1
|
Zhang R, Zhou L, Xie L, Lu L, Zhou H, Yang Y, Hu J. Metabolite profiling and adaptation mechanisms of Aspergillus cristatus under pH stress. Front Microbiol 2025; 16:1576132. [PMID: 40236484 PMCID: PMC11998282 DOI: 10.3389/fmicb.2025.1576132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction pH is an important environmental factor affecting the survival of fungi, and Aspergillus cristatus, which can grow and reproduce over a wide range of pH, is suitable for studying their adaptation mechanism to pH stress. Methods In this study, A. cristatus was cultured on plates of different initial pH (pH 3.8-8.0), with the results revealing distinct morphologies at pH 3.0-5.0, pH 6.0-7.0 and pH 8.0. Liquid chromatography-mass spectrometry (LC-MS) and multivariate analysis subsequently were used to analyze the changes of substance metabolism of A. cristatus at different pH. Results and discussion LC-MS and multivariate analyses showed that A. cristatus's growth at different pH involved significantly different metabolites. In particular, comparing pH 4.0 vs pH 6.0, pH 6.0 vs pH 8.0 and pH 4.0 vs pH 8.0 revealed a total of 317, 171 and 404 significantly different substances, respectively. Finally, as the pH changed from 4.0 to 6.0 to 8.0, eight changes in the patterns of differential substances were identified. At low pH, A. cristatus accumulated large amounts of energy substances (e.g., adenosine), active antioxidants (e.g., glutathione) and osmo-protective substances (e.g., raffinose). In contrast, at high pH, large amounts of phosphatidylcholine (PC), lysophosphatidyl ethanolamine (LPE), lysophosphatidyl choline (LPC), lysophosphatidyl serine (LPS) related to biofilms were synthesized, alongside antioxidants (e.g., formononetin) and acidic substances. The aforementioned results indicate that A. cristatus adapts to changes in pH by adjusting their metabolite synthesis. Therefore, under unsuitable pH environments, A. cristatus synthesizes specific sets of metabolites that play key roles to cope with the stress.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Lihong Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Luyi Xie
- PingBa No.1 Senior High School in Anshun City, Anshun, China
| | - Lingqing Lu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Hang Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Yi Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Jiuping Hu
- Ya’an Xunkang Pharmaceutical Co., Ltd., Ya’an, China
| |
Collapse
|
2
|
Tan S, Cao J, Li S, Li Z. Unraveling the Mechanistic Basis for Control of Seed Longevity. PLANTS (BASEL, SWITZERLAND) 2025; 14:805. [PMID: 40094799 PMCID: PMC11902243 DOI: 10.3390/plants14050805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Seed longevity, which holds paramount importance for agriculture and biodiversity conservation, continues to represent a formidable frontier in plant biology research. While advances have been made in identifying regulatory elements, the precise mechanisms behind seed lifespan determination remain intricate and context-specific. This comprehensive review compiles extensive findings on seed longevity across plant species, focusing on the genetic and environmental underpinnings. Inter-species differences in seed lifespan are tied to genetic traits, with numerous Seed Longevity-Associated Genes (SLAGs) uncovered. These SLAGs encompass transcription factors and enzymes involved in stress responses, repair pathways, and hormone signaling. Environmental factors, particularly seed developmental conditions, significantly modulate seed longevity. Moreover, this review deliberates on the prospects of genetically engineering seed varieties with augmented longevity by precise manipulation of crucial genetic components, exemplifying the promising trajectory of seed science and its practical applications within agriculture and biodiversity preservation contexts. Collectively, our manuscript offers insights for improving seed performance and resilience in agriculture's evolving landscape.
Collapse
Affiliation(s)
| | | | | | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.T.); (J.C.); (S.L.)
| |
Collapse
|
3
|
Alves Filho EG, Alves de Queirós JR, Bonilla OH, Rodrigues Magalhães HC, de Brito ES, Vasconcelos Ribeiro PR, Canuto KM, Alexandre E Silva LM, Ribeiro de Castro AC. Analysis of germination and vigor of cashew seeds for germplasm conservation by NMR and uPLC-qTOF-MS/MS based metabolomics. Food Res Int 2025; 204:115918. [PMID: 39986765 DOI: 10.1016/j.foodres.2025.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/24/2025]
Abstract
The effective preservation of cashew germplasm faces significant challenges due to the loss of germination vigor over medium and long periods. Therefore, this study aimed to assess the biometric and chemical parameters that determine the germination and vigor of cashew seed. Seeds from seven cashew genotypes stored under refrigeration (18 ± 2 °C) were evaluated for biometric characteristics and post-emergence development analyzed by NMR, UPLC-QTOF-MSE and GC-MS methods for profiling primary and secondary metabolites along with fatty acids. The evaluated materials revealed significant variability in emergence percentage (0 % to 91.43 %), exhibiting a negative correlation with biometric characteristics. The emergence speed index (ESI) and emergence speed (ES) ranged from 1.20 to 3.61 and 16.58 to 22.84 days, respectively. The oleic acid is the major fatty acid (60 %) and the correlation of the fatty acid content with emergency remain unclear. The NMR and UPLC-QTOF-MSE analysis highlighted the compositional variability among the genotypes. In this regard, NMR and statistical modeling shows positive correlation which seeds with higher stachyose and acetic acid and lower sucrose contents exhibited greater germination. Additionally, seeds with enhanced germination parameters positively correlated with greater phenolic lipids content, such as anacardic acids. Therefore, this study indicates that seeds with reduced biometric parameters that presented increased content of stachyose, acetic acid, and anacardic acids were correlated higher emergence capacity making those seeds more suitable to cashew germplasm cryopreservation banks.
Collapse
Affiliation(s)
| | | | - Oriel Herrera Bonilla
- Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700 Campus do Itaperi, Fortaleza, CE, Brazil
| | | | - Edy Sousa de Brito
- Embrapa Alimentos e Territórios, Rua Cincinato Pinto, 348, CEP 57020-050 Maceió, AL, Brazil
| | | | - Kirley Marques Canuto
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, CEP 60511-110 Fortaleza, CE, Brazil
| | - Lorena Mara Alexandre E Silva
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, CEP 60511-110 Fortaleza, CE, Brazil.
| | - Ana Cecília Ribeiro de Castro
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, CEP 60511-110 Fortaleza, CE, Brazil
| |
Collapse
|
4
|
Sun H, Xin J, Ullah A, Song H, Chen L, Yang D, Deng X, Liu J, Ming R, Zhang M, Yang H, Dong G, Yang M. Unveiling the secrets of lotus seed longevity: insights into adaptive strategies for extended storage. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1147-1163. [PMID: 39432815 DOI: 10.1093/jxb/erae432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024]
Abstract
Seed longevity is crucial for long-term storage, but prolonged unfavorable conditions can lead to loss of viability. This study integrated theoretical and experimental techniques to elucidate the inherent mechanisms underlying the unique ability of lotus seeds to maintain stable viability over many years. Transcriptome analysis and microscopy revealed a sturdy structure of the lotus seed pericarp, which predominantly expressed cellulose synthase genes involved in cell wall biogenesis. The cotyledon serves as a nutrient source for seeds during long-term storage. Additionally, the inactivation of chlorophyll degradation pathways may allow for the retention of chlorophyll in the lotus seed plumule, potentially enhancing the environmental adaptability of lotus seedlings. Reduced abundance of transcripts corresponding to heat shock protein genes could impact protein processing and consequently diminish the vitality of aging lotus seeds. Moreover, an expansion in the number of seed maturation and defense response genes was observed in the lotus genome compared with 11 other species, which might represent an adaptive strategy against long-term adverse storage conditions. Overall, these findings are crucial for understanding the mechanisms underlying lotus seed longevity and may inform future improvements in the extended storage periods of seed crops.
Collapse
Affiliation(s)
- Heng Sun
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jia Xin
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Abid Ullah
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Heyun Song
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Dong Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xianbao Deng
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Juan Liu
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Minghua Zhang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Mei Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
5
|
Wrona M, Zinsmeister J, Krzyszton M, Villette C, Zumsteg J, Mercier P, Neveu M, Sacharowski SP, Archacki R, Collet B, Buitink J, Schaller H, Swiezewski S, Yatusevich R. The BRAHMA-associated SWI/SNF chromatin remodeling complex controls Arabidopsis seed quality and physiology. PLANT PHYSIOLOGY 2024; 197:kiae642. [PMID: 39661382 DOI: 10.1093/plphys/kiae642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
The SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complex is involved in various aspects of plant development and stress responses. Here, we investigated the role of BRM (BRAHMA), a core catalytic subunit of the SWI/SNF complex, in Arabidopsis thaliana seed biology. brm-3 seeds exhibited enlarged size, reduced yield, increased longevity, and enhanced secondary dormancy, but did not show changes in primary dormancy or salt tolerance. Some of these phenotypes depended on the expression of DOG1, a key regulator of seed dormancy, as they were restored in the brm-3 dog1-4 double mutant. Transcriptomic and metabolomic analyses revealed that BRM and DOG1 synergistically modulate the expression of numerous genes. Some of the changes observed in the brm-3 mutant, including increased glutathione levels, depended on a functional DOG1. We demonstrated that the BRM-containing chromatin remodeling complex directly controls secondary dormancy through DOG1 by binding and remodeling its 3' region, where the promoter of the long noncoding RNA asDOG1 is located. Our results suggest that BRM and DOG1 cooperate to control seed physiological properties and that BRM regulates DOG1 expression through asDOG1. This study reveals chromatin remodeling at the DOG1 locus as a molecular mechanism controlling the interplay between seed viability and dormancy.
Collapse
Affiliation(s)
- Magdalena Wrona
- Institute of Biochemistry and Biophysics PAS, Warsaw 02-106, Poland
| | | | - Michal Krzyszton
- Institute of Biochemistry and Biophysics PAS, Warsaw 02-106, Poland
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg 67084, France
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg 67084, France
| | - Pierre Mercier
- Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg 67084, France
| | - Martine Neveu
- INRAE, Institut Agro, Université d'Angers, IRHS, Angers 49000, France
| | | | - Rafał Archacki
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland
| | - Boris Collet
- Université Paris Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Julia Buitink
- INRAE, Institut Agro, Université d'Angers, IRHS, Angers 49000, France
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg 67084, France
| | | | | |
Collapse
|
6
|
Sonowal K, Gandass N, Kamble NU, Mehta K, Pandey AK, Salvi P. A seed-specific DNA-binding with One Finger transcription factor, RPBF, positively regulates galactinol synthase to maintain seed vigour in rice. PLANT & CELL PHYSIOLOGY 2024; 65:2066-2079. [PMID: 39492760 DOI: 10.1093/pcp/pcae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Seed vigour and longevity are intricate yet indispensable physiological traits for agricultural crops, as they play a crucial role in facilitating the successful emergence of seedlings and exert a substantial influence on crop productivity. Transcriptional regulation plays an important role in seed development, maturation, and desiccation tolerance, which are important attributes for seed vigour and longevity. Here, we have investigated the regulatory role of the seed-specific DNA-binding with One Finger (DOF) transcription factor and the rice prolamin box binding factor (RPBF) in seed vigour. RPBF modulates the transcription of galactinol synthase (GolS) and improves seed vigour. The promoter region of GolS-encoding genes from different species was enriched with DOF-binding sites, and the expression levels of both RPBF; OsGolS were found to enhance during seed development. Furthermore, direct interaction of RPBF with the OsGolS promoter has been demonstrated through multiple approaches: yeast one-hybrid assays, in planta promoter-GUS assays, dual luciferase assay, and in silico molecular docking. To assess functionality, Agrobacterium-mediated genetic transformation of rice was performed to generate the RNAi lines with reduced RPBF expression. In these RNAi lines, a reduction in both galactinol and raffinose content was observed. Since galactinol and raffinose are known contributors to seed vigour, the T2-transgenic lines were assessed for vigour and viability. For this, RNAi seeds were subjected to accelerated ageing by exposing them to high relative humidity and temperature, followed by scoring the germination and viability potential. Tetrazolium and seed germination assay revealed that the RNAi seeds were more sensitive to ageing compared to their wild-type and vector control counterparts. Collectively, this is the first report demonstrating that the DOF transcription factor RPBF controls the seed vigour through transcriptional regulation of GolS.
Collapse
Affiliation(s)
- Kaberi Sonowal
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar 140306, India
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Nishu Gandass
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar 140306, India
| | - Nitin Uttam Kamble
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Kritika Mehta
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar 140306, India
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Ajay Kumar Pandey
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar 140306, India
| | - Prafull Salvi
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar 140306, India
| |
Collapse
|
7
|
Karlsson ME, Forsberg G, Rosberg AK, Thaning C, Alsanius B. Impact of thermal seed treatment on spermosphere microbiome, metabolome and viability of winter wheat. Sci Rep 2024; 14:27197. [PMID: 39516585 PMCID: PMC11549219 DOI: 10.1038/s41598-024-78575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Thermal seed treatment can be used as an alternative method to prevent infection by seed-borne diseases, but exposure duration and temperature during thermal treatment are important to maintain high seed viability and emergence whilst decreasing infection rate. A method for predicting suitable treatment parameters to maintain viability and eliminate seed-borne pathogens is therefore needed. Seeds of winter wheat were subjected to thermal treatment at four levels of intensity and pre-treatments with or without imbibition. Treatment impact was measured by metabolome analysis using LC-MS and GC-MS, analysis of spermosphere bacterial and fungal metagenomes using Illumina MiSeq, and detection of presence of Fusarium spp. and Microdochium spp. using ddPCR. The results showed that moderate treatment intensity reduced signs of infection and increased seedling emergence. In imbibed samples, myo-inositol concentration and myo-inositol: glucose ratio were positively correlated with treatment intensity, whereas concentrations of glucose and citric acid were negatively correlated. No correlations were found for non-imbibed samples. Imbibition had a large significant impact on microbial community composition of the wheat spermosphere. Imbibition of wheat seeds prior to thermal treatment altered wheat spermosphere microbiota. The concentration of myo-inositol, potentially in combination with glucose, could be a candidate predictor for suitable thermal treatment intensity of wheat seeds.
Collapse
Affiliation(s)
- Maria E Karlsson
- Dept of Biosystems and Technology, Microbial Horticulture Unit, Swedish University of Agricultural Sciences, PO Box 190, Lomma, 23244, Sweden.
| | - Gustaf Forsberg
- Lantmännen BioAgri AB, Fågelbacksvägen 3, Uppsala, 75651, Sweden
| | - Anna Karin Rosberg
- Dept of Biosystems and Technology, Microbial Horticulture Unit, Swedish University of Agricultural Sciences, PO Box 190, Lomma, 23244, Sweden
| | | | - Beatrix Alsanius
- Dept of Biosystems and Technology, Microbial Horticulture Unit, Swedish University of Agricultural Sciences, PO Box 190, Lomma, 23244, Sweden
| |
Collapse
|
8
|
Yan Y, Zhu X, Qi H, Wang Y, Zhang H, He J. Rice seed storability: From molecular mechanisms to agricultural practices. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112215. [PMID: 39151802 DOI: 10.1016/j.plantsci.2024.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The storability of rice seeds is crucial for ensuring flexible planting options, agricultural seed security, and global food safety. With the intensification of global climate change and the constant fluctuations in agricultural production conditions, enhancing the storability of rice seeds has become particularly important. Seed storability is a complex quantitative trait regulated by both genetic and environmental factors. This article reviews the main regulatory mechanisms of rice seed storability, including the accumulation of seed storage proteins, late embryogenesis abundant (LEA) proteins, heat shock proteins, sugar signaling, hormonal regulation by gibberellins and abscisic acid, and the role of the ubiquitination pathway. Additionally, this article explores the improvement of storability using wild rice genes, molecular marker-assisted selection, and gene editing techniques such as CRISPR/Cas9 in rice breeding. By providing a comprehensive scientific foundation and practical guidance, this review aims to promote the development of rice varieties with enhanced storability to meet evolving agricultural demands.
Collapse
Affiliation(s)
- Yuntao Yan
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Xiaoya Zhu
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Hui Qi
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China; Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yan Wang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Jiwai He
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China.
| |
Collapse
|
9
|
Klčová B, Balarynová J, Trněný O, Krejčí P, Cechová MZ, Leonova T, Gorbach D, Frolova N, Kysil E, Orlova A, Ihling С, Frolov A, Bednář P, Smýkal P. Domestication has altered gene expression and secondary metabolites in pea seed coat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2269-2295. [PMID: 38578789 DOI: 10.1111/tpj.16734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co-expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall-bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet.
Collapse
Affiliation(s)
- Barbora Klčová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Jana Balarynová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Oldřich Trněný
- Agricultural Research Ltd., Zemědělská 1, Troubsko, 664 41, Czech Republic
| | - Petra Krejčí
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Monika Zajacová Cechová
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Daria Gorbach
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Nadezhda Frolova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Elana Kysil
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Сhristian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle (Saale), 06120, Germany
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Petr Bednář
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| |
Collapse
|
10
|
Li F, Ye H, Wang Y, Zhou J, Zhang G, Liu X, Lu X, Wang F, Chen Q, Chen G, Xiao Y, Tang W, Deng H. Transcriptomic Profiling of Two Rice Thermo-Sensitive Genic Male Sterile Lines with Contrasting Seed Storability after Artificial Accelerated Aging Treatment. PLANTS (BASEL, SWITZERLAND) 2024; 13:945. [PMID: 38611475 PMCID: PMC11013862 DOI: 10.3390/plants13070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Seed storability has a significant impact on seed vitality and is a crucial genetic factor in maintaining seed value during storage. In this study, RNA sequencing was used to analyze the seed transcriptomes of two rice thermo-sensitive genic male sterile (TGMS) lines, S1146S (storage-tolerant) and SD26S (storage-susceptible), with 0 and 7 days of artificial accelerated aging treatment. In total, 2658 and 1523 differentially expressed genes (DEGs) were identified in S1146S and SD26S, respectively. Among these DEGs, 729 (G1) exhibited similar regulation patterns in both lines, while 1924 DEGs (G2) were specific to S1146S, 789 DEGs (G3) were specific to SD26S, and 5 DEGs (G4) were specific to contrary differential expression levels. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that "translation", "ribosome", "oxidative phosphorylation", "ATP-dependent activity", "intracellular protein transport", and "regulation of DNA-templated transcription" were significantly enriched during seed aging. Several genes, like Os01g0971400, Os01g0937200, Os03g0276500, Os05g0328632, and Os07g0214300, associated with seed storability were identified in G4. Core genes Os03g0100100 (OsPMEI12), Os03g0320900 (V2), Os02g0494000, Os02g0152800, and Os03g0710500 (OsBiP2) were identified in protein-protein interaction (PPI) networks. Seed vitality genes, MKKK62 (Os01g0699600), OsFbx352 (Os10g0127900), FSE6 (Os05g0540000), and RAmy3E (Os08g0473600), related to seed storability were identified. Overall, these results provide novel perspectives for studying the molecular response and related genes of different-storability rice TGMS lines under artificial aging conditions. They also provide new ideas for studying the storability of hybrid rice.
Collapse
Affiliation(s)
- Fan Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Hongbing Ye
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Yingfeng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Jieqiang Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Xuedan Lu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Qiuhong Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Guihua Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410128, China
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| |
Collapse
|
11
|
He H, Gao H, Xue X, Ren J, Chen X, Niu B. Variation of sugar compounds in Phoebe chekiangensis seeds during natural desiccation. PLoS One 2024; 19:e0299669. [PMID: 38452127 PMCID: PMC10919866 DOI: 10.1371/journal.pone.0299669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
To investigate the role of sugar metabolism in desiccation-sensitive seeds, we performed a natural desiccation treatment on Phoebe chekiangensis seeds in a room and systematically analyzed the changes in seed germination, sugar compounds, malondialdehyde, and relative electrical conductivity during the seed desiccation. The results revealed that the initial moisture content of P. chekiangensis seed was very high (37.06%) and the seed was sensitive to desiccation, the germination percentage of the seed decreased to 5.33% when the seed was desiccated to 22.04% of moisture content, therefore, the seeds were considered recalcitrant. Based on the logistic model, we know that the moisture content of the seeds is 29.05% when the germination percentage drops to 50% and that it is desirable to keep the seed moisture content above 31.74% during ambient transportation. During seed desiccation, sucrose and trehalose contents exhibited increasing trends, and raffinose also increased during the late stage of desiccation, however, low levels of the non-reducing sugar accumulations may not prevent the loss of seed viability caused by desiccation. Glucose and fructose predominated among sugar compounds, and they showed a slight increase followed by a significant decrease. Their depletion may have contributed to the accumulation of sucrose and raffinose family oligosaccharides. Correlation analysis revealed a significant relationship between the accumulation of sucrose, trehalose, and soluble sugars, and the reduction in seed viability. Sucrose showed a significant negative correlation with glucose and fructose. Trehalose also exhibited the same pattern of correlation. These results provided additional data and theoretical support for understanding the mechanism of sugar metabolism in seed desiccation sensitivity.
Collapse
Affiliation(s)
- Huangpan He
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Handong Gao
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Xiaoming Xue
- College of Criminal Science and Technology, Nanjing Police University, Key Laboratory of Wildlife Evidence Technology of National Forestry and Grassland Administration, Nanjing, China
| | - Jiahui Ren
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Xueqi Chen
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Ben Niu
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| |
Collapse
|
12
|
Kaur H, Ranjan R, Singh P, Salvi P. Editorial: Genomic and biotechnological interventions for the concurrent improvement of stress resilience and seed-associated traits in crops. FRONTIERS IN PLANT SCIENCE 2024; 14:1359918. [PMID: 38259914 PMCID: PMC10801716 DOI: 10.3389/fpls.2023.1359918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Affiliation(s)
- Harmeet Kaur
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Rajeev Ranjan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Pallavi Singh
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute (NABI), Punjab, India
| |
Collapse
|
13
|
Pirredda M, Fañanás-Pueyo I, Oñate-Sánchez L, Mira S. Seed Longevity and Ageing: A Review on Physiological and Genetic Factors with an Emphasis on Hormonal Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 13:41. [PMID: 38202349 PMCID: PMC10780731 DOI: 10.3390/plants13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Upon storage, seeds inevitably age and lose their viability over time, which determines their longevity. Longevity correlates with successful seed germination and enhancing this trait is of fundamental importance for long-term seed storage (germplasm conservation) and crop improvement. Seed longevity is governed by a complex interplay between genetic factors and environmental conditions experienced during seed development and after-ripening that will shape seed physiology. Several factors have been associated with seed ageing such as oxidative stress responses, DNA repair enzymes, and composition of seed layers. Phytohormones, mainly abscisic acid, auxins, and gibberellins, have also emerged as prominent endogenous regulators of seed longevity, and their study has provided new regulators of longevity. Gaining a thorough understanding of how hormonal signalling genes and pathways are integrated with downstream mechanisms related to seed longevity is essential for formulating strategies aimed at preserving seed quality and viability. A relevant aspect related to research in seed longevity is the existence of significant differences between results depending on the seed equilibrium relative humidity conditions used to study seed ageing. Hence, this review delves into the genetic, environmental and experimental factors affecting seed ageing and longevity, with a particular focus on their hormonal regulation. We also provide gene network models underlying hormone signalling aimed to help visualize their integration into seed longevity and ageing. We believe that the format used to present the information bolsters its value as a resource to support seed longevity research for seed conservation and crop improvement.
Collapse
Affiliation(s)
- Michela Pirredda
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Sara Mira
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| |
Collapse
|
14
|
Chen W, Cui Y, He Y, Zhao L, Cui R, Liu X, Huang H, Zhang Y, Fan Y, Feng X, Ni K, Jiang T, Han M, Lei Y, Liu M, Meng Y, Chen X, Lu X, Wang D, Wang J, Wang S, Guo L, Chen Q, Ye W. Raffinose degradation-related gene GhAGAL3 was screened out responding to salinity stress through expression patterns of GhAGALs family genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1246677. [PMID: 38192697 PMCID: PMC10773686 DOI: 10.3389/fpls.2023.1246677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
A-galactosidases (AGALs), the oligosaccharide (RFO) catabolic genes of the raffinose family, play crucial roles in plant growth and development and in adversity stress. They can break down the non-reducing terminal galactose residues of glycolipids and sugar chains. In this study, the whole genome of AGALs was analyzed. Bioinformatics analysis was conducted to analyze members of the AGAL family in Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, and Gossypium raimondii. Meanwhile, RT-qPCR was carried out to analyze the expression patterns of AGAL family members in different tissues of terrestrial cotton. It was found that a series of environmental factors stimulated the expression of the GhAGAL3 gene. The function of GhAGAL3 was verified through virus-induced gene silencing (VIGS). As a result, GhAGAL3 gene silencing resulted in milder wilting of seedlings than the controls, and a significant increase in the raffinose content in cotton, indicating that GhAGAL3 responded to NaCl stress. The increase in raffinose content improved the tolerance of cotton. Findings in this study lay an important foundation for further research on the role of the GhAGAL3 gene family in the molecular mechanism of abiotic stress resistance in cotton.
Collapse
Affiliation(s)
- Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde, Hunan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Xiaoyu Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Xixian Feng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Tiantian Jiang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yuqian Lei
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
15
|
Kumari M, Padhi SR, Chourey SK, Kondal V, Thakare SS, Negi A, Gupta V, Arya M, Yasin JK, Singh R, Bharadwaj C, Kumar A, Bhatt KC, Bhardwaj R, Rana JC, Joshi T, Riar A. Unveiling Diversity for Quality Traits in the Indian Landraces of Horsegram [ Macrotyloma uniflorum (Lam.) Verdc.]. PLANTS (BASEL, SWITZERLAND) 2023; 12:3803. [PMID: 38005699 PMCID: PMC10675608 DOI: 10.3390/plants12223803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Horsegram (Macrotyloma uniflorum [Lam.] Verdc.) is an underutilized pulse crop primarily cultivated in South Asian countries like India, Nepal, and Sri Lanka. It offers various nutraceutical properties and demonstrates remarkable resilience to both biotic and abiotic stresses. As a result, it has emerged as a promising crop for ensuring future food and nutritional security. The purpose of this study was to assess the nutritional profile of 139 horsegram germplasm lines obtained from 16 Indian states that were conserved at the National Gene Bank of India. Standard analytical methods, including those provided by the Association of Official Analytical Chemists (AOAC), were used for this investigation. The study revealed substantial variability in essential nutrients, such as protein (ranging from 21.8 to 26.7 g/100 g), starch (ranging from 26.2 to 33.0 g/100 g), total soluble sugars (TSSs) (ranging from 0.86 to 12.1 g/100 g), phenolics (ranging from 3.38 to 11.3 mg gallic acid equivalents (GAEs)/g), and phytic acid content (ranging from 1.07 to 21.2 mg/g). Noteworthy correlations were observed, including a strong positive correlation between sugars and phenols (r = 0.70) and a moderate negative correlation between protein and starch (r = -0.61) among the studied germplasm lines. Principal component analysis (PCA) highlighted that the first three principal components contributed to 88.32% of the total variability, with TSSs, phytates, and phenols emerging as the most significant contributors. The cluster analysis grouped the accessions into five clusters, with cluster III containing the accessions with the most desirable traits. The differential distribution of the accessions from north India into clusters I and III suggested a potential geographical influence on the adaptation and selection of genes. This study identified a panel of promising accessions exhibiting multiple desirable traits. These specific accessions could significantly aid quality breeding programs or be directly released as cultivars if they perform well agronomically.
Collapse
Affiliation(s)
- Manju Kumari
- The Graduate School, ICAR—Indian Agricultural Research Institute, PUSA, New Delhi 110012, India; (M.K.); (S.R.P.)
- ICAR—National Bureau of Plant Genetic Resource, PUSA, New Delhi 110012, India; (S.K.C.); (V.K.); (V.G.); (M.A.); (J.K.Y.); (R.S.)
| | - Siddhant Ranjan Padhi
- The Graduate School, ICAR—Indian Agricultural Research Institute, PUSA, New Delhi 110012, India; (M.K.); (S.R.P.)
- ICAR—National Bureau of Plant Genetic Resource, PUSA, New Delhi 110012, India; (S.K.C.); (V.K.); (V.G.); (M.A.); (J.K.Y.); (R.S.)
| | - Sushil Kumar Chourey
- ICAR—National Bureau of Plant Genetic Resource, PUSA, New Delhi 110012, India; (S.K.C.); (V.K.); (V.G.); (M.A.); (J.K.Y.); (R.S.)
| | - Vishal Kondal
- ICAR—National Bureau of Plant Genetic Resource, PUSA, New Delhi 110012, India; (S.K.C.); (V.K.); (V.G.); (M.A.); (J.K.Y.); (R.S.)
| | - Swapnil S. Thakare
- ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (S.S.T.); (C.B.); (A.K.)
| | - Ankita Negi
- ICAR—Indian Agricultural Statistics Research Institute, New Delhi 110012, India;
| | - Veena Gupta
- ICAR—National Bureau of Plant Genetic Resource, PUSA, New Delhi 110012, India; (S.K.C.); (V.K.); (V.G.); (M.A.); (J.K.Y.); (R.S.)
| | - Mamta Arya
- ICAR—National Bureau of Plant Genetic Resource, PUSA, New Delhi 110012, India; (S.K.C.); (V.K.); (V.G.); (M.A.); (J.K.Y.); (R.S.)
| | - Jeshima Khan Yasin
- ICAR—National Bureau of Plant Genetic Resource, PUSA, New Delhi 110012, India; (S.K.C.); (V.K.); (V.G.); (M.A.); (J.K.Y.); (R.S.)
| | - Rakesh Singh
- ICAR—National Bureau of Plant Genetic Resource, PUSA, New Delhi 110012, India; (S.K.C.); (V.K.); (V.G.); (M.A.); (J.K.Y.); (R.S.)
| | - Chellapilla Bharadwaj
- ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (S.S.T.); (C.B.); (A.K.)
| | - Atul Kumar
- ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (S.S.T.); (C.B.); (A.K.)
| | - Kailash Chandra Bhatt
- ICAR—National Bureau of Plant Genetic Resource, PUSA, New Delhi 110012, India; (S.K.C.); (V.K.); (V.G.); (M.A.); (J.K.Y.); (R.S.)
| | - Rakesh Bhardwaj
- ICAR—National Bureau of Plant Genetic Resource, PUSA, New Delhi 110012, India; (S.K.C.); (V.K.); (V.G.); (M.A.); (J.K.Y.); (R.S.)
| | - Jai Chand Rana
- The Alliance of Bioversity International & CIAT—India Office, New Delhi 110012, India;
| | - Tanay Joshi
- Department of International Cooperation, Research Institute of Organic Agriculture FiBL, 5070 Frick, Switzerland; (T.J.); (A.R.)
| | - Amritbir Riar
- Department of International Cooperation, Research Institute of Organic Agriculture FiBL, 5070 Frick, Switzerland; (T.J.); (A.R.)
| |
Collapse
|
16
|
Varshney V, Hazra A, Rao V, Ghosh S, Kamble NU, Achary RK, Gautam S, Majee M. The Arabidopsis F-box protein SKP1-INTERACTING PARTNER 31 modulates seed maturation and seed vigor by targeting JASMONATE ZIM DOMAIN proteins independently of jasmonic acid-isoleucine. THE PLANT CELL 2023; 35:3712-3738. [PMID: 37462265 PMCID: PMC10533341 DOI: 10.1093/plcell/koad199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/21/2023] [Indexed: 09/29/2023]
Abstract
F-box proteins have diverse functions in eukaryotic organisms, including plants, mainly targeting proteins for 26S proteasomal degradation. Here, we demonstrate the role of the F-box protein SKP1-INTERACTING PARTNER 31 (SKIP31) from Arabidopsis (Arabidopsis thaliana) in regulating late seed maturation events, seed vigor, and viability through biochemical and genetic studies using skip31 mutants and different transgenic lines. We show that SKIP31 is predominantly expressed in seeds and that SKIP31 interacts with JASMONATE ZIM DOMAIN (JAZ) proteins, key repressors in jasmonate (JA) signaling, directing their ubiquitination for proteasomal degradation independently of coronatine/jasmonic acid-isoleucine (JA-Ile), in contrast to CORONATINE INSENSITIVE 1, which sends JAZs for degradation in a coronatine/JA-Ile dependent manner. Moreover, JAZ proteins interact with the transcription factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) and repress its transcriptional activity, which in turn directly or indirectly represses the expression of downstream genes involved in the accumulation of LATE EMBRYOGENESIS ABUNDANT proteins, protective metabolites, storage compounds, and abscisic acid biosynthesis. However, SKIP31 targets JAZ proteins, deregulates ABI5 activity, and positively regulates seed maturation and consequently seed vigor. Furthermore, ABI5 positively influences SKIP31 expression, while JAZ proteins repress ABI5-mediated transactivation of SKIP31 and exert feedback regulation. Taken together, our findings reveal the role of the SKIP31-JAZ-ABI5 module in seed maturation and consequently, establishment of seed vigor.
Collapse
Affiliation(s)
- Vishal Varshney
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Abhijit Hazra
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Venkateswara Rao
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Shraboni Ghosh
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Nitin Uttam Kamble
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Rakesh Kumar Achary
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Shikha Gautam
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Manoj Majee
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| |
Collapse
|
17
|
Yao D, Zhou J, Zhang A, Wang J, Liu Y, Wang L, Pi W, Li Z, Yue W, Cai J, Liu H, Hao W, Qu X. Advances in CRISPR/Cas9-based research related to soybean [ Glycine max (Linn.) Merr] molecular breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1247707. [PMID: 37711287 PMCID: PMC10499359 DOI: 10.3389/fpls.2023.1247707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Soybean [Glycine max (Linn.) Merr] is a source of plant-based proteins and an essential oilseed crop and industrial raw material. The increase in the demand for soybeans due to societal changes has coincided with the increase in the breeding of soybean varieties with enhanced traits. Earlier gene editing technologies involved zinc finger nucleases and transcription activator-like effector nucleases, but the third-generation gene editing technology uses clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The rapid development of CRISPR/Cas9 technology has made it one of the most effective, straightforward, affordable, and user-friendly technologies for targeted gene editing. This review summarizes the application of CRISPR/Cas9 technology in soybean molecular breeding. More specifically, it provides an overview of the genes that have been targeted, the type of editing that occurs, the mechanism of action, and the efficiency of gene editing. Furthermore, suggestions for enhancing and accelerating the molecular breeding of novel soybean varieties with ideal traits (e.g., high yield, high quality, and durable disease resistance) are included.
Collapse
Affiliation(s)
- Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Junming Zhou
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Aijing Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jiaxin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yixuan Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Lixue Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenxuan Pi
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Zihao Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenjun Yue
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jinliang Cai
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Huijing Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyuan Hao
- Jilin Provincial Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiangchun Qu
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| |
Collapse
|
18
|
Palmer NA, Sarath G, Bowman MJ, Saathoff AJ, Edmé SJ, Mitchell RB, Tobias CM, Madhavan S, Scully ED, Sattler SE. Divergent Metabolic Changes in Rhizomes of Lowland and Upland Switchgrass ( Panicum virgatum) from Early Season through Dormancy Onset. PLANTS (BASEL, SWITZERLAND) 2023; 12:1732. [PMID: 37111955 PMCID: PMC10143016 DOI: 10.3390/plants12081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
High-biomass-yielding southerly adapted switchgrasses (Panicum virgatum L.) frequently suffer from unpredictable winter hardiness at more northerly sites arising from damage to rhizomes that prevent effective spring regrowth. Previously, changes occurring over the growing season in rhizomes sampled from a cold-adapted tetraploid upland cultivar, Summer, demonstrated a role for abscisic acid (ABA), starch accumulation, and transcriptional reprogramming as drivers of dormancy onset and potential keys to rhizome health during winter dormancy. Here, rhizome metabolism of a high-yielding southerly adapted tetraploid switchgrass cultivar, Kanlow-which is a significant source of genetics for yield improvement-was studied over a growing season at a northern site. Metabolite levels and transcript abundances were combined to develop physiological profiles accompanying greening through the onset of dormancy in Kanlow rhizomes. Next, comparisons of the data to rhizome metabolism occurring in the adapted upland cultivar Summer were performed. These data revealed both similarities as well as numerous differences in rhizome metabolism that were indicative of physiological adaptations unique to each cultivar. Similarities included elevated ABA levels and accumulation of starch in rhizomes during dormancy onset. Notable differences were observed in the accumulation of specific metabolites, the expression of genes encoding transcription factors, and several enzymes linked to primary metabolism.
Collapse
Affiliation(s)
- Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (N.A.P.); (A.J.S.); (S.J.E.); (R.B.M.); (S.E.S.)
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (N.A.P.); (A.J.S.); (S.J.E.); (R.B.M.); (S.E.S.)
| | - Michael J. Bowman
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University St., Peoria, IL 61604, USA;
| | - Aaron J. Saathoff
- Wheat, Sorghum, and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (N.A.P.); (A.J.S.); (S.J.E.); (R.B.M.); (S.E.S.)
| | - Serge J. Edmé
- Wheat, Sorghum, and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (N.A.P.); (A.J.S.); (S.J.E.); (R.B.M.); (S.E.S.)
| | - Robert B. Mitchell
- Wheat, Sorghum, and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (N.A.P.); (A.J.S.); (S.J.E.); (R.B.M.); (S.E.S.)
| | - Christian M. Tobias
- Division of Plant Systems-Production, National Institute of Food and Agriculture, United States Department of Agriculture, Beacon Complex, Kansas City, MO 64133, USA;
| | | | - Erin D. Scully
- Stored Products Insect and Engineering Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| | - Scott E. Sattler
- Wheat, Sorghum, and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (N.A.P.); (A.J.S.); (S.J.E.); (R.B.M.); (S.E.S.)
| |
Collapse
|