1
|
Khan K, Anwar M, Badshah Y, Ashraf NM, Hamid A, Trembley JH, Shabbir M, Afsar T, Husain FM, Khan D, Razak S. Zapotin mitigates breast cancer progression by targeting PKCε mediated glycolytic pathway regulation. BMC Cancer 2025; 25:798. [PMID: 40296014 PMCID: PMC12039207 DOI: 10.1186/s12885-025-14202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The breast cancer recurrence and chemoresistance has increased over the years. A novel PKC, PKCε, may promote chemoresistance by causing hypoxia and cancer metabolic rewiring. A natural flavonoid, Zapotin, in colon cancer cells may modulate PKCε expression. Therefore, this study aimed to explore Zapotin impact on PKCε expression and the metabolic profile of breast cancer cells. METHODS Pharmacophore analysis of Zapotin was performed and molecular dynamics (MD) simulations were employed to study PKCε and Zapotin interaction stability. The effect of Zapotin treatment on PKCε expression and various aspects of cancer cell viability and metabolism was studied in MCF-7 and MDA-MB-231 breast cancer cell lines using real-time PCR, growth and death assays, and Gas Chromatography-Mass Spectrometry. RESULTS In silico analyses revealed good solubility and absorption of Zapotin with lower toxicity. Zapotin showed cancer cell-specific cytotoxicity (P < 0.0001). It's treatment also reduced breast cancer cell viability, colony formation, and migratory potential by targeting PKCε and associated HIF-1ɑ and VEGF signaling (P < 0.01). Zapotin also impacted PKCε-mediated metabolic signaling by targeting glycolytic pathways. CONCLUSION This study demonstrated the role of PKCε mediated HIF-1ɑ, VEGF, and glycolytic pathways in promoting breast carcinogenicity and demonstrated Zapotin as a potential treatment option for different types of breast tumors.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Maryam Anwar
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Yasmin Badshah
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan.
| | - Arslan Hamid
- LIMES Institute (AG-Netea), University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Janeen H Trembley
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
| | - Maria Shabbir
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dilawar Khan
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Gu Y, Yang R, Zhang Y, Guo M, Takehiro K, Zhan M, Yang L, Wang H. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. MOLECULAR BIOMEDICINE 2025; 6:2. [PMID: 39757310 PMCID: PMC11700966 DOI: 10.1186/s43556-024-00239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer remains a leading cause of mortality globally and a major health burden, with chemotherapy often serving as the primary therapeutic option for patients with advanced-stage disease, partially compensating for the limitations of non-curative treatments. However, the emergence of chemotherapy resistance significantly limits its efficacy, posing a major clinical challenge. Moreover, heterogeneity of resistance mechanisms across cancer types complicates the development of universally effective diagnostic and therapeutic approaches. Understanding the molecular mechanisms of chemoresistance and identifying strategies to overcome it are current research focal points. This review provides a comprehensive analysis of the key molecular mechanisms underlying chemotherapy resistance, including drug efflux, enhanced DNA damage repair (DDR), apoptosis evasion, epigenetic modifications, altered intracellular drug metabolism, and the role of cancer stem cells (CSCs). We also examine specific causes of resistance in major cancer types and highlight various molecular targets involved in resistance. Finally, we discuss current strategies aiming at overcoming chemotherapy resistance, such as combination therapies, targeted treatments, and novel drug delivery systems, while proposing future directions for research in this evolving field. By addressing these molecular barriers, this review lays a foundation for the development of more effective cancer therapies aimed at mitigating chemotherapy resistance.
Collapse
Affiliation(s)
- Yixiang Gu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ruifeng Yang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Miaomiao Guo
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | | | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
3
|
Osiriphan M, Insukhin C, Anuchapreeda S, Khamphikham P, Duangmano S. MicroRNA‑223 overexpression suppresses protein kinase C ε expression in human leukemia stem cell‑like KG‑1a cells. Mol Clin Oncol 2024; 21:48. [PMID: 38881704 PMCID: PMC11176719 DOI: 10.3892/mco.2024.2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/01/2024] [Indexed: 06/18/2024] Open
Abstract
MicroRNA-223 (miR-223) is dysregulated in various cancer types, including acute myeloid leukemia (AML). Despite this, there has been a lack of studies exploring the role of miR-223 in leukemic stem cells, particularly those involved in drug resistance, a major cause of chemotherapy failure in AML. The present study aimed to elucidate the impact of miR-223 on drug resistance in the leukemic stem-cell line, KG-1a. Two AML cell lines, KG-1 and KG-1a, differing in the proportion of CD34+CD38- cells, were assessed for doxorubicin (DOX) sensitivity using the Cell Counting Kit-8 assay. The expression levels of miR-223 and protein kinase C ε (PKCε) were evaluated via reverse transcription-quantitative PCR and western blot analysis. The association between miR-223 and its target, PKCε, was confirmed by luciferase activity assay. The effects of miR-223 overexpression and PKCε inhibition were also evaluated in KG-1a cells using miR-223 mimic and small interfering (si)RNA transfection, respectively. Daunorubicin was then used to assess drug sensitivity in the siRNA-transfected KG-1a cells. Compared with KG-1 cells, KG-1a cells displayed greater resistance to DOX, and had increased PKCε levels and decreased miR-223 expression. Overexpression of miR-223 led to PKCε protein downregulation in KG-1a cells, which was further confirmed by a luciferase assay demonstrating miR-223 targeting of PKCε. However, despite these effects, miR-223 overexpression and PKCε inhibition did not change drug sensitivity in KG-1a cells compared with negative control cells. In summary, the present study demonstrated that miR-223 could target and silence PKCε expression in KG-1a cells; however, the chemoresistance of KG-1a cells to anthracycline drugs may not be directly associated with the low expression of miR-223.
Collapse
Affiliation(s)
- Mallika Osiriphan
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Master's Degree Program in Medical Technology (under the Chiang Mai University Presidential Scholarship), Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| | - Charapat Insukhin
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| | - Songyot Anuchapreeda
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| | - Pinyaphat Khamphikham
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| | - Suwit Duangmano
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Mon AM, Intuyod K, Klungsaeng S, Jusakul A, Pongking T, Lert-Itthiporn W, Luvira V, Pairojkul C, Plengsuriyakarn T, Na-Bangchang K, Pinlaor S, Pinlaor P. Overexpression of microRNA-205-5p promotes cholangiocarcinoma growth by reducing expression of homeodomain-interacting protein kinase 3. Sci Rep 2023; 13:22444. [PMID: 38105269 PMCID: PMC10725890 DOI: 10.1038/s41598-023-49694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
The microRNA miR-205-5p has diverse effects in different malignancies, including cholangiocarcinoma (CCA), but its effects on CCA progression is unclear. Here we investigated the role and function of miR-205-5p in CCA. Three CCA cell lines and human serum samples were found to have much higher expression levels of miR-205-5p than seen in typical cholangiocyte cell lines and healthy controls. Inhibition of miR-205-5p suppressed CCA cell motility, invasion and proliferation of KKU-213B whereby overexpression of miR-205-5p promoted cell proliferation and motility of KKU-100 cells. Bioinformatics tools (miRDB, TargetScan, miRWalk, and GEPIA) all predicted various miR-205-5p targets. Experiments using miR-205-5p inhibitor and mimic indicated that homeodomain-interacting protein kinase 3 (HIPK3) was a potential direct target of miR-205-5p. Overexpression of HIPK3 using HIPK3 plasmid cloning DNA suppressed migration and proliferation of KKU-100 cells. Notably, HIPK3 expression was lower in human CCA tissues than in normal adjacent tissues. High HIPK3 expression was significantly associated with longer survival time of CCA patients. Multivariate regression analysis indicated tissue HIPK3 levels as an independent prognostic factor for CCA patients. These findings indicate that overexpression of miR-205-5p promotes CCA cells proliferation and migration partly via HIPK3-dependent way. Therefore, targeting miR-205-5p may be a potential treatment approach for CCA.
Collapse
Affiliation(s)
- Aye Myat Mon
- Medical Technology Program, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirinapha Klungsaeng
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apinya Jusakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thatsanapong Pongking
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Vor Luvira
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Program in Bioclinical Sciences, Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, 12120, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, 12120, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
5
|
Sun Y, Li X, Cheng H, Wang S, Zhou D, Ding J, Ma F. Drug resistance and new therapies in gallbladder cancer. Drug Discov Ther 2023; 17:220-229. [PMID: 37587052 DOI: 10.5582/ddt.2023.01013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Gallbladder cancer (GBC) is a highly aggressive malignancy, which poses significant challenges for timely diagnosis, resulting in a dismal prognosis. Chemotherapy serves as a primary treatment option in cases where surgery is not feasible. However, the emergence of chemoresistance poses a significant challenge to the effectiveness of chemotherapy, ultimately resulting in a poor prognosis. Despite extensive research on mechanisms of chemotherapeutic resistance in oncology, the underlying mechanisms of chemoresistance in GBC remain poorly understood. In this review, we present the findings from the last decade on the molecular mechanisms of chemotherapeutic resistance in GBC. We hope that these insights may provide novel therapeutic and experimental targets for further investigations into this lethal disease.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxuan Li
- Qingdao University, Qingdao, Shandong, China
| | - Haihong Cheng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shouhua Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhou
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ding
- Department of Biliary and Pancreatic Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Ma
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
6
|
Liu C, Li Y. Hsa_circ_0000078 Regulates miR-205-5p/EREG Pathway to Inhibit Cervical Cancer Progression. Mol Biotechnol 2023; 65:1453-1464. [PMID: 36645579 DOI: 10.1007/s12033-023-00658-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
It is well established that circular RNAs (circRNAs) play a role in tumor initiation and tumorigenesis. The goal of this study was to reveal the detailed functions and regulatory mechanisms of circ_0000078 in cervical cancer (CC). Circ_0000078, miR-205-5p, and epiregulin (EREG) mRNA expression levels were examined using RT-qPCR. Western blotting was performed to quantify EREG protein. Cell proliferation, apoptosis, migration, and invasion were examined by performing CCK-8, caspase 3 activity, wound healing, and transwell assays, respectively. The effect of circ_0000078 on tumor growth in vivo was confirmed in a xenograft model. The putative relationship between miR-205-5p and circ_0000078 or EREG, as predicted by bioinformatics analysis, was evaluated by dual-luciferase and RNA immunoprecipitation assays. Aberrant downregulation of circ_0000078 and EREG as well as upregulation of miR-205-5p were observed in cervical tumor samples and cancer cells. Ectopic expression of circ _0000078 not only restrained cancer cell growth, survival, migration, and invasiveness, but also decelerated tumor formation and development in a mouse model. miR-205-5p, acts as a target of circ_0000078 and directly binds to EREG to repress its expression. Overexpression of miR-205-5p reversed the inhibitory effects of circ_0000078 upregulation on cancer cell behavior and also partially abolished the anti-cancer effects of EREG upregulation in vitro. Circ_0000078 inhibits the growth of cancer by interfering with the miR-205-5p/EREG network, acting as a tumor suppressor in CC. These results provide a better understanding of the pathogenesis of this disease.
Collapse
Affiliation(s)
- Can Liu
- Department of Oncology, Wuhan Fourth Hospital, Wuhan, 430033, Hubei, China
| | - Yuan Li
- Department of Obstetrics and Gynecology, Wuhan Fourth Hospital, No. 473, Hanzheng Street, Qiaokou District, Wuhan, 430033, Hubei, China.
| |
Collapse
|
7
|
Shahin RK, Elkady MA, Abulsoud AI, Abdelmaksoud NM, Abdel Mageed SS, El-Dakroury WA, Zewail MB, Elazazy M, Sobhy MH, Nomier Y, Elazazy O, Elballal MS, Mohammed OA, Midan HM, Elrebehy MA, Ziada BO, Doghish AS. miRNAs orchestration of gallbladder cancer - Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248:154684. [PMID: 37454489 DOI: 10.1016/j.prp.2023.154684] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Gallbladder cancer (GBC) is characterized by a highly invasive nature and a poor prognosis, with adenocarcinoma being the main histological subtype. According to statistical data, patients diagnosed with advanced GBC have a survival rate of less than 5% for 5 years. Despite the novel therapeutic techniques, the unsatisfactory results could be related to the underlying biology of tumor cells and resistance to chemotherapy. Early diagnosis is more important than clinical therapy as it assists in determining the pathological stage of cancer and facilitates the selection of appropriate medication. Hence, it is very important to understand the precise pathogenesis of GBC and to discover potential novel biomarkers for early diagnosis of GBC. Non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have been found to influence the transcriptional regulation of target genes associated with cancer, either directly or indirectly. microRNAs are a group of small, non-coding, single-stranded RNAs that are expressed endogenously. miRNAs play significant roles in various fundamental cellular processes. Therefore, miRNAs have the potential to serve as valuable biomarkers and therapeutic targets for GBC.
Collapse
Affiliation(s)
- Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud Elazazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed H Sobhy
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, Giza, Egypt
| | - Yousra Nomier
- Pharmacology Department, Pharmacy College, Jazan University, Saudi Arabia
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Bassant O Ziada
- Research Department, Utopia Pharmaceuticals, Nasr City, 11765 Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
8
|
Lai J, Yang S, Lin Z, Huang W, Li X, Li R, Tan J, Wang W. Update on Chemoresistance Mechanisms to First-Line Chemotherapy for Gallbladder Cancer and Potential Reversal Strategies. Am J Clin Oncol 2023; 46:131-141. [PMID: 36867653 PMCID: PMC10030176 DOI: 10.1097/coc.0000000000000989] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
OBJECTIVE Gallbladder cancer (GBC) mortality remains high and chemoresistance is increasing. This review consolidates what is known about the mechanisms of chemoresistance to inform and accelerate the development of novel GBC-specific chemotherapies. METHODS Studies related to GBC-related chemoresistance were systematically screened in PubMed using the advanced search function. Search terms included GBC, chemotherapy, and signaling pathway. RESULTS Analysis of existing studies showed that GBC has poor sensitivity to cisplatin, gemcitabine (GEM), and 5-fluorouracil. DNA damage repair-related proteins, including CHK1, V-SCR, and H2AX, are involved in tumor adaptation to drugs. GBC-specific chemoresistance is often accompanied by changes in the apoptosis and autophagy-related molecules, BCL-2, CRT, and GBCDRlnc1. CD44 + and CD133 + GBC cells are less resistant to GEM, indicating that tumor stem cells are also involved in chemoresistance. In addition, glucose metabolism, fat synthesis, and glutathione metabolism can influence the development of drug resistance. Finally, chemosensitizers such as lovastatin, tamoxifen, chloroquine, and verapamil are able improve the therapeutic effect of cisplatin or GEM in GBC. CONCLUSIONS This review summarizes recent experimental and clinical studies of the molecular mechanisms of chemoresistance, including autophagy, DNA damage, tumor stem cells, mitochondrial function, and metabolism, in GBC. Information on potential chemosensitizers is also discussed. The proposed strategies to reverse chemoresistance should inform the clinical use of chemosensitizers and gene-based targeted therapy for this disease.
Collapse
Affiliation(s)
- Jinbao Lai
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Songlin Yang
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Zhuying Lin
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Wenwen Huang
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Xiao Li
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Ruhong Li
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Jing Tan
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Wenju Wang
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| |
Collapse
|
9
|
(Stămat) LRB, Dinescu S, Costache M. Regulation of Inflammasome by microRNAs in Triple-Negative Breast Cancer: New Opportunities for Therapy. Int J Mol Sci 2023; 24:ijms24043245. [PMID: 36834660 PMCID: PMC9963301 DOI: 10.3390/ijms24043245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
During the past decade, researchers have investigated the molecular mechanisms of breast cancer initiation and progression, especially triple-negative breast cancer (TNBC), in order to identify specific biomarkers that could serve as feasible targets for innovative therapeutic strategies development. TNBC is characterized by a dynamic and aggressive nature, due to the absence of estrogen, progesterone and human epidermal growth factor 2 receptors. TNBC progression is associated with the dysregulation of nucleotide-binding oligomerization domain-like receptor and pyrin domain-containing protein 3 (NLRP3) inflammasome, followed by the release of pro-inflammatory cytokines and caspase-1 dependent cell death, termed pyroptosis. The heterogeneity of the breast tumor microenvironment triggers the interest of non-coding RNAs' involvement in NLRP3 inflammasome assembly, TNBC progression and metastasis. Non-coding RNAs are paramount regulators of carcinogenesis and inflammasome pathways, which could help in the development of efficient treatments. This review aims to highlight the contribution of non-coding RNAs that support inflammasome activation and TNBC progression, pointing up their potential for clinical applications as biomarkers for diagnosis and therapy.
Collapse
Affiliation(s)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
10
|
Tanwar P, Minocha S, Gupta I. A Comprehensive narrative review of transcriptomics and epigenomics of gallbladder cancer. J Cancer Res Ther 2023; 19:S499-S507. [PMID: 38384011 DOI: 10.4103/jcrt.jcrt_1823_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 02/23/2024]
Abstract
ABSTRACTS Gallbladder cancer (GBC) is one of the quiet prevalent and aggressive biliary tract malignant neoplasms distinguished by significant cellular heterogeneity, metastatic activity, and a poor prognosis, with varied frequency worldwide. Most cases are detected incidentally while routine screening imaging or pathological investigation of cholecystectomy tissues and usually present with advanced disease. The surgical resection is usually done in the initial clinical stage having limited spread. Despite the surgical therapy, the death rate is significant. Furthermore, the molecular mechanisms affecting the clinical course of inflammatory gallbladder to carcinogenesis remain poorly understood. There is an impending need for developing diagnostic biomarkers and targeted approaches for GBC. The newer molecular platform, such as next-generation sequencing (NGS), such as RNA-sequencing (RNAseq), single-cell sequencing, and microarray technology, has revolutionized the field of genomics, opened a new perspective in defining genetic and epigenetic characteristics identifying molecules as possible therapeutic targets. Therefore, in this review, we would analyze transcriptomic and epigenomics profiles of GBC using already published high-throughput sequencing-based studies published between 2010 and 2023. The review would also analyze the possible impact of the technological advancement on the patient management strategy and overall survival. This may also help identify target genes and pathways linked to GBC, which may help establish molecular biomarkers, for early GBC diagnosis, personalized therapy, and management.
Collapse
Affiliation(s)
- Pranay Tanwar
- Laboratory Oncology Unit, Dr BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, India
| |
Collapse
|
11
|
Micronome Revealed miR-205-5p as Key Regulator of VEGFA During Cancer Related Angiogenesis in Hepatocellular Carcinoma. Mol Biotechnol 2022:10.1007/s12033-022-00619-5. [DOI: 10.1007/s12033-022-00619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
|
12
|
Sethi S, Mehta P, Pandey A, Gupta G, Rajender S. miRNA Profiling of Major Testicular Germ Cells Identifies Stage-Specific Regulators of Spermatogenesis. Reprod Sci 2022; 29:3477-3493. [PMID: 35715552 DOI: 10.1007/s43032-022-01005-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Spermatogenesis is tightly controlled at transcriptional, post-transcriptional, and epigenetic levels by various regulators, including miRNAs. This study deals with the identification of miRNAs critical to the three important stages of germ cell development (spermatocytes, round spermatids, and mature sperm) during spermatogenesis. We used high-throughput transcriptome sequencing to identify the differentially expressed miRNAs in the pachytene spermatocytes, round spermatids, and mature sperm of rat. We identified 1843 miRNAs that were differentially expressed across the three stages of germ cell development. These miRNAs were further categorized into three classes according to their pattern of expression during spermatogenesis: class 1 - miRNAs found exclusively in one stage and absent in the other two stages; class 2 - miRNAs found in any two stages but absent in the third stage; class 3 - miRNAs expressed in all the three stages. Six hundred forty-six miRNAs were found to be specific to one developmental stage, 443 miRNAs were found to be common across any two stages, and 754 miRNAs were common to all the three stages. Target prediction for ten most abundant miRNAs specific to each category identified miRNA regulators of mitosis, meiosis, and cell differentiation. The expression of each miRNA is specific to a particular developmental stage, which is required to maintain a significant repertoire of target mRNAs in the respective stage. Thus, this study provided valuable data that can be used in the future to identify the miRNAs involved in spermatogenic arrest at a particular stage of the germ cell development.
Collapse
Affiliation(s)
- Shruti Sethi
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Poonam Mehta
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Aastha Pandey
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Gopal Gupta
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Singh Rajender
- CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India.
| |
Collapse
|
13
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
14
|
MiR-205-5p Functions as a Tumor Suppressor in Gastric Cancer Cells through Downregulating FAM84B. JOURNAL OF ONCOLOGY 2022; 2022:8267891. [PMID: 35669244 PMCID: PMC9166972 DOI: 10.1155/2022/8267891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
MicroRNAs (miRNAs) participate in the formation of multiple diseases, including gastric cancer (GC), through modulating specific targets. Here, we explored the functions and regulatory mechanisms of miR-205-5p in GC. MiR-205-5p levels were detected in GC cells through qRT-PCR. Besides, the role of miR-205-5p in cell proliferation, cell apoptosis, cell cycle, cell invasion, and metastasis was assessed through CCK-8 assay, colony formation, flow cytometry, scratch assay, transwell, and western blot. Moreover, the Starbase website was used to predict the target gene of miR-205-5p, further verified by a dual-luciferase reporter assay. Furthermore, the functional effects of the family with sequence similarity 84 member B (FAM84B) on GC mediated by miR-205-5p upregulation were further investigated. MiR-205-5p expression was decreased in GC cells. Upregulation of miR-205-5p inhibited cell proliferation and metastasis and induced apoptosis and cycle arrest of GC cells. Moreover, FAM84B was predicted and confirmed as a target of miR-205-5p and negatively related to miR-205-5p. Mechanically, FAM84B overexpression partially rescued the functional effects of miR-205-5p upregulation on GC cell progression. This study suggests the potential of miR-205-5p/FAM84B as novel targets for the treatment of GC.
Collapse
|
15
|
Identification and Validation of a GPX4-Related Immune Prognostic Signature for Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9054983. [PMID: 35620733 PMCID: PMC9130018 DOI: 10.1155/2022/9054983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
Lung adenocarcinoma (LUAD) is a commonly occurring histological subtype of lung cancer. Glutathione peroxidase 4 (GPX4) is an important regulatory factor of ferroptosis and is involved in the development of many cancers, but its prognostic significance has not been systematically described in LUAD. In this study, we focused on developing a robust GPX4-related prognostic signature (GPS) for LUAD. Data for the training cohort was extracted from The Cancer Genome Atlas, and that for the validation cohort was sourced from the GSE72094 dataset including 863 LUAD patients. GPX4-related genes were screened out by weighted gene coexpression network analysis and Spearman’s correlation analysis. Then, Cox regression and least absolute shrinkage and selection operator regression analyses were employed to construct a GPS. The ESTIMATE algorithm, single-sample gene set enrichment analysis (ssGSEA), and GSEA were utilized to evaluate the relationship between GPS and the tumor microenvironment (TME). We constructed and validated a GPS premised on four GPX4-related genes (KIF14, LATS2, PRKCE, and TM6SF1), which could classify LUAD patients into low- and high-score cohorts. The high-risk cohort presented noticeably poorer overall survival (OS) as opposed to the low-risk cohort, meaning that the GPS may be utilized as an independent predictor of the OS of LUAD. The GPS was also adversely correlated with multiple tumor-infiltrating immune cells and immune-related processes and pathways in TME. Furthermore, greater sensitivity to erlotinib and lapatinib were identified in the low-risk cohort based on the GDSC database. Our findings suggest that the GPS can effectively forecast the prognosis of LUAD patients and may possibly regulate the TME of LUAD.
Collapse
|
16
|
Tamai M, Tatarano S, Okamura S, Fukumoto W, Kawakami I, Osako Y, Sakaguchi T, Sugita S, Yonemori M, Yamada Y, Nakagawa M, Enokida H, Yoshino H. microRNA-99a-5p induces cellular senescence in gemcitabine-resistant bladder cancer by targeting SMARCD1. Mol Oncol 2022; 16:1329-1346. [PMID: 35148461 PMCID: PMC8936529 DOI: 10.1002/1878-0261.13192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/02/2022] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
Patients with advanced bladder cancer are generally treated with a combination of chemotherapeutics, including gemcitabine, but the effect is limited due to acquisition of drug resistance. Thus, in this study, we investigated the mechanism of gemcitabine resistance. First, gemcitabine‐resistant cells were established and resistance confirmed in vitro and in vivo. Small RNA sequencing analyses were performed to search for miRNAs involved in gemcitabine resistance. miR‐99a‐5p, selected as a candidate miRNA, was downregulated compared to its parental cells. In gain‐of‐function studies, miR‐99a‐5p inhibited cell viabilities and restored sensitivity to gemcitabine. RNA sequencing analysis was performed to find the target gene of miR‐99a‐5p. SMARCD1 was selected as a candidate gene. Dual‐luciferase reporter assays showed that miR‐99a‐5p directly regulated SMARCD1. Loss‐of‐function studies conducted with si‐RNAs revealed suppression of cell functions and restoration of gemcitabine sensitivity. miR‐99a‐5p overexpression and SMARCD1 knockdown also suppressed gemcitabine‐resistant cells in vivo. Furthermore, β‐galactosidase staining showed that miR‐99a‐5p induction and SMARCD1 suppression contributed to cellular senescence. In summary, tumor‐suppressive miR‐99a‐5p induced cellular senescence in gemcitabine‐resistant bladder cancer cells by targeting SMARCD1.
Collapse
Affiliation(s)
- Motoki Tamai
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shunsuke Okamura
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Wataru Fukumoto
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Issei Kawakami
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yoichi Osako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Satoshi Sugita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masaya Yonemori
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yasutoshi Yamada
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima Uni versity, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| |
Collapse
|
17
|
Khan K, Zafar S, Hafeez A, Badshah Y, Shahid K, Mahmood Ashraf N, Shabbir M. PRKCE non-coding variants influence on transcription as well as translation of its gene. RNA Biol 2022; 19:1115-1129. [PMID: 36299231 PMCID: PMC9621080 DOI: 10.1080/15476286.2022.2139110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 10/31/2022] Open
Abstract
Untranslated regions of the gene play a crucial role in gene expression regulation at mRNA and protein levels. Mutations at UTRs impact expression by altering transcription factor binding, transcriptional/translational efficacy, miRNA-mediated gene regulation, mRNA secondary structure, ribosomal translocation, and stability. PKCε, a serine/threonine kinase, is aberrantly expressed in numerous diseases such as cardiovascular disorders, neurological disorders, and cancers; its probable cause is unknown. Therefore, in the current study, the influence of PRKCE 5'-and 3'UTR variants was explored for their potential impact on its transcription and translation through several bioinformatics approaches. UTR variants data was obtained through different databases and initially evaluated for their regulatory function. Variants with regulatory function were then studied for their effect on PRKCE binding with transcription factors (TF) and miRNAs, as well as their impact on mRNA secondary structure. Study outcomes indicated the regulatory function of 73 5'UTR and 17 3'UTR variants out of 376. 5'UTR variants introduced AP1 binding sites and promoted the PRKCE transcription. Four 3'UTR variants introduced a circular secondary structure, increasing PRKCE translational efficacy. A region in 5'UTR position 45,651,564 to 45,651,644 was found where variants readily influenced the miRNA-PRKCE mRNA binding. The study further highlighted a PKCε-regulated feedback loop mechanism that induces the activity of TFs, promoting its gene transcription. The study provides foundations for experimentation to understand these variants' role in diseases. These variants can also serve as the genetic markers for different diseases' diagnoses after validation at the cell and population levels.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sameen Zafar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Amna Hafeez
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Kanza Shahid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
18
|
Yuan J, Zhang Q, Wu S, Yan S, Zhao R, Sun Y, Tian X, Zhou K. miRNA-223-3p modulates ibrutinib resistance through regulation of the CHUK/Nf-κb signaling pathway in mantle cell lymphoma. Exp Hematol 2021; 103:52-59.e2. [PMID: 34474146 DOI: 10.1016/j.exphem.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
Since the use of Bruton's tyrosine kinase (BTK) inhibitor ibrutinib in relapsed/refractory (R/R) mantle cell lymphoma (MCL), the problem of drug resistance has become increasingly prominent. Though it has been proven that the nonclassic nuclear factor κB pathway (nonclassic NF-κB pathway) correlates with ibrutinib resistance in MCL, the upstream regulator is unknown. In the present study, conserved helix-loop-helix ubiquitous kinase (CHUK) overexpression accelerated proliferation and suppressed apoptosis of MCL cells after ibrutinib treatment in vitro. The results of luciferase reporter assay, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot revealed that CHUK was targeted and negatively regulated by miRNA-223-3p. miRNA-223-3p knockdown promoted proliferation and inhibited apoptosis of MCL cells after ibrutinib treatment in vitro and vivo, whereas CHUK knockdown reversed downregulated miRNA-223-3p-promoted cell proliferation after ibrutinib treatment in vitro. In conclusion, miRNA-223-3p modulates ibrutinib resistance through regulation of the CHUK/NF-κB signaling pathway in MCL, which is crucial in providing a marker to predict disease response.
Collapse
Affiliation(s)
- Jingjing Yuan
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qing Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shengsheng Wu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Suran Yan
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ran Zhao
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yajuan Sun
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoxu Tian
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
19
|
High-Throughput Sequencing Reveals the Differential MicroRNA Expression Profiles of Human Gastric Cancer SGC7901 Cell Xenograft Nude Mouse Models Treated with Traditional Chinese Medicine Si Jun Zi Tang Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6119212. [PMID: 34457026 PMCID: PMC8387168 DOI: 10.1155/2021/6119212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/14/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Objective. The present study aimed to investigate the potential mechanism underlying the antitumor effect of Si Jun Zi Tang (SJZT) decoction on gastric cancer. Methods. Twelve human gastric cancer SGC7901 cell xenograft nude mouse models were established. The mice were randomly divided into the Model group and SJZT group. SJZT exerted significant antitumor effects after 21 days of decoction administration. High-throughput sequencing was used to analyze the microRNA (miRNA) expression profiles of tumor tissues. Bioinformatics analysis was performed to provide further information regarding the differentially expressed miRNAs. Five representative differentially expressed miRNAs and four predicted target genes were further validated using quantitative real-time reverse transcription PCR (qRT-PCR). Results. We identified 33 miRNAs that were differentially expressed in the SJZT group compared with the Model group. Among them, 32 miRNAs were upregulated and 1 miRNA was downregulated. Bioinformatic analysis showed that most of miRNAs acted as tumor suppressors and their target genes participated in multiple signaling pathways, including the PI3K/Akt signaling pathway, microRNAs in cancer, and Wnt signaling pathway. The qRT-PCR result confirmed that miR-223-3p, miR-205-5p, miR-147b-3p, and miR-223-5p were overexpressed and their respective paired target genes FUT9, POU2F1, MUC4, and RAB14 mRNA were obviously downregulated in the SJZT group compared with those in the Model group. Network analysis revealed that miR-223-3p and miR-205-5p shared two targets POU2F1 (encoding POU class 2 homeobox 1) and FUT9 (encoding fucosyltransferase 9), suggesting they have a common role in certain pathways. Conclusion. This study provided novel insights into the anticancer mechanism of SJZT against gastric cancer, which might be partly related to the modulation of miRNA expression and their target pathways in tumors.
Collapse
|