1
|
Bjørklund G, Pivina L, Semenova Y. Genetic Polymorphisms in Cardiovascular Disease: Effects Across Three Generations Exposed to Radiation from the Semipalatinsk Nuclear Test Site. Cardiovasc Toxicol 2024; 24:870-878. [PMID: 39030318 DOI: 10.1007/s12012-024-09885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/19/2024] [Indexed: 07/21/2024]
Abstract
The population in the areas neighboring the Semipalatinsk Nuclear Test Site (SNTS) in the eastern region of Kazakhstan faces increased cardiovascular disease (CVD) risk. Previous research has not explored gene polymorphisms related to CVD in this population. Therefore, the present study examines the prevalence of six CVD-associated genotypes in three generations exposed to SNTS radiation. The genotyping of ApoE Leu28 → Pro, AGT Met174 → Thr, AGT Met235 → Thr, eNOS T786 → C, PON1 Gln192 → Arg, and EDN 1 Lys198 → Asn was performed using real-time polymerase chain reaction. The present study encompassed a cohort of 218 participants with a familial history of arterial hypertension and/or carotid artery disease spanning at least three generations. The analysis unveiled significant disparities in the prevalence of ApoE Leu28 → Pro, eNOS T786 → C, and PON1 Gln192 → Arg genotypes across different generations. Furthermore, a substantial variation in the distribution of the eNOS T786 → C genotype was observed between individuals of Kazakh and Russian ethnicities. Nevertheless, no significant discrepancies were detected in the frequencies of the investigated genotypes between genders. Further research in this area is warranted to enhance the understanding of the genetic factors contributing to CVD in the population exposed to radiation from the SNTS. Specifically, future studies should broaden the scope of genetic polymorphisms investigated and include representatives of healthy individuals who have not been exposed to radiation as controls.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo I Rana, Norway.
- Semey Medical University, Semey, Kazakhstan.
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Yuliya Semenova
- Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
2
|
Mastana S, Halai KC, Akam L, Hunter DJ, Singh P. Genetic Polymorphisms and Genetic Risk Scores Contribute to the Risk of Coronary Artery Disease (CAD) in a North Indian Population. Int J Mol Sci 2024; 25:8552. [PMID: 39126122 PMCID: PMC11313018 DOI: 10.3390/ijms25158552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death in India. Many genetic polymorphisms play a role in regulating oxidative stress, blood pressure and lipid metabolism, contributing to the pathophysiology of CAD. This study examined the association between ten polymorphisms and CAD in the Jat Sikh population from Northern India, also considering polygenic risk scores. This study included 177 CAD cases and 175 healthy controls. The genetic information of GSTM1 (rs366631), GSTT1 (rs17856199), ACE (rs4646994), AGT M235T (rs699), AGT T174M (rs4762), AGTR1 A1166C (rs5186), APOA5 (rs3135506), APOC3 (rs5128), APOE (rs7412) and APOE (rs429358) and clinical information was collated. Statistical analyses were performed using SPSS version 27.0 and SNPstats. Significant independent associations were found for GST*M1, GST*T1, ACE, AGT M235T, AGT T174M, AGTR1 A1166C and APOA5 polymorphisms and CAD risk (all p < 0.05). The AGT CT haplotype was significantly associated with a higher CAD risk, even after controlling for covariates (adjusted OR = 3.93, 95% CI [2.39-6.48], p < 0.0001). The APOA5/C3 CC haplotype was also significantly associated with CAD (adjusted OR = 1.86, 95% CI [1.14-3.03], p < 0.05). A higher polygenic risk score was associated with increased CAD risk (adjusted OR = 1.98, 95% CI [1.68-2.34], p < 0.001). Seven polymorphisms were independently associated with an increase in the risk of CAD in this North Indian population. A considerable risk association of AGT, APOA5/C3 haplotypes and higher genetic risk scores is documented, which may have implications for clinical and public health applications.
Collapse
Affiliation(s)
- Sarabjit Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK (L.A.); (D.J.H.)
| | - Kushni Charisma Halai
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK (L.A.); (D.J.H.)
| | - Liz Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK (L.A.); (D.J.H.)
| | - David John Hunter
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK (L.A.); (D.J.H.)
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India;
| |
Collapse
|
3
|
Mirahmadi M, Salehi A, Golalipour M, Bakhshandeh A, Shahbazi M. Association of rs5051 and rs699 polymorphisms in angiotensinogen with coronary artery disease in Iranian population: A case-control study. Medicine (Baltimore) 2024; 103:e37045. [PMID: 38489704 PMCID: PMC10939567 DOI: 10.1097/md.0000000000037045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 03/17/2024] Open
Abstract
Coronary artery disease (CAD) is the third most common cause of mortality globally (with 17.8 million deaths annually). Angiotensinogen (AGT) and polymorphisms in this gene can be considered as susceptibility factors for CAD. We performed a retrospective case-control study to determine the correlation of AGT rs5051 and rs699 polymorphisms with CAD in an Iranian population. We genotyped 310 CAD patients and 310 healthy subjects using polymerase chain reaction-based methods. To confirm the accuracy of the screening approach, 10% of genotyped subjects were validated using gold-standard Sanger Sequencing. To evaluate the effect of the candidate polymorphisms, white blood cells were randomly purified from the subjects and AGT expression was measured by quantitative reverse transcriptase-polymerase chain reaction. Sex stratification indicated a significant correlation between CAD and male sex (P = .0101). We found a significant association between the rs5051 A allele (P = .002) and the rs699 C allele, and CAD (P = .0122) in recessive and dominant models. Moreover, our findings showed a significant association of the haplotype, including the rs5051 A/A and rs699 T/C genotypes, with CAD (P = .0405). Finally, AGT mRNA levels were significantly decreased in patients harboring the candidate polymorphisms (P = .03). According to our findings The AGT rs5051 A and AGT rs699 C alleles are predisposing variants of CAD risk and severity in the Iranian population.
Collapse
Affiliation(s)
- Maryam Mirahmadi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Genetics, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
- Department of Exomine, PardisGene company, Tehran, Iran
| | - Aref Salehi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoud Golalipour
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azam Bakhshandeh
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- AryaTinaGene, Biopharmaceutical Company, Gorgan, Iran
| |
Collapse
|
4
|
Sylvers-Davie KL, Bierstedt KC, Schnieders MJ, Davies BSJ. Endothelial lipase variant T111I does not alter inhibition by angiopoietin-like proteins. Sci Rep 2024; 14:4246. [PMID: 38379026 PMCID: PMC10879187 DOI: 10.1038/s41598-024-54705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
High levels of HDL-C are correlated with a decreased risk of cardiovascular disease. HDL-C levels are modulated in part by the secreted phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL and decreases circulating HDL-C concentrations. A 584C/T polymorphism in LIPG, the gene which encodes EL, was first identified in individuals with increased HDL levels. This polymorphism results in a T111I point mutation the EL protein. The association between this variant, HDL levels, and the risk of coronary artery disease (CAD) in humans has been extensively studied, but the findings have been inconsistent. In this study, we took a biochemical approach, investigating how the T111I variant affected EL activity, structure, and stability. Moreover, we tested whether the T111I variant altered the inhibition of phospholipase activity by angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4), two known EL inhibitors. We found that neither the stability nor enzymatic activity of EL was altered by the T111I variant. Moreover, we found no difference between wild-type and T111I EL in their ability to be inhibited by ANGPTL proteins. These data suggest that any effect this variant may have on HDL-C levels or cardiovascular disease are not mediated through alterations in these functions.
Collapse
Affiliation(s)
- Kelli L Sylvers-Davie
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, IA, 52242, USA
| | - Kaleb C Bierstedt
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa, IA, 52242, USA
| | - Michael J Schnieders
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa, IA, 52242, USA
| | - Brandon S J Davies
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, IA, 52242, USA.
| |
Collapse
|
5
|
Sylvers-Davie KL, Bierstedt KC, Schnieders MJ, Davies BSJ. Endothelial Lipase Variant, T111I, Does Not Alter Inhibition by Angiopoietin-like Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553740. [PMID: 37693454 PMCID: PMC10491130 DOI: 10.1101/2023.08.18.553740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
High levels of HDL-C are correlated with a decreased risk of cardiovascular disease. HDL-C levels are modulated in part by the secreted phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL and decreases circulating HDL-C concentrations. A 584C/T polymorphism in LIPG, the gene which encodes EL, was first identified in individuals with increased HDL levels. This polymorphism results in a T111I point mutation the EL protein. The association between this variant, HDL levels, and the risk of coronary artery disease (CAD) in humans has been extensively studied, but the findings have been inconsistent. In this study, we took a biochemical approach, investigating how the T111I variant affected EL activity, structure, and stability. Moreover, we tested whether the T111I variant altered the inhibition of phospholipase activity by angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4), two known EL inhibitors. We found that neither the stability nor enzymatic activity of EL was altered by the T111I variant. Moreover, we found no difference between wild-type and T111I EL in their ability to be inhibited by ANGPTL proteins. These data suggest that any effect this variant may have on HDL-C levels or cardiovascular disease are not mediated through alterations in these functions.
Collapse
Affiliation(s)
- Kelli L. Sylvers-Davie
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242
| | - Kaleb C. Bierstedt
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | - Michael J. Schnieders
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | - Brandon S. J. Davies
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
6
|
Genetic Polymorphism in Angiotensinogen and Its Association with Cardiometabolic Diseases. Metabolites 2022; 12:metabo12121291. [PMID: 36557328 PMCID: PMC9785123 DOI: 10.3390/metabo12121291] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Angiotensinogen (AGT) is one of the most significant enzymes of the renin-angiotensin-aldosterone system (RAAS) which is involved in the regulation and maintenance of blood pressure. AGT is involved in the production of angiotensin I which is then converted into angiotensin II that leads to renal homeostasis. However, various genetic polymorphisms in AGT have been discovered in recent times which have shown an association with various diseases. Genetic polymorphism increases the level of circulating AGT in blood which exaggerates the effects produced by AGT. The associated diseases occur due to various effects produced by increased AGT levels. Several cardiovascular diseases including myocardial infarction, coronary heart disease, heart failure, hypertrophy, etc. are associated with AGT polymorphism. Other diseases such as depression, obesity, diabetic nephropathy, pre-eclampsia, and liver injury are also associated with some variants of AGT gene. The most common variants of AGT polymorphism are M235T and T174M. The two variants are associated with many diseases. Some other variants such as G-217A, A-6G, A-20C and G-152A, are also present but they are not as significant as that of M235T and T174M variants. These variants increase the level of circulating AGT and are associated with prevalence of different diseases. These diseases occur through various pathological pathways, but the initial reason remains the same, i.e., increased level of AGT in the blood. In this article, we have majorly focused on how genetic polymorphism of different variants of AGT gene is associated with the prevalence of different diseases.
Collapse
|
7
|
Balcerzyk-Matić A, Nowak T, Mizia-Stec K, Iwanicka J, Iwanicki T, Bańka P, Jarosz A, Filipecki A, Żak I, Krauze J, Niemiec P. Polymorphic Variants of AGT, ABCA1, and CYBA Genes Influence the Survival of Patients with Coronary Artery Disease: A Prospective Cohort Study. Genes (Basel) 2022; 13:2148. [PMID: 36421822 PMCID: PMC9690336 DOI: 10.3390/genes13112148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Genetic factors can influence the risk of coronary artery disease (CAD) and the survival of patients. Our previous research led to the identification of genetic variants predisposing to CAD in the Polish population. Since many of them affect the clinical phenotype of the disease, the aim of this study was searching for genetic factors potentially influencing survival in patients with CAD. The study included 276 patients hospitalized due to coronary artery disease. The database of medical history and genotypic results of 29 polymorphisms were used. The endpoint was defined as death from cardiovascular causes. Survival was defined as the period from angiographic confirmation of CAD to death from cardiovascular causes. Three of all the analyzed genes were associated with survival. In the case of the AGT (rs699) and ABCA1 (rs2230806) genes polymorphisms, the risk of death was higher in GG homozygotes compared to the A allele carriers in the 10-year period. In the case of the CYBA (rs72811418) gene polymorphism, the effect on mortality was shown in both 5- and 10-year periods. The TA heterozygotes were predisposed to a higher risk of death than the TT homozygotes. Concluding, the AGT, ABCA1, and CYBA genes polymorphisms influence the risk of death in patients with CAD.
Collapse
Affiliation(s)
- Anna Balcerzyk-Matić
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| | - Tomasz Nowak
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 47 Ziołowa St., 40-635 Katowice, Poland
| | - Joanna Iwanicka
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| | - Tomasz Iwanicki
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| | - Paweł Bańka
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 47 Ziołowa St., 40-635 Katowice, Poland
| | - Alicja Jarosz
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| | - Artur Filipecki
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 47 Ziołowa St., 40-635 Katowice, Poland
| | - Iwona Żak
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| | - Jolanta Krauze
- American Heart of Poland, Armii Krajowej 101 Avenue, 43-316 Bielsko-Biała, Poland
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| |
Collapse
|
8
|
Zhang Q, Huang Q, Wang X, Wang Y, Hua X. The effect of polymorphisms (M235T and T174M) on the angiotensinogen gene (AGT) in coronary artery disease in the Eastern Asian population: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29911. [PMID: 36042680 PMCID: PMC9410687 DOI: 10.1097/md.0000000000029911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND It is thought that genetic factors may play an important role in the development of coronary artery disease (CAD). Several studies report that AGT polymorphism is implicated in CAD susceptibility, but these results contradict those of the other studies with the associations being unclear in the Eastern Asian population. Therefore, meta-analysis was performed to evaluate this relationship. METHODS Publication databases were used to search for eligible relevant studies and valid data were extracted from studies meeting the inclusion criteria. Subsequently, odds ratios (ORs) with 95 % confidence intervals (CIs), were used to assess the strength of the association between AGT polymorphism and CAD risk. RESULTS Seven eligible studies published only in English were included in the present meta-analysis. In the Eastern Asian population, CAD susceptibility was shown to be related to AGT M235T under the heterozygote model (OR = 0.19). Stratified analysis indicated there was a significant relationship between AGT M235T and CAD risk in China under allelic (OR = 1.34), dominant (OR = 1.43), and heterozygote (OR = 1.62) models. The results showed that the T174M polymorphism was significantly associated with CAD risk in recessive (OR = 2.28) and homozygote (OR = 2.37) models in the Eastern Asian population. CONCLUSIONS In the Eastern Asian population, especially the Chinese, the M235T of AGT is associated with CAD susceptibility. The T174M polymorphisms were associated with CAD risk in the Eastern Asian population.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Oncology, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Hubei, China
| | - Qingning Huang
- Department of Cardiology, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Hubei, China
| | - Xianen Wang
- Department of Cardiology, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Hubei, China
| | - Yong Wang
- Department of Cardiology, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Hubei, China
| | - Xiaofang Hua
- Department of Oncology, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Hubei, China
- *Correspondence: Xiaofang Hua, Department of Cardiology, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Hubei, China. (e-mail: )
| |
Collapse
|
9
|
The Genetic Variants in the Renin-Angiotensin System and the Risk of Heart Failure in Polish Patients. Genes (Basel) 2022; 13:genes13071257. [PMID: 35886041 PMCID: PMC9319667 DOI: 10.3390/genes13071257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background: Heart failure (HF) is a complex disease and one of the major causes of morbidity and mortality in the world. The renin-angiotensin system (RAS) may contribute to the pathogenesis of HF. (2) Aim: To investigate the association of RAS key genetic variants, rs5051 (A-6G) in the gene encoding angiotensinogen (AGT), rs4646994 (I/D) in the gene for angiotensin I converting enzyme (ACE), and rs5186 (A1166C) in the gene encoding type 1 receptor for angiotensin II (AGTR1), with the HF risk in the cohort of Polish patients. (3) Methods: The study group consisted of 415 patients that were diagnosed with HF, while the control group comprised of 152 healthy individuals. Genomic DNA were extracted from blood and genotyping was carried out using either PCR or PCR-RFLP for ACE or AGT and AGTR1 variants, respectively. (4) Results: No association has been found between the I/D ACE and heart failure. The HF risk was significantly higher for AG AGT heterozygotes (overdominance: AG versus AA + GG) and for carriers of the G AGT allele in codominant and dominant modes of inheritance. However, the risk of HF was significantly lower in the carriers of at least one C AGTR1 allele (AC or CC genotypes) or in AC AGTR1 heterozygotes (overdominant mode). There was a significant relationship for AGT and HF patients in NYHA Class I-II for whom the risk was higher for the carriers of the G allele, and for the AG heterozygotes. There was also a significant interaction between heterozygote advantage of AGT and BMI increasing the risk for HF. (5) Conclusion: Our results suggest that the A(-6)G AGT polymorphism may be associated with HF in the Polish population and the HF risk seems to be modulated by the A1166C AGTR1 polymorphism.
Collapse
|
10
|
Wu YE, Ma L, Zhang H, Chen XR, Xu XY, Hu ZP. Significant association between the endothelial lipase gene 584C/T polymorphism and coronary artery disease risk. Biosci Rep 2020; 40:BSR20200027. [PMID: 32893849 PMCID: PMC7494996 DOI: 10.1042/bsr20200027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 01/11/2023] Open
Abstract
Several studies have investigated a potential association between the endothelial lipase gene (LIPG) 584C/T polymorphism and susceptibility to coronary artery disease (CAD), but a uniform conclusion is yet to be reached. To better evaluate the true relationship between the LIPG 584C/T polymorphism and the risk of CAD, a meta-analysis of 14 case-control studies with 9731 subjects was performed. Relevant articles published through August 2020 were searched in the CNKI, PubMed, Embase and Web of Science databases. Thirteen articles, including 14 eligible case-control studies with 4025 cases and 5706 controls, were enrolled in the present meta-analysis. The Newcastle-Ottawa Scale (NOS) scores of the case-control studies ranged from 6 to 8. The pooled results indicated that there is a significant association between the LIPG 584C/T polymorphism and CAD in the homozygote comparison model and the allelic comparison model. Subgroup analyses revealed that the LIPG 584C/T mutation significantly decreased the risk of CAD in the subgroups of African, CAD, hospital-based (HB), and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) populations in some genetic models. No publication bias was found in our meta-analysis, which certifies the robustness of the current meta-analysis. Trial sequential analysis (TSA) also confirmed the stability of our results. The results of our meta-analysis indicate that the LIPG 584C/T polymorphism plays a protective role in the incidence of CAD. More high-quality case-control studies on various ethnicities are needed to confirm our results.
Collapse
Affiliation(s)
- Yue-e Wu
- Department of Electrocardiogram Diagnosis, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230060, People’s Republic of China
| | - Lan Ma
- Department of Electrocardiogram Diagnosis, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230060, People’s Republic of China
| | - Hao Zhang
- Department of Emergency, The Second Affiliated Hospital, Anhui Medical University, Hefei 230060, Anhui Province, People’s Republic of China
| | - Xin-ran Chen
- Department of Electrocardiogram Diagnosis, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230060, People’s Republic of China
| | - Xin-yi Xu
- Department of Electrocardiogram Diagnosis, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230060, People’s Republic of China
| | - Ze-ping Hu
- Department of Cardiology, The First Affiliated Hospital, Anhui Medical University, Hefei 230022, Anhui Province, People’s Republic of China
| |
Collapse
|