
| | - Bin Luo
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, ChangShu City, 215500, China
| |
Collapse
|
5
|
Jia Z, Wang Y, Gao J, Zheng M, Wang P, Zu G. miR-379-5P INHIBITION ENHANCES INTESTINAL EPITHELIAL PROLIFERATION AND BARRIER FUNCTION RECOVERY AFTER ISCHEMIA/REPERFUSION BY TARGETING EIF4G2. Shock 2023; 60:594-602. [PMID: 37646610 PMCID: PMC10581434 DOI: 10.1097/shk.0000000000002205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
ABSTRACT Gut barrier dysfunction caused by intestinal ischemia/reperfusion (I/R) injury is associated with substantial death and morbidity. In this research, the role of microRNAs (miRNAs) in regulating intestinal I/R injury was investigated. We used miRNA sequencing to analyze clinical ischemic and normal intestinal samples. Through bioinformatics analysis based on sequencing results, we found that upregulated miRNAs inhibited epithelial barrier function and cell proliferation, with miR-379-5p being the most significantly upregulated in the ischemic intestine. Further studies confirmed the role of miR-379-5p through experiments in the human ischemic intestine, the mouse I/R injury model in vivo , and cell hypoxia/reoxygenation models in vitro . Inhibiting miR-379-5p increased epithelial cell proliferation and improved barrier function after I/R injury. We also identified eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) as a downstream target gene of miR-379-5p through bioinformatics prediction and experimental verification. The findings suggest that inhibiting miR-379-5p could improve intestinal epithelial cell proliferation and barrier function by targeting EIF4G2. The goal of this study was to find a potential target for treating I/R injury in the intestine, as well as to prevent and mitigate the damage caused.
Collapse
Affiliation(s)
- Zirui Jia
- Department of Gastrointestinal Surgery, The Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Yuhang Wang
- Department of Gastrointestinal Surgery, The Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Jiacheng Gao
- Department of Gastrointestinal Surgery, The Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Mingcan Zheng
- Department of Gastrointestinal Surgery, The Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Puxu Wang
- Department of Gastrointestinal Surgery, The Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Guo Zu
- Department of Gastrointestinal Surgery, The Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Jian S, Luo D, Wang Y, Xu W, Zhang H, Zhang L, Zhou X. MiR-337-3p confers protective effect on facet joint osteoarthritis by targeting SKP2 to inhibit DUSP1 ubiquitination and inactivate MAPK pathway. Cell Biol Toxicol 2023; 39:1099-1118. [PMID: 34697729 DOI: 10.1007/s10565-021-09665-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To probe the performance of miR-337-3p on the facet joint osteoarthritis (FJOA) and its underlying mechanism. METHODS qRT-PCR and Western blot were utilized to analyze the levels of miR-337-3p and DUSP1 in the synovial tissues from 36 FJOA patients and 10 healthy controls. The human synovial fibroblasts of FJOA were isolated and cultured followed by cell transfection. Then, cells were exposed to 10 ng/mL of IL-1β to induce inflammatory response of synovial fibroblasts. The alternation on cell biological function in cell models was determined. The binding of miR-337-3p and SKP2 was predicted by StarBase, TargetScan, DIANA-microT and miRmap, and further verified by RIP assay and dual-luciferase reporter assay. Co-IP experiment and ubiquitination assay were used to display the binding of SKP2 and DUSP1 as well as the ubiquitination and degradation of DUSP1. After that, the FJOA rat model was established and miR-337-3p mimic or negative control was given to rats by tail vein injection. The pathological changes of synovial tissues, synovitis score, and inflammation level in rats were assessed. RESULTS The low expressions of miR-337-3p and DUSP1 were noticed in the synovial tissues of FJOA patients and in IL-1β-induced synovial fibroblasts, and highly expressed p-p38 MAPK was noticed. Upregulation of miR-337-3p/DUSP1 or downregulation of SKP2 inhibited IL-1β-induced proliferation and inflammatory response of synovial fibroblasts. SKP2 was the target gene of miR-337-3p, and SKP2 induced the ubiquitination and degradation of DUSP1. MiR-337-3p exerted a protective effect on FJOA rats by alleviating damage of rat synovial tissues, promoting cell apoptosis and repressing inflammatory response. CONCLUSION MiR-337-3p plays a protective role in FJOA by negatively targeting SKP2 to suppress DUSP1 ubiquitination and inactivate the p38 MAPK pathway.
Collapse
Affiliation(s)
- Shengsheng Jian
- Department of Orthopedics, the Third Affiliated Hospital (the Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, 518001, People's Republic of China
| | - Dixin Luo
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Yeyang Wang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Wangyang Xu
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Hui Zhang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Li Zhang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Xiaozhong Zhou
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China.
| |
Collapse
|
7
|
Yang T, Li C, Li Y, Cai G, Wang G, He L, He C. MicroRNA-146a-5p alleviates the pathogenesis of osteoarthritis by inhibiting SDF-1/CXCR4-induced chondrocyte autophagy. Int Immunopharmacol 2023; 117:109938. [PMID: 36863142 DOI: 10.1016/j.intimp.2023.109938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND SDF-1/CXCR4 signaling promotes osteoarthritis (OA) development. CXCR4 is a potential target of miR-146a-5p. This study investigated the therapeutic role and the underlying mechanism of miR-146a-5p in OA. METHODS Human primary chondrocytes C28/I2 were stimulated with SDF-1. Cell viability and LDH release were examined. Chondrocyte autophagy was assessed using Western blot analysis, ptfLC3 transfection, and transmission electron microscopy. MiR-146a-5p mimics were transfected into C28/I2 cells to investigate the role of miR-146a-5p in SDF-1/CXCR4-induced autophagy of chondrocytes. An SDF-1-induced rabbit OA model was established to investigate the therapeutic role of miR-146a-5p in OA. Histological staining was performed to observe the morphology of osteochondral tissue. RESULTS SDF-1/CXCR4 signaling promoted autophagy in C28/I2 cells, as demonstrated by increased LC3-II protein expression and autophagic flux induced by SDF-1. SDF-1 treatment significantly inhibited cell proliferation while promoting necrosis and autophagosome formation in C28/I2 cells. In the presence of SDF-1, miR-146a-5p overexpression in C28/I2 cells suppressed CXCR4 mRNA expression, LC3-II and Beclin-1 protein expression, LDH release, and autophagic flux. In addition, SDF-1 increased the autophagy of chondrocytes in rabbits and promoted the development of OA. Compared with the negative control, miR-146a-5p significantly reduced the morphological abnormalities of the rabbit cartilage that were induced by SDF-1, as well as the number of LC3-II-positive cells, protein expression of LC3-II and Beclin 1, and mRNA expression of CXCR4 in osteochondral tissue. These effects were reversed by the autophagy agonist rapamycin. CONCLUSIONS SDF-1/CXCR4 promotes OA development by enhancing chondrocyte autophagy. MicroRNA-146a-5p may alleviate OA by suppressing CXCR4 mRNA expression and SDF-1/CXCR4-induced chondrocyte autophagy.
Collapse
Affiliation(s)
- Tengyun Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Canzhang Li
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China.
| | - Guofeng Cai
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Guoliang Wang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lu He
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Chuan He
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| |
Collapse
|
8
|
Ragni E, Perucca Orfei C, De Luca P, Libonati F, de Girolamo L. Tissue-Protective and Anti-Inflammatory Landmark of PRP-Treated Mesenchymal Stromal Cells Secretome for Osteoarthritis. Int J Mol Sci 2022; 23:ijms232415908. [PMID: 36555578 PMCID: PMC9788137 DOI: 10.3390/ijms232415908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Bone-marrow-mesenchymal-stromal-cells (BMSCs)- and platelet-rich-plasma (PRP)-based therapies have shown potential for treating osteoarthritis (OA). Recently, the combination of these two approaches was proposed, with results that overcame those observed with the separate treatments, indicating a possible role of PRP in ameliorating BMSCs' regenerative properties. Since a molecular fingerprint of BMSCs cultivated in the presence of PRP is missing, the aim of this study was to characterize the secretome in terms of soluble factors and extracellular-vesicle (EV)-embedded miRNAs from the perspective of tissues, pathways, and molecules which frame OA pathology. One hundred and five soluble factors and one hundred eighty-four EV-miRNAs were identified in the PRP-treated BMSCs' secretome, respectively. Several soluble factors were related to the migration of OA-related immune cells, suggesting the capacity of BMSCs to attract lympho-, mono-, and granulocytes and modulate their inflammatory status. Accordingly, several EV-miRNAs had an immunomodulating role at both the single-factor and cell level, together with the ability to target OA-characterizing extracellular-matrix-degrading enzymes and cartilage destruction pathways. Overall, anti-inflammatory and protective signals far exceeded inflammation and destruction cues for cartilage, macrophages, and T cells. This study demonstrates that BMSCs cultivated in the presence of PRP release therapeutic molecules and give molecular ground for the use of this combined and innovative therapy for OA treatment.
Collapse
|
9
|
Iulian Stanciugelu S, Homorogan C, Selaru C, Patrascu JM, Patrascu JM, Stoica R, Nitusca D, Marian C. Osteoarthritis and microRNAs: Do They Provide Novel Insights into the Pathophysiology of This Degenerative Disorder? Life (Basel) 2022; 12:1914. [PMID: 36431049 PMCID: PMC9692287 DOI: 10.3390/life12111914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent degenerative joint diseases in older adults and a leading cause of disability. Recent research studies have evidenced the importance of mi-croRNAs (miRs) in the pathogenesis of OA. In the present review, we focused on current literature findings on dysregulated miRs involved in the pathophysiology of OA. From the 35 case-control studies including OA patients compared to healthy controls, a total of 54 human miRs were identified to be dysregulated in OA. In total, 41 miRs were involved in the pathophysiological processes of OA, including apoptosis, inflammation, and proliferation, having either a protective or a progressive role in OA. The discovery of altered miR levels in OA patients compared to healthy controls determines a better understanding of the molecular mechanisms involved in the pathophysiology of OA and could open novel horizons in the field of orthopedics.
Collapse
Affiliation(s)
- Stefan Iulian Stanciugelu
- Doctoral School, Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
| | - Claudia Homorogan
- Doctoral School, Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Cosmin Selaru
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
| | - Jenel Marian Patrascu
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
- Department of Orthopedics and Trauma, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Jenel Marian Patrascu
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
- Department of Orthopedics and Trauma, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Raymond Stoica
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
| | - Diana Nitusca
- Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
- Center for Complex Networks Science, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
- Center for Complex Networks Science, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| |
Collapse
|
10
|
Milchram L, Fischer A, Huber J, Soldo R, Sieghart D, Vierlinger K, Blüml S, Steiner G, Weinhäusel A. Functional Analysis of Autoantibody Signatures in Rheumatoid Arthritis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041452. [PMID: 35209238 PMCID: PMC8876797 DOI: 10.3390/molecules27041452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022]
Abstract
For the identification of antigenic protein biomarkers for rheumatoid arthritis (RA), we conducted IgG profiling on high density protein microarrays. Plasma IgG of 96 human samples (healthy controls, osteoarthritis, seropositive and seronegative RA, n = 24 each) and time-series plasma of a pristane-induced arthritis (PIA) rat model (n = 24 total) were probed on AIT’s 16k protein microarray. To investigate the analogy of underlying disease pathways, differential reactivity analysis was conducted. A total of n = 602 differentially reactive antigens (DIRAGs) at a significance cutoff of p < 0.05 were identified between seropositive and seronegative RA for the human samples. Correlation with the clinical disease activity index revealed an inverse correlation of antibodies against self-proteins found in pathways relevant for antigen presentation and immune regulation. The PIA model showed n = 1291 significant DIRAGs within acute disease. Significant DIRAGs for (I) seropositive, (II) seronegative and (III) PIA were subjected to the Reactome pathway browser which also revealed pathways relevant for antigen presentation and immune regulation; of these, seven overlapping pathways had high significance. We therefore conclude that the PIA model reflects the biological similarities of the disease pathogenesis. Our data show that protein array analysis can elucidate biological differences and pathways relevant in disease as well be a useful additional layer of omics information.
Collapse
Affiliation(s)
- Lisa Milchram
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (L.M.); (J.H.); (R.S.); (K.V.)
| | - Anita Fischer
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (A.F.); (D.S.); (S.B.); (G.S.)
| | - Jasmin Huber
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (L.M.); (J.H.); (R.S.); (K.V.)
| | - Regina Soldo
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (L.M.); (J.H.); (R.S.); (K.V.)
| | - Daniela Sieghart
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (A.F.); (D.S.); (S.B.); (G.S.)
| | - Klemens Vierlinger
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (L.M.); (J.H.); (R.S.); (K.V.)
| | - Stephan Blüml
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (A.F.); (D.S.); (S.B.); (G.S.)
| | - Günter Steiner
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (A.F.); (D.S.); (S.B.); (G.S.)
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Andreas Weinhäusel
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (L.M.); (J.H.); (R.S.); (K.V.)
- Correspondence:
| |
Collapse
|
11
|
Chen K, Xi M, Huang Q, Wu H, Lu G, Song S, Shi W. Long non-coding RNA MCM3AP antisense RNA 1 silencing upregulates microRNA-24-3p to accelerate proliferation and migration of vascular endothelial cells in myocardial infarction rats by reducing EIF4G2. Cell Cycle 2022; 21:674-684. [PMID: 35113004 PMCID: PMC8973343 DOI: 10.1080/15384101.2021.1988378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial drivers in the progression of human diseases such as myocardial infarction (MI). However, the impact of lncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) on MI remains unknown. This research was determined to explore the effect of MCM3AP-AS1 modulating microRNA-24-3p (miR-24-3p) and eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) on MI. The rat MI models were constructed and, respectively, treated with altered MCM3AP-AS1, miR-24-3p or/and EIF4G2. Subsequently, the cardiac function, myocardial pathological injury, malondialdehyde content and superoxide dismutase activity were determined. The vascular endothelial cells (VECs) were isolated and treated severally, and then proliferation and migration of VECs were measured. MCM3AP-AS1, miR-24-3p, EIF4G2 and vascular endothelial growth factor (VEGF) expressions in myocardial tissues and VECs were assessed. MCM3AP-AS1 and EIF4G2 were upregulated while miR-24-3p and VEGF were downregulated in MI rat myocardial tissues. MCM3AP-AS1 silencing or miR-24-3p elevation improved cardiac function and myocardial pathological injury, suppressed malondialdehyde content, and also enhanced VEGF expression and superoxide dismutase activity in MI rats. In VECs, downregulated MCM3AP-AS1 or upregulated miR-24-3p accelerated cell proliferation and migration. These effects of miR-24-3p upregulation were reversed by overexpressed EIF4G2. Our study summarizes that reduced MCM3AP-AS1 elevates miR-24-3p to promote proliferation and migration of MI rat VECs by inhibiting EIF4G2.
Collapse
Affiliation(s)
- Ke Chen
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, HangZhou, China
| | - Min Xi
- General Ward of Internal Medicine I,Hangzhou Dingqiao Hospital, HangZhou, China
| | - Qihong Huang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, HangZhou, China
| | - Hao Wu
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, HangZhou, China
| | - Guirong Lu
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, HangZhou, China
| | - Shaohui Song
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, HangZhou, China
| | - Wei Shi
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, HangZhou, China
| |
Collapse
|
12
|
Tang Z, Gong Z, Sun X. Long non-coding RNA musculin antisense RNA 1 promotes proliferation and suppresses apoptosis in osteoarthritic chondrocytes via the microRNA-369-3p/Janus kinase-2/ signal transducers and activators of transcription 3 axis. Bioengineered 2021; 13:1554-1564. [PMID: 34898365 PMCID: PMC8805978 DOI: 10.1080/21655979.2021.2013028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that long non-coding RNAs (lncRNAs) play critical roles in osteoarthritis (OA). The present study aimed to investigate the underlying molecular mechanism of lncRNA musculin antisense RNA 1 (MSC-AS1) in OA. RT-qPCR was used to detect MSC-AS1 levels in cartilage tissues from patients with OA. The effects of MSC-AS1 knockdown on the viability and apoptosis in OA were evaluated via CCK-8 and TUNEL assays. The StarBase database was used to predict the binding sites between microRNA (miR)-369-3p and MSC-AS1 or JAK2, which were confirmed via the dual-luciferase reporter assay. The results demonstrated that MSC-AS1 expression was downregulated in OA. Functional analysis indicated that the addition of MSC-AS1 promoted viability and inhibited inflammation and the apoptosis of chondrocytes. In addition, MSC-AS1 regulated the survival of OA chondrocytes by sponging miR-369-3p. JAK2 was confirmed as a direct target of miR-369-3p, and MSC-AS1 regulated JAK2/STAT3 signaling via miR-369-3p in OA chondrocytes. Taken together, our results suggest that MSC-AS1 may regulate the miR-369-3p/JAK2/STAT3 signaling pathway to accelerate the viability, and inhibit inflammation and cell apoptosis in OA chondrocytes.
Collapse
Affiliation(s)
- Zhenyu Tang
- Department of Orthopectics, the First People's Hospital of Changzhou, Changzhou, P.R. China
| | - Zongming Gong
- Department of Orthopectics, the First People's Hospital of Changzhou, Changzhou, P.R. China
| | - Xiaoliang Sun
- Department of Orthopectics, the First People's Hospital of Changzhou, Changzhou, P.R. China
| |
Collapse
|
13
|
Wang Z, Ding X, Cao F, Zhang X, Wu J. Bone Mesenchymal Stem Cells Promote Extracellular Matrix Remodeling of Degenerated Nucleus Pulposus Cells via the miR-101-3p/EIF4G2 Axis. Front Bioeng Biotechnol 2021; 9:642502. [PMID: 34513803 PMCID: PMC8429483 DOI: 10.3389/fbioe.2021.642502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
The etiology of lumbocrural pain is tightly concerned with intervertebral disk degeneration (IDD). Bone mesenchymal stem cell (BMSC)-based therapy bears potentials for IDD treatment. The properties of microRNA (miRNA)-modified BMSCs may be altered. This study investigated the role and mechanism of BMSCs promoting extracellular matrix (ECM) remodeling of degenerated nucleus pulposus cells (NPCs) via the miR-101-3p/EIF4G2 axis. NPCs were collected from patients with IDD and lumbar vertebral fracture (LVF). The expressions of miR-101-3p and ECM-related proteins, Collagen-I (Col-I) and Collagen-II (Col-II), were detected using the reverse transcription-quantitative polymerase chain reaction. The expressions of Col-I and Col-II, major non-collagenous component Aggrecan, and major catabolic factor Matrix metalloproteinase-13 (MMP-13) were detected using Western blotting. BMSCs were cocultured with degenerated NPCs from patients with IDD. Viability and apoptosis of NPCs were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. After the degenerated NPCs were transfected with the miR-101-3p inhibitor, the expressions of ECM-related proteins, cell viability, and apoptosis were detected. The targeting relationship between miR-101-3p and EIF4G2 was verified. Functional rescue experiments verified the effects of miR-101-3p and EIF4G2 on ECM remodeling of NPCs. Compared with the NPCs of patients with LVF, the degenerated NPCs of patients with IDD showed downregulated miR-101-3p, Col-II, and Aggrecan expressions and upregulated MMP-13 and Col-I expressions. BMSCs increased the expressions of miR-101-3p, Aggrecan, and Col-II, and decreased the expressions of MMP-13 and Col-I in degenerated NPCs. BMSCs enhanced NPC viability and repressed apoptosis. Downregulation of miR-101-3p suppressed the promoting effect of BMSCs on ECM remodeling. miR-101-3p targeted EIF4G2. Downregulation of EIF4G2 reversed the inhibiting effect of the miR-101-3p inhibitor on ECM remodeling. In conclusion, BMSCs increased the miR-101-3p expression in degenerated NPCs to target EIF4G2, thus promoting the ECM remodeling of NPCs.
Collapse
Affiliation(s)
- Zeng Wang
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Xiaolin Ding
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Feifei Cao
- Department of Out-Patient, Tai'an Central Hospital Branch, Tai'an, China
| | - Xishan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Jingguo Wu
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
14
|
Lu J, Wu Z, Xiong Y. Knockdown of long noncoding RNA HOTAIR inhibits osteoarthritis chondrocyte injury by miR-107/CXCL12 axis. J Orthop Surg Res 2021; 16:410. [PMID: 34183035 PMCID: PMC8237457 DOI: 10.1186/s13018-021-02547-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/08/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a joint disease characterized via destruction of cartilage. Chondrocyte damage is associated with cartilage destruction during OA. Long noncoding RNAs (lncRNAs) are implicated in the regulation of chondrocyte damage in OA progression. This study aims to investigate the role and underlying mechanism of lncRNA homeobox antisense intergenic RNA (HOTAIR) in OA chondrocyte injury. METHODS Twenty-three OA patients and healthy controls without OA were recruited. Chondrocytes were isolated from OA cartilage tissues. HOTAIR, microRNA-107 (miR-107) and C-X-C motif chemokine ligand 12 (CXCL12) levels were measured by quantitative real-time polymerase chain reaction and western blot. Cell proliferation, apoptosis and extracellular matrix (ECM) degradation were measured using cell counting kit-8, flow cytometry and western blot. The target interaction was explored by bioinformatics, luciferase reporter and RNA immunoprecipitation assays. RESULTS HOTAIR expression was enhanced, and miR-107 level was reduced in OA cartilage samples. HOTAIR overexpression inhibited cell proliferation, but induced cell apoptosis and ECM degradation in chondrocytes. HOTAIR knockdown caused an opposite effect. MiR-107 was sponged and inhibited via HOTAIR, and knockdown of miR-107 mitigated the effect of HOTAIR silence on chondrocyte injury. CXCL12 was targeted by miR-107. CXCL12 overexpression attenuated the roles of miR-107 overexpression or HOTAIR knockdown in the proliferation, apoptosis and ECM degradation. CXCL12 expression was decreased by HOTAIR silence, and restored by knockdown of miR-107. CONCLUSION HOTAIR knockdown promoted chondrocyte proliferation, but inhibited cell apoptosis and ECM degradation in OA chondrocytes by regulating the miR-107/CXCL12 axis.
Collapse
Affiliation(s)
- Jipeng Lu
- Department of Orthopedics, Yan'an Hospital Affiliated to Kunming Medical University, No. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China
| | - Zhongxiong Wu
- Department of Orthopedics, Yan'an Hospital Affiliated to Kunming Medical University, No. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China.
| | - Ying Xiong
- Department of Orthopedics, Yan'an Hospital Affiliated to Kunming Medical University, No. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China
| |
Collapse
|