1
|
Cao S, Gao S, Ni C, Xu Y, Pang B, Zhang J, Zhang Y, Wang Y, Geng Z, Li S, Zhao R, Han B, Cui X, Bao Y. Study on the therapeutic mechanism of HJ granules in a rat model of urinary tract infection caused by Escherichia coli. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118056. [PMID: 38490287 DOI: 10.1016/j.jep.2024.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Urinary tract infections (UTIs) are globally prevalent infectious diseases, predominantly caused by uropathogenic Escherichia coli (UPEC). The misuse of antibiotics has led to the emergence of several drug-resistant strains. Traditional Chinese Medicine (TCM) has its own advantages in the treatment of UTIs. HJ granules is a herbal formula used for the treatment of UTIs. However, its mechanism of action is not clear. AIM OF THE STUDY The aim of this study was to investigate the therapeutic efficacy and mechanism of action of HJ granules in a rat model of UTI caused by Escherichia coli (E coli) CFT073. MATERIALS AND METHODS SD rats were selected to establish a rat UTI model by injecting UPEC strain CFT073 into the bladder using the transurethral placement method. HJ granules were administered to rats after modelling and the efficacy of HJ granule was investigated by measuring urinary decanalogue, inflammatory factors in bladder tissue and pathological changes in the bladder after 3d of administration. Expression of sonic hedgehog (SHH), NOD-like receptor thermoprotein domain 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and activation of cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by western blotting and immunofluorescence staining in rat bladder tissue. NLRP3, ASC and caspase-1, a cysteine-containing aspartic protein, were expressed and activated. RESULTS The results showed that infection of rats with UPEC resulted in increased pH and erythrocytes in bladder irrigation fluid; increased expression of IL-1β, IL-6 and SHH and decreased expression of IL-10 in bladder tissue; and significant upregulation of the expression of both SHH and NLRP3 inflammasom and significant activation of NLRP3 inflammasom. HJ granules significantly increased the concentration of IL-10 in the bladder, inhibited the expression of SHH and NLRP3 inflammasom in bladder tissue, and suppressed the activation of NLRP3 inflammasom, thereby reducing inflammatory lesions in bladder tissue. CONCLUSION HJ granules may improve bladder injury and treat UTIs by inhibiting the expression and activation of NLRP3 inflammasom.
Collapse
Affiliation(s)
- Shan Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuangrong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chen Ni
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingli Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Pang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingsheng Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yaxin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shurang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Han
- Heilongjiang Jiren Pharmaceutical Co., Ltd., Harbin, 150000, China.
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yanyan Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Skevaki C, Nadeau KC, Rothenberg ME, Alahmad B, Mmbaga BT, Masenga GG, Sampath V, Christiani DC, Haahtela T, Renz H. Impact of climate change on immune responses and barrier defense. J Allergy Clin Immunol 2024; 153:1194-1205. [PMID: 38309598 DOI: 10.1016/j.jaci.2024.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Climate change is not just jeopardizing the health of our planet but is also increasingly affecting our immune health. There is an expanding body of evidence that climate-related exposures such as air pollution, heat, wildfires, extreme weather events, and biodiversity loss significantly disrupt the functioning of the human immune system. These exposures manifest in a broad range of stimuli, including antigens, allergens, heat stress, pollutants, microbiota changes, and other toxic substances. Such exposures pose a direct and indirect threat to our body's primary line of defense, the epithelial barrier, affecting its physical integrity and functional efficacy. Furthermore, these climate-related environmental stressors can hyperstimulate the innate immune system and influence adaptive immunity-notably, in terms of developing and preserving immune tolerance. The loss or failure of immune tolerance can instigate a wide spectrum of noncommunicable diseases such as autoimmune conditions, allergy, respiratory illnesses, metabolic diseases, obesity, and others. As new evidence unfolds, there is a need for additional research in climate change and immunology that covers diverse environments in different global settings and uses modern biologic and epidemiologic tools.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Blandina T Mmbaga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Gileard G Masenga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Obstetrics and Gynecology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Harald Renz
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany; Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia.
| |
Collapse
|
3
|
Razumova IY, Surnina ZV, Dzhaber DN. [Current view on the pathogenesis of immune-mediated inflammatory diseases associated with ocular manifestations]. Vestn Oftalmol 2023; 139:68-75. [PMID: 37067934 DOI: 10.17116/oftalma202313902168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
This literature review discusses the new concept of pathogenesis of systemic immune-mediated inflammatory diseases (IMIDs), presents their classification and analyzes their association with ocular manifestations.
Collapse
Affiliation(s)
- I Yu Razumova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - Z V Surnina
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - D N Dzhaber
- Scientific and Practical Sight Recovery Center, Moscow, Russia
| |
Collapse
|
4
|
Izzotti A, Spatera P, Khalid Z, Pulliero A. Importance of Punctual Monitoring to Evaluate the Health Effects of Airborne Particulate Matter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10587. [PMID: 36078301 PMCID: PMC9518414 DOI: 10.3390/ijerph191710587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) pollution is one of the major public health problems worldwide, given the high mortality attributable to exposure to PM pollution and the high pathogenicity that is found above all in the respiratory, cardiovascular, and neurological systems. The main sources of PM pollution are the daily use of fuels (wood, coal, organic residues) in appliances without emissions abatement systems, industrial emissions, and vehicular traffic. This review aims to investigate the causes of PM pollution and classify the different types of dust based on their size. The health effects of exposure to PM will also be discussed. Particular attention is paid to the measurement method, which is unsuitable in the risk assessment process, as the evaluation of the average PM compared to the evaluation of PM with punctual monitoring significantly underestimates the health risk induced by the achievement of high PM values, even for limited periods of time.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paola Spatera
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Zumama Khalid
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | |
Collapse
|
5
|
Azlan A, Salamonsen LA, Hutchison J, Evans J. Endometrial inflammasome activation accompanies menstruation and may have implications for systemic inflammatory events of the menstrual cycle. Hum Reprod 2021; 35:1363-1376. [PMID: 32488243 DOI: 10.1093/humrep/deaa065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Does NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome activation within decidualized endometrial stromal cells accompany menstruation and is this reflected systemically? SUMMARY ANSWER Components of the NLRP3 inflammasome immunolocalize to decidualized endometrial stromal cells immediately prior to menstruation, and are activated in an in vitro model of menstruation, as evidenced by downstream interleukin (IL)-1beta and IL-18 release, this being reflected systemically in vivo. WHAT IS KNOWN ALREADY Menstruation is a highly inflammatory event associated with activation of NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells), local release of chemokines and cytokines and inflammatory leukocyte influx. Systemically, chemokines and cytokines fluctuate across the menstrual cycle. STUDY DESIGN, SIZE, DURATION This study examined the NLRP3 inflammasome and activation of downstream IL-1beta and IL-18 in endometrial tissues from women of known fertility (≥1 previous parous pregnancy) across the menstrual cycle (n ≥ 8 per cycle phase), serum from women during the proliferative, secretory and menstrual phases (≥9 per cycle phase) of the cycle and menstrual fluid collected on Day 2 of menses (n = 18). Endometrial stromal cells isolated from endometrial tissue biopsies (n = 10 in total) were used for an in vitro model of pre-menstrual hormone withdrawal. PARTICIPANTS/MATERIALS, SETTING, METHODS Expression and localization of components of the NLRP3 inflammasome (NLRP3 & apoptosis-associated speck-caspase recruit domain [ASC]) in endometrial tissues was performed by immunohistochemistry. Unbiased digital quantification of immunohistochemical staining allowed determination of different patterns of expression across the menstrual cycle. Serum from women across the menstrual cycle was examined for IL-1beta and IL-18 concentrations by ELISA. An in vitro model of hormone withdrawal from estrogen/progestin decidualized endometrial stromal cells was used to more carefully examine activation of the NLRP3 inflammasome. Endometrial stromal cells isolated from endometrial tissue biopsies (n = 10) were treated with estrogen/medroxyprogesterone acetate for 12 days to induce decidualization (assessed by release of prolactin) followed by withdrawal of steroid hormone support. Activation of NLRP3, & ASC in these cells was examined on Days 0-3 after hormone withdrawal by Western immunoblotting. Release of IL-1beta and IL-18 examined during decidualization and across the same time course of hormone withdrawal by ELISA. Specific involvement of NLRP3 inflammasome activation in IL-1beta and IL-18 release after hormone withdrawal was investigated via application of the NLRP3 inflammasome inhibitor MCC950 at the time of hormone withdrawal. MAIN RESULTS AND THE ROLE OF CHANCE Critical components of the NLRP3 inflammasome (NLRP3, ASC) were increased in menstrual phase endometrial tissues versus early secretory phase tissues (P < 0.05, n/s, respectively). NLRP3 and ASC were also elevated in the proliferative versus secretory phase of the cycle (P < 0.01, n/s, respectively) with ASC also significantly increased in the late-secretory versus early-secretory phase (P < 0.05). The pattern of activation was reflected in systemic levels of the inflammasome mediators, with IL-1beta and IL-18 elevated in peripheral blood serum during menstruation (Day 2 of menses) versus secretory phase (P = 0.026, P = 0.0042, respectively) and significantly elevated in menstrual fluid (Day 2 of menses) versus systemic levels across all cycle phases, suggesting that local inflammasome activation within the endometrium during menses is reflected by systemic inflammation. NLRP3 and ASC localized to decidualized cells adjacent to the spiral arterioles in the late secretory phase of the menstrual cycle, where the menstrual cascade is thought to be initiated, and to endometrial leukocytes during the menstrual phase. NLRP3 also localized to glandular epithelial cells during the late-secretory/menstrual phases. Localization of both NLRP3 and ASC switched from predominant epithelial localization during the early-secretory phase to stromal localization during the late-secretory/menstrual phase. Using an in vitro model of hormone withdrawal from decidualized human endometrial stromal cells, we demonstrated progressive activation of NLRP3 and ASC after hormone withdrawal increasing from Day 0 of withdrawal/Day 12 of decidualization to Day 3 of withdrawal. Downstream release of IL-1beta and IL-18 from decidualized stromal cells after hormone withdrawal followed the same pattern with the role of NLRP3 inflammasome activation confirmed via the inhibition of IL-1beta and IL-18 release upon application of MCC950. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study uses descriptive and semi-quantitative measures of NLRP3 inflammasome activation within endometrial tissues. Further, the in vitro model of pre-menstrual hormone withdrawal may not accurately recapitulate the in vivo environment as only one cell type is present and medroxyprogesterone acetate replaced natural progesterone due to its longer stability. WIDER IMPLICATIONS OF THE FINDINGS We provide novel evidence that the NLRP3 inflammasome is activated within decidualized endometrial stromal cells immediately prior to menses and that local activation of the inflammasome within the endometrium appears to be reflected systemically in by activation of downstream IL-1beta and IL-18. Given the prevalence of menstrual disorders associated with inflammation including dysmenorrhoea and aspects of pre-menstrual syndrome, the inflammasome could be a novel target for ameliorating such burdens. STUDY FUNDING/COMPETING INTEREST(S) The authors have no competing interests. J.E. was supported by a Fielding Foundation fellowship, NHMRC project grants (#1139489 and #1141946) and The Hudson Institute of Medical Research. L.A.S. was supported by The Hudson Institute of Medical Research and J.H. by an Australian Government Research Training Program Scholarship. We acknowledge the Victorian Government's Operating Infrastructure funding to the Hudson Institute. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Aida Azlan
- Centre for Reproductive Health, The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Australia.,Department of Physiology, Monash University, Clayton, 3800 VIC, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton 3800 VIC, Australia
| | - Jennifer Hutchison
- Centre for Reproductive Health, The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton 3800 VIC, Australia
| | - Jemma Evans
- Centre for Reproductive Health, The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton 3800 VIC, Australia
| |
Collapse
|
6
|
Camargo M, Ibrahim E, Intasqui P, Belardin LB, Antoniassi MP, Lynne CM, Brackett NL, Bertolla RP. Seminal inflammasome activity in the adult varicocele. HUM FERTIL 2021; 25:548-556. [PMID: 33432865 DOI: 10.1080/14647273.2020.1870756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Varicocele has been hypothesized to lead to seminal inflammation, which in turn interferes with sperm function. Thus, the aim of this study was to investigate the role of inflammatory cytokines in the pathogenesis of decreased semen quality observed in adult men with varicocele, and to determine if varicocelectomy corrects these potential alterations. A prospective study was carried out including fifteen control men without varicocele and with normal semen quality and 15 men with varicocele with surgical indication. Men with varicocele grades II or III underwent microsurgical subinguinal varicocelectomy. Controls collected one semen sample and men with varicocele collected one before and one 6 months after the surgery. Semen analysis, sperm function, and seminal lipid peroxidation levels were assessed. Seminal plasma inflammasome activity was evaluated by ELISA assays for IL-1β, IL-18 and caspase-1 and by Western blotting for ASC (apoptosis-associated speck-like protein). Groups were compared by an unpaired Student's T test. Varicocelectomy samples were compared using a paired Student's T test (α = 5%). Men with varicocele had decreased semen quality, and increased seminal IL-1β levels, when compared to control men. Varicocelectomy decreased levels of caspase-1, IL-18, and IL1β. Thus, varicocelectomy improves sperm morphology and decreases seminal plasma inflammatory activity, after a six-month post-operative period.
Collapse
Affiliation(s)
- Mariana Camargo
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Emad Ibrahim
- Miami Project to Cure Paralysis and Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paula Intasqui
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Larissa B Belardin
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana P Antoniassi
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Charles M Lynne
- Miami Project to Cure Paralysis and Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nancy L Brackett
- Miami Project to Cure Paralysis and Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ricardo P Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil.,Hospital São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Spinelli M, Boucard C, Di Nicuolo F, Haesler V, Castellani R, Pontecorvi A, Scambia G, Granieri C, Barnea ER, Surbek D, Mueller M, Di Simone N. Synthetic PreImplantation Factor (sPIF) reduces inflammation and prevents preterm birth. PLoS One 2020; 15:e0232493. [PMID: 32511256 PMCID: PMC7279576 DOI: 10.1371/journal.pone.0232493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/15/2020] [Indexed: 01/05/2023] Open
Abstract
Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality and spontaneous PTB is a major contributor. The preceding inflammation/infection contributes not only to spontaneous PTB but is associated with neonatal morbidities including impaired brain development. Therefore, control of exaggerated immune response during pregnancy is an attractive strategy. A potential candidate is synthetic PreImplantation Factor (sPIF) as sPIF prevents inflammatory induced fetal loss and has neuroprotective properties. Here, we tested maternal sPIF prophylaxis in pregnant mice subjected to a lipopolysaccharides (LPS) insult, which results in PTB. Additionally, we evaluated sPIF effects in placental and microglial cell lines. Maternal sPIF application reduced the LPS induced PTB rate significantly. Consequently, sPIF reduced microglial activation (Iba-1 positive cells) and preserved neuronal migration (Cux-2 positive cells) in fetal brains. In fetal brain lysates sPIF decreased IL-6 and INFγ concentrations. In-vitro, sPIF reduced Iba1 and TNFα expression in microglial cells and reduced the expression of pro-apoptotic (Bad and Bax) and inflammatory (IL-6 and NLRP4) genes in placental cell lines. Together, maternal sPIF prophylaxis prevents PTB in part by controlling exaggerated immune response. Given the sPIF`FDA Fast Track approval in non-pregnant subjects, we envision sPIF therapy in pregnancy.
Collapse
Affiliation(s)
- Marialuigia Spinelli
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Céline Boucard
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Fiorella Di Nicuolo
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia
- International Scientific Institute Paolo VI, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italia
| | - Valerie Haesler
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roberta Castellani
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia
| | - Alfredo Pontecorvi
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia
- U.O.C di Endocrinologia e Diabetologia, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Giovanni Scambia
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia
- U.O.C. di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Chiara Granieri
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia
| | - Eytan R. Barnea
- The Society for The Investigation of Early Pregnancy (SIEP), Cherry Hill, NJ, United States of America
- BioIncept LLC, Cherry Hill, NJ, United States of America
| | - Daniel Surbek
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Martin Mueller
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
- * E-mail: (MM); (NDS)
| | - Nicoletta Di Simone
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia
- Dipartimento di Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Roma, Italia
- * E-mail: (MM); (NDS)
| |
Collapse
|
8
|
Rai RC, Bagul PK, Banerjee SK. NLRP3 inflammasome drives inflammation in high fructose fed diabetic rat liver: Effect of resveratrol and metformin. Life Sci 2020; 253:117727. [PMID: 32371063 DOI: 10.1016/j.lfs.2020.117727] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022]
Abstract
AIMS To unravel the underlying mechanism of hepatic inflammation during type 2 diabetes (T2DM), we established the diabetic rat model by feeding with high fructose diet for twenty weeks and studied the involvement of inflammasome in the liver of these rats. MATERIALS AND METHODS Male SD rats weighing 180-200 g were divided in four groups: 1) Control (Con group) rats were fed with corn starch diet, 2) diabetic (Dia group) rats were fed with 65% of fructose, 3) diabetic along with resveratrol (10 mg/kg/day); p.o. (Dia + Resv group) and 4) diabetic along with metformin (300 mg/kg/day); p.o. (Dia + Met group), for twenty weeks. We evaluated the establishment of T2DM in fructose fed rats and the effect of resveratrol and metformin treatment on different diabetic parameters in these rats. Further we investigated the role of NLRP3 inflammasome on T2DM induced liver inflammation and effect of resveratrol and metformin treatment on NLRP3 inflammasome driven inflammatory response. KEY FINDINGS Rats from Dia group; manifested insulin resistance, hyperinsulinemia, hyperglycemia, elevated uric acid along with hypertriglyceridemia after fructose feeding for twenty weeks. Mostly, above parameters were attenuated in resveratrol and metformin treated groups. Expression of NLRP3 inflammasome components in liver were increased in Dia group rats with elevated transcript levels of pro-inflammatory cytokines. Histopathological examination revealed increase in glycogen content and fibrosis in Dia group rats; which was considerably reduced with resveratrol and metformin treatment. SIGNIFICANCE Our study suggests that management of inflammation may be considered as an alternative approach to prevent liver tissue injury during chronic diabetic condition.
Collapse
Affiliation(s)
- Ramesh Chandra Rai
- Immunology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Pankaj K Bagul
- Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| | - Sanjay Kumar Banerjee
- Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India.
| |
Collapse
|
9
|
Thounaojam MC, Montemari A, Powell FL, Malla P, Gutsaeva DR, Bachettoni A, Ripandelli G, Repossi A, Tawfik A, Martin PM, Facchiano F, Bartoli M. Monosodium Urate Contributes to Retinal Inflammation and Progression of Diabetic Retinopathy. Diabetes 2019; 68:1014-1025. [PMID: 30728185 PMCID: PMC6477903 DOI: 10.2337/db18-0912] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
Abstract
We have investigated the contributing role of monosodium urate (MSU) to the pathological processes associated with the induction of diabetic retinopathy (DR). In human postmortem retinas and vitreous from donors with DR, we have found a significant increase in MSU levels that correlated with the presence of inflammatory markers and enhanced expression of xanthine oxidase. The same elevation in MSU levels was also detected in serum and vitreous of streptozotocin-induced diabetic rats (STZ-rats) analyzed at 8 weeks of hyperglycemia. Furthermore, treatments of STZ-rats with the hypouricemic drugs allopurinol (50 mg/kg) and benzbromarone (10 mg/kg) given every other day resulted in a significant decrease of retinal and plasma levels of inflammatory cytokines and adhesion factors, a marked reduction of hyperglycemia-induced retinal leukostasis, and restoration of retinal blood-barrier function. These results were associated with effects of the hypouricemic drugs on downregulating diabetes-induced levels of oxidative stress markers as well as expression of components of the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome such as NLRP3, Toll-like receptor 4, and interleukin-1β. The outcomes of these studies support a contributing role of MSU in diabetes-induced retinal inflammation and suggest that asymptomatic hyperuricemia should be considered as a risk factor for DR induction and progression.
Collapse
Affiliation(s)
- Menaka C Thounaojam
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Annalisa Montemari
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico "Bambino Gesù," Rome, Italy
| | - Folami L Powell
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Prerana Malla
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Diana R Gutsaeva
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Alessandra Bachettoni
- Department of Experimental Medicine and Pathology, University of Rome "LaSapienza," Rome, Italy
| | - Guido Ripandelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione G.B. Bietti, Rome, Italy
| | - Andrea Repossi
- Unità Operativa Complessa (UOC) Vitreoretina Ospedale San Carlo di Nancy, Rome, Italy
| | - Amany Tawfik
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA
| | - Pamela M Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
10
|
D'Ippolito S, Di Nicuolo F, Pontecorvi A, Gratta M, Scambia G, Di Simone N. Endometrial microbes and microbiome: Recent insights on the inflammatory and immune "players" of the human endometrium. Am J Reprod Immunol 2018; 80:e13065. [PMID: 30375712 DOI: 10.1111/aji.13065] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022] Open
Abstract
In recent years, extended scientific works shed light on the important role played by the endometrium in early pregnancy. This review examines our current knowledge about the delicate balance between microbial and cellular immune agents at endometrial level: All of them might affect endometrial receptivity. In contrast to the classical thinking of human endometrium as a sterile tissue, several recent studies have drawn attention to a resident population of microorganisms, which reaches only a 30% of concordance with those of the cervical-vaginal flora. At present, the understanding of the microbiome in relation to human reproduction is in its infancy and further studies are needed to clarify the activity of endometrial microbiome and the possible effects of a "reproductive tract dysbiosis" on fertility. Moreover, in the human endometrium, there is a complex system works preventing the risk of infection as well as enabling, when pregnancy occurs, the acceptance of the blastocyst. In this way, the endometrium plays a central role in the uterine immune surveillance. A better understanding of the different agents that may affect endometrial receptivity would improve the diagnosis and treatment of obstetric complications related to defective implantation and placentation.
Collapse
Affiliation(s)
- Silvia D'Ippolito
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Fiorella Di Nicuolo
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Alfredo Pontecorvi
- Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, Rome, Italia.,Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Area Endocrino-Metabolica e Dermo-Reumatologica, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Patologia Medica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Matteo Gratta
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Giovanni Scambia
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Nicoletta Di Simone
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| |
Collapse
|
11
|
Synthetic PreImplantation Factor (PIF) prevents fetal loss by modulating LPS induced inflammatory response. PLoS One 2017; 12:e0180642. [PMID: 28704412 PMCID: PMC5507516 DOI: 10.1371/journal.pone.0180642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Maternal control of inflammation is essential during pregnancy and an exaggerated response is one of the underlying causes of fetal loss. Inflammatory response is mediated by multiple factors and Toll-like receptors (TLRs) are central. Activation of TLRs results in NALP-3 mediated assembly of apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 into the inflammasome and production of pro-inflammatory cytokines IL-1β and IL-18. Given that preventing measures are lacking, we investigated PreImplantation Factor (PIF) as therapeutic option as PIF modulates Inflammation in pregnancy. Additionally, synthetic PIF (PIF analog) protects against multiple immune disorders. We used a LPS induced murine model of fetal loss and synthetic PIF reduced this fetal loss and increased the embryo weight significantly. We detected increased PIF expression in the placentae after LPS insult. The LPS induced serum and placenta cytokines were abolished by synthetic PIF treatment and importantly synthetic PIF modulated key members of inflammasome complex NALP-3, ASC, and caspase-1 as well. In conclusion our results indicate that synthetic PIF protects against LPS induced fetal loss, likely through modulation of inflammatory response especially the inflammasome complex. Given that synthetic PIF is currently tested in autoimmune diseases of non-pregnant subjects (clinicaltrials.gov, NCT02239562), therapeutic approach during pregnancy can be envisioned.
Collapse
|
12
|
Mendonça R, Silveira AAA, Conran N. Red cell DAMPs and inflammation. Inflamm Res 2016; 65:665-78. [PMID: 27251171 DOI: 10.1007/s00011-016-0955-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/19/2016] [Accepted: 05/21/2016] [Indexed: 12/14/2022] Open
Abstract
Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury.
Collapse
Affiliation(s)
- Rafaela Mendonça
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil
| | - Angélica A A Silveira
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil
| | - Nicola Conran
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil.
| |
Collapse
|
13
|
Cunningham CC, Corr EM, Cox DJ, Dunne A. Investigating inflammasome activation under conditions of cellular stress and injury. Methods Mol Biol 2015; 1292:105-13. [PMID: 25804751 DOI: 10.1007/978-1-4939-2522-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammasomes are large multiprotein complexes that assemble in response to cellular stress and infection. NOD-like receptor-related proteins (NLRPs) are essential components of these complexes and are activated by exogenous and endogenous danger signals such as crystalline substances, extracellular ATP, and pore-forming toxins. In general, inflammasome activation is accompanied by perturbations in cellular homeostasis. For example, most inflammasome activators will trigger cation efflux, reactive oxygen species (ROS) generation and caspase-1-dependent cell death, commonly referred to as pyroptosis. In this chapter, we describe protocols to examine inflammasome activation and accompanying events in vitro.
Collapse
Affiliation(s)
- Clare C Cunningham
- Molecular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | | | | | | |
Collapse
|
14
|
D'Ippolito S, Tersigni C, Marana R, Di Nicuolo F, Gaglione R, Rossi ED, Castellani R, Scambia G, Di Simone N. Inflammosome in the human endometrium: further step in the evaluation of the "maternal side". Fertil Steril 2015; 105:111-8.e1-4. [PMID: 26474737 DOI: 10.1016/j.fertnstert.2015.09.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/11/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the expression of inflammosome components (NALP-3, associated speck-like protein containing a CARD [ASC]) and their activation (caspase-1, interleukin [IL]-1β, and IL-18 secretion) in the human endometrium from fertile and women with history of recurrent pregnancy loss (RPL). DESIGN Experimental study. SETTING University hospital. PATIENT(S) Ten fertile women (control group [CTR]) and 30 women with RPL. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Endometrial samples were collected by hysteroscopy during the putative window of implantation and evaluated for chronic endometrial inflammation by hystopathological analysis. Inflammosome expression was analysed by immunohystochemical staining (27 RPL and 10 CTR women). The expression of NALP-3 and ASC protein was quantified by Western blot (30 RPL and 10 CTR women). Caspase-1 activation and IL-1β and IL-18 secretion was quantified by ELISA (30 RPL and 10 CTR women). RESULT(S) We observed a significantly increased expression of inflammasome NALP-3 and ASC protein, an increased activation of caspase-1, and increased levels of IL-1β and IL-18 in RPL endometrium compared with CTR. CONCLUSION(S) Abnormal activation of endometrial innate immunity by means of inflammosome, stimulated by pathogen- or damage-associated molecular patterns, may represent an additional mechanism, currently not investigated, negatively interfering with endometrial receptivity. More studies are required [1] to identify the primary trigger of endometrial inflammosome activation and its clinical impact in the occurrence of RPL; and [2] to validate the inflammosome components as a novel family of endometrial biomarkers and promising therapeutic targets in RPL.
Collapse
Affiliation(s)
- Silvia D'Ippolito
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Chiara Tersigni
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Riccardo Marana
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy; International Scientific Institute Paolo VI, ISI, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Fiorella Di Nicuolo
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Raffaele Gaglione
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Esther Diana Rossi
- Division of Anatomic Pathology and Histology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Roberta Castellani
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Giovanni Scambia
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Nicoletta Di Simone
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy.
| |
Collapse
|
15
|
Wang Y, Gao B, Xiong S. Involvement of NLRP3 inflammasome in CVB3-induced viral myocarditis. Am J Physiol Heart Circ Physiol 2014; 307:H1438-47. [PMID: 25260607 DOI: 10.1152/ajpheart.00441.2014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Viral myocarditis, which is most prevalently caused by coxsackievirus B3 (CVB3) infection, is a serious clinical condition characterized by cardiac inflammation. Inflammasome plays an essential role in the regulation of diverse inflammatory responses by serving as a platform for caspase-1 activation and caspase-1-dependent proteolytic maturation and secretion of IL-1β. Although inflammasome has been reported to be crucial for the development of many inflammatory diseases, its role in the pathogenesis of viral myocarditis is still elusive. The present study aims to investigate whether CVB3 infection activates inflammasome and whether the activation of inflammasome contributes to CVB3-induced myocarditis. Our results showed that CVB3 infection induced inflammasome activation both in vitro and in vivo. With the inhibition of inflammasome activation, the severity of CVB3-induced myocarditis was significantly alleviated as evidenced by less weight loss, decreased serological indexes of creatine kinase and creatinekinase-MB activities, as well as less severe myocardial injury. Of importance, echocardiography results showed that inhibition of inflammasome activation also efficiently improved cardiac function as revealed by enhanced left ventricular ejection fraction and left ventricular fractional shortening. Despite that CVB3 infection significantly increased the expression of both retinoic acid-inducible gene 1 and NOD-like receptor family, pyrin domain containing 3 (NLRP3) in cardiac myocytes, CVB3-induced inflammasome activation was NLRP3-, but not retinoic acid-inducible gene 1, dependent. Further study showed that reactive oxygen species production and K(+) efflux were critical for the activation of NLRP3 inflammasome upon CVB3 infection. Collectively, our study demonstrated a crucial role of the NLRP3 inflammasome in the pathogenesis of CVB3-induced myocarditis, and modulation of inflammasome activation might represent a promising therapeutic strategy for viral myocarditis.
Collapse
Affiliation(s)
- Yan Wang
- Department of Immunology, Institute for Immunobiology, Shanghai Medical College of Fudan University, Shanghai, China; and
| | - Bo Gao
- Department of Immunology, Institute for Immunobiology, Shanghai Medical College of Fudan University, Shanghai, China; and
| | - Sidong Xiong
- Department of Immunology, Institute for Immunobiology, Shanghai Medical College of Fudan University, Shanghai, China; and Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Ibrahim E, Castle SM, Aballa TC, Keane RW, de Rivero Vaccari JP, Lynne CM, Brackett NL. Neutralization of ASC improves sperm motility in men with spinal cord injury. Hum Reprod 2014; 29:2368-73. [PMID: 25205754 DOI: 10.1093/humrep/deu230] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does neutralization of apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) improve sperm motility in men with spinal cord injury (SCI)? SUMMARY ANSWER Neutralization of ASC improves sperm motility in men with SCI. WHAT IS KNOWN ALREADY Semen of men with SCI contains normal sperm concentrations but abnormally low sperm motility. Inflammatory cytokines, activated via the inflammasome complex, are contributory. A key component of the inflammasome is ASC. STUDY DESIGN, SIZE, DURATION This prospective study included semen samples collected from 32 men with SCI. PARTICIPANTS/MATERIALS, SETTING, METHODS At a major university medical center, untreated semen was compared with semen treated with anti-ASC polyclonal antibody. Semen treated with IgG was used as a control. MAIN RESULTS AND THE ROLE OF CHANCE Addition of anti-ASC polyclonal antibody to semen significantly increased mean sperm motility from 11.5% (95% CI, 6.3-16.7) to 18.3% (95% CI, 11.8-24.8). Improvements were most pronounced in the subgroup whose starting motility ranged between 6 and 40%. In this subgroup, the mean sperm motility improved from 13.3% (95% CI, 9.3-17.3) to 23.9% (95% CI, 14.7-23.0). Sperm motility did not improve after treatment with IgG. LIMITATIONS, REASONS FOR CAUTION This study is limited by the small sample size as this is a rare population. WIDER IMPLICATIONS OF THE FINDINGS Blockade of the inflammasome via treatment with anti-ASC improved sperm motility in men with SCI. In doing so, this treatment significantly increased their total motile sperm count. This is the first study to demonstrate that interference with the inflammasome improves sperm motility in men with SCI. This treatment has potential as a therapeutic intervention. STUDY FUNDING/COMPETING INTERESTS This study was funded by the Craig H. Neilsen Foundation, Grant # 224598, the University of Miami Miller School of Medicine and the Miami Project to Cure Paralysis, Miami, FL, USA. R.W.K. and J.P.d.R.V. hold a patent for the treatment of inflammation after central nervous system injury using antibodies against inflammasome proteins. The other authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- E Ibrahim
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S M Castle
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - T C Aballa
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R W Keane
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J P de Rivero Vaccari
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - C M Lynne
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - N L Brackett
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
17
|
Afzali M, Nakhaee A, Tabatabaei SP, Tirgar-Fakheri K, Hashemi M. Aberrant promoter methylation profile of Niemann-pick type C1 gene in cardiovascular disease. IRANIAN BIOMEDICAL JOURNAL 2014; 17:77-83. [PMID: 23567849 DOI: 10.6091/ibj.11432.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The protein of Niemann-pick type C1 (NPC1) gene promotes the egress of cholesterol from late endosomes and lysosomes to other cellular compartments and contributes to a process known as reverse cholesterol transport. This study aimed to examine whether promoter methylation of NPC1 is associated with risk of cardiovascular disease (CVD). METHODS Fifty CVD patients and 50 healthy subjects as the control group were recruited in this study. Promoter methylation of NPC1 gene was defined using a nested-methylation specific polymerase chain reaction method. Statistical analyses were done using the chi-square, t-test or ANOVA tests. RESULTS Our study showed that the frequency of semi-methylated promoter (methylated/unmethylated status) was significantly higher in CVD patients than that in controls (OR = 6.521, 95% CI = 2.211-19.215, P = 0.008). However, a completely methylated promoter (methylated/methylated status) was not detected in any subjects in either of the two groups tested. Additionally, the analysis of clinical data according to the methylation status of NPC1 gene demonstrated that serum levels of total cholesterol, total triglycerides, high low-density lipoprotein cholesterol (LDL-C) and low high-density lipoprotein cholesterol (HDL-C) are influenced by NPC1 methylation, so that subjects with a completely unmethylated promoter (Unmethylated/unmethylated status) held lower levels of total triglycerides, total cholesterol, LDL-C and higher levels of HDL-C. CONCLUSION Our findings propose that the NPC1 promoter methylation is a probable mechanism that can result in reduced/impaired NPC1 expression/activity and may thus contribute to progression of CVD.
Collapse
Affiliation(s)
- Masoumeh Afzali
- Dept. of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Nakhaee
- Dept. of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Payman Tabatabaei
- Dept. of Cardiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kourosh Tirgar-Fakheri
- Dept. of Anesthesia, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hashemi
- Dept. of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
18
|
Yuen B, Bayes JM, Degnan SM. The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol Biol Evol 2014; 31:106-20. [PMID: 24092772 PMCID: PMC3879445 DOI: 10.1093/molbev/mst174] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The "Nucleotide-binding domain and Leucine-rich Repeat" (NLR) genes are a family of intracellular pattern recognition receptors (PRR) that are a critical component of the metazoan innate immune system, involved in both defense against pathogenic microorganisms and in beneficial interactions with symbionts. To investigate the origin and evolution of the NLR gene family, we characterized the full NACHT domain-containing gene complement in the genome of the sponge, Amphimedon queenslandica. As sister group to all animals, sponges are ideally placed to inform our understanding of the early evolution of this ancient PRR family. Amphimedon queenslandica has a large NACHT domain-containing gene complement that is dominated by bona fide NLRs (n = 135) with varied phylogenetic histories. Approximately half of these have a tripartite architecture that includes an N-terminal CARD or DEATH domain. The multiplicity of the A. queenslandica NLR genes and the high variability across the N- and C-terminal domains are consistent with involvement in immunity. We also provide new insight into the evolution of NLRs in invertebrates through comparative genomic analysis of multiple metazoan and nonmetazoan taxa. Specifically, we demonstrate that the NLR gene family appears to be a metazoan innovation, characterized by two major gene lineages that may have originated with the last common eumetazoan ancestor. Subsequent lineage-specific gene duplication, gene loss and domain shuffling all have played an important role in the highly dynamic evolutionary history of invertebrate NLRs.
Collapse
Affiliation(s)
- Benedict Yuen
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Joanne M. Bayes
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sandie M. Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Liu Z, Barber C, Wan L, Liu S, Hui MM, Furenlid LR, Xu H, Woolfenden JM. SPECT imaging of inflammatory response in ischemic-reperfused rat hearts using a 99mTc-labeled dual-domain cytokine ligand. J Nucl Med 2013; 54:2139-45. [PMID: 24179185 DOI: 10.2967/jnumed.113.123497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Soluble tumor necrosis factor (TNF) receptor-2 (TNFR2) and interleukin-1 receptor antagonist (IL-1ra) were fused to the Fc portion of IgG1 using recombinant DNA technology. The resulting dual-domain cytokine ligand, TNFR2-Fc-IL-1ra, specifically binds to TNF and to the type I IL-1 receptor (IL-1RI). This study was designed to characterize the kinetic profile of (99m)Tc-labeled TNFR2-Fc-IL-1ra (TFI) for imaging inflammatory response in an ischemic-reperfused (IR) rat heart model. METHODS The IR model was created by ligating the left coronary artery for 45 min, followed by 2-h reperfusion. Cardiac SPECT images of TFI in the IR model (n = 6) were dynamically acquired for 3 h. Correlative data of myocardial TFI distribution versus microsphere-determined tissue blood flow were acquired in 3 extra IR hearts. Inflammation targeting affinity of TFI was compared with 2 individual cytokine radioligands, (99m)Tc-IL-1ra-Fc (IF) and (99m)Tc-TNFR2-Fc (TF) (n = 6 each group). Myocardial cytokine expression was evaluated by immunochemical assay. RESULTS Increased TFI uptake was found in the ischemic area and correlated with the severity of ischemia. At 3 h after injection, the ratio of hot-spot accumulation in the ischemic area to a remote viable zone was 5.39 ± 1.11 for TFI, which was greater than that for IF (3.28 ± 0.81) and TF (3.29 ± 0.75) (P < 0.05). The in vivo uptake profiles of TFI, TF, and IF were consistent with ex vivo radioactive measurements and correlated with upregulated IL-1 and TNF expression. CONCLUSION The dual-domain TFI is promising for noninvasive detection of inflammatory reactions in IR myocardium because of its more potent affinity to the inflammatory sites compared with TF and IF.
Collapse
Affiliation(s)
- Zhonglin Liu
- Department of Medical Imaging, University of Arizona, Tucson, Arizona
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nalp3 inflammasome is activated and required for vascular smooth muscle cell calcification. Int J Cardiol 2013; 168:2242-7. [DOI: 10.1016/j.ijcard.2013.01.211] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/27/2012] [Accepted: 01/18/2013] [Indexed: 01/14/2023]
|
21
|
Fang L, Xie D, Wu X, Cao H, Su W, Yang J. Involvement of endoplasmic reticulum stress in albuminuria induced inflammasome activation in renal proximal tubular cells. PLoS One 2013; 8:e72344. [PMID: 23977286 PMCID: PMC3748031 DOI: 10.1371/journal.pone.0072344] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022] Open
Abstract
Albuminuria contributes to the progression of tubulointerstitial fibrosis. Although it has been demonstrated that ongoing albuminuria leads to tubular injury manifested by the overexpression of numerous proinflammatory cytokines, the mechanism remains largely unknown. In this study, we found that the inflammasome activation which has been recognized as one of the cornerstones of intracellular surveillance system was associated with the severity of albuminuria in the renal biopsies specimens. In vitro, bovine serum albumin (BSA) could also induce the activation of NLRP3 inflammasome in the cultured kidney epithelial cells (NRK-52E). Since there was a significant overlap of NLRP3 with the ER marker calreticulin, the ER stress provoked by BSA seemed to play a crucial role in the activation of inflammasome. Here, we demonstrated that the chemical chaperone taurine-conjugated ursodeoxycholic acid (TUDCA) which was proved to be an enhancer for the adaptive capacity of ER could attenuate the inflammasome activation induced by albuminuria not only in vitro but also in diabetic nephropathy. Taken together, these data suggested that ER stress seemed to play an important role in albuminuria-induced inflammasome activation, elimination of ER stress via TUDCA might hold promise as a novel avenue for preventing inflammasome activation ameliorating kidney epithelial cells injury induced by albuminuria.
Collapse
Affiliation(s)
- Li Fang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Da Xie
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xian Wu
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongdi Cao
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weifang Su
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
22
|
The Inhibition of Inflammasome by Brazilian Propolis (EPP-AF). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:418508. [PMID: 23690844 PMCID: PMC3652175 DOI: 10.1155/2013/418508] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/18/2013] [Indexed: 01/12/2023]
Abstract
Propolis extracts have gained the attention of consumers and researchers due to their unique chemical compositions and functional properties such as its anti-inflammatory activity. Recently, it was described a complex that is also important in inflammatory processes, named inflammasome. The inflammasomes are a large molecular platform formed in the cell cytosol in response to stress signals, toxins, and microbial infections. Once activated, the inflammasome induces caspase-1, which in turn induces the processing of inflammatory cytokines such as IL-1β and IL-18. So, to understand inflammasomes regulation becomes crucial to treat several disorders including autoinflammatory diseases. Since green propolis extracts are able to regulate inflammatory pathways, this work purpose was to investigate if this extract could also act on inflammasomes regulation. First, the extract was characterized and it demonstrated the presence of important compounds, especially Artepillin C. This extract was effective in reducing the IL-1β secretion in mouse macrophages and this reduction was correlated with a decrease in activation of the protease caspase-1. Furthermore, we found that the extract at a concentration of 30 μg/mL was not toxic to the cells even after a 18-hour treatment. Altogether, these data indicate that Brazilian green propolis (EPP-AF) extract has a role in regulating the inflammasomes.
Collapse
|
23
|
Tack CJ, Stienstra R, Joosten LAB, Netea MG. Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family. Immunol Rev 2013; 249:239-52. [PMID: 22889226 DOI: 10.1111/j.1600-065x.2012.01145.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A growing body of evidence suggests that cytokines of the interleukin-1 (IL-1) family, particularly IL-1β but also IL-1Ra and IL-18, are involved in obesity-associated inflammation. IL-1β is produced via cleavage of pro-IL-1β by caspase-1, which in turn is activated by a multiprotein complex called the inflammasome. The components of the NLRP3 inflammasome are involved in sensing obesity-associated danger signals, both in mice and in human (obese) subjects, with caspase-1 seemingly the most crucial regulator. Autophagy is upregulated in obesity and may function as a mechanism to control IL-1β gene expression in adipose tissue to mitigate chronic inflammation. All these mechanisms are operative in human adipose tissue and appear to be more pronounced in human visceral compared to subcutaneous tissue. In animal studies, blocking caspase-1 activity results in decreased weight gain, decreased inflammation, and improved insulin sensitivity. Human intervention studies with IL-1Ra (anakinra) have reported beneficial effects in patients with diabetes, yet without significant changes in insulin sensitivity. Clearly, the IL-1 family of cytokines, especially IL-1β, plays an important role in obesity-associated inflammation and insulin resistance and may represent a therapeutic target to reverse the detrimental metabolic consequences of obesity.
Collapse
Affiliation(s)
- Cees J Tack
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Involvement of the inflammasome in abnormal semen quality of men with spinal cord injury. Fertil Steril 2013; 99:118-124.e2. [DOI: 10.1016/j.fertnstert.2012.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/05/2012] [Accepted: 09/04/2012] [Indexed: 01/22/2023]
|
25
|
Miller JW. Age-related macular degeneration revisited--piecing the puzzle: the LXIX Edward Jackson memorial lecture. Am J Ophthalmol 2013; 155:1-35.e13. [PMID: 23245386 DOI: 10.1016/j.ajo.2012.10.018] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 12/11/2022]
Abstract
PURPOSE To present the current understanding of age-related macular degeneration (AMD) pathogenesis, based on clinical evidence, epidemiologic data, histopathologic examination, and genetic data; to provide an update on current and emerging therapies; and to propose an integrated model of the pathogenesis of AMD. DESIGN Review of published clinical and experimental studies. METHODS Analysis and synthesis of clinical and experimental data. RESULTS We are closer to a complete understanding of the pathogenesis of AMD, having progressed from clinical observations to epidemiologic observations and clinical pathologic correlation. More recently, modern genetic and genomic studies have facilitated the exploration of molecular pathways. It seems that AMD is a complex disease that results from the interaction of genetic susceptibility with aging and environmental factors. Disease progression also seems to be driven by a combination of genetic and environmental factors. CONCLUSIONS Therapies based on pathophysiologic features have changed the paradigm for treating neovascular AMD. With improved understanding of the underlying genetic susceptibility, we can identify targets to halt early disease and to prevent progression and vision loss.
Collapse
|
26
|
Chilton PM, Embry CA, Mitchell TC. Effects of Differences in Lipid A Structure on TLR4 Pro-Inflammatory Signaling and Inflammasome Activation. Front Immunol 2012; 3:154. [PMID: 22707952 PMCID: PMC3374416 DOI: 10.3389/fimmu.2012.00154] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/25/2012] [Indexed: 12/22/2022] Open
Abstract
The vertebrate immune system exists in equilibrium with the microbial world. The innate immune system recognizes pathogen-associated molecular patterns via a family of Toll-like receptors (TLR) that activate cells upon detection of potential pathogens. Because some microbes benefit their hosts, mobilizing the appropriate response, and then controlling that response is critical in the maintenance of health. TLR4 recognizes the various forms of lipid A produced by Gram-negative bacteria. Depending on the structural form of the eliciting lipid A molecule, TLR4 responses range from a highly inflammatory endotoxic response involving inflammasome and other pro-inflammatory mediators, to an inhibitory, protective response. Mounting the correct response against an offending microbe is key to maintaining health when exposed to various bacterial species. Further study of lipid A variants may pave the way to understanding how TLR4 responses are generally able to avoid chronic inflammatory damage.
Collapse
Affiliation(s)
- Paula M Chilton
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, School of Medicine, University of Louisville Louisville, KY, USA
| | | | | |
Collapse
|
27
|
Abstract
Macrophages are key innate immune effector cells best known for their role as professional phagocytes, which also include neutrophils and dendritic cells. Recent evidence indicates that macrophages are also key players in metabolic homoeostasis. Macrophages can be found in many tissues, where they respond to metabolic cues and produce pro- and/or anti-inflammatory mediators to modulate metabolite programmes. Certain metabolites, such as fatty acids, ceramides and cholesterol crystals, elicit inflammatory responses through pathogen-sensing signalling pathways, implicating a maladaptation of macrophages and the innate immune system to elevated metabolic stress associated with overnutrition in modern societies. The outcome of this maladaptation is a feedforward inflammatory response leading to a state of unresolved inflammation and a collection of metabolic pathologies, including insulin resistance, fatty liver, atherosclerosis and dyslipidaemia. The present review summarizes what is known about the contributions of macrophages to metabolic diseases and the signalling pathways that are involved in metabolic stress-induced macrophage activation. Understanding the role of macrophages in these processes will help us to develop therapies against detrimental effects of the metabolic syndrome.
Collapse
Affiliation(s)
- Prerna Bhargava
- Department of Genetics and Complex Diseases, Department of Nutrition, Division of Biological Sciences, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, U.S.A
| | | |
Collapse
|
28
|
Stienstra R, Tack CJ, Kanneganti TD, Joosten LAB, Netea MG. The inflammasome puts obesity in the danger zone. Cell Metab 2012; 15:10-8. [PMID: 22225872 DOI: 10.1016/j.cmet.2011.10.011] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/08/2011] [Accepted: 10/18/2011] [Indexed: 12/11/2022]
Abstract
Obesity-induced inflammation is an important contributor to the induction of insulin resistance. Recently, the cytokine interleukin-1β (IL-1β) has emerged as a prominent instigator of the proinflammatory response in obesity. Several studies over the last year have subsequently deciphered the molecular mechanisms responsible for IL-1β activation in adipose tissue, liver, and macrophages and demonstrated a central role of the processing enzyme caspase-1 and of the protein complex leading to its activation called the inflammasome. These data suggest that activation of the inflammasome represents a crucial step in the road from obesity to insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Rinke Stienstra
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen 6525 GA, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Mitochondria: commanders of innate immunity and disease? Curr Opin Immunol 2011; 24:32-40. [PMID: 22138315 DOI: 10.1016/j.coi.2011.11.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/27/2011] [Accepted: 11/08/2011] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is associated with the manifestation and origin of a plethora of diseases and disorders. Whilst classically the role of these archetypical 'powerhouses' in many disease phenotypes has been attributed to their ability to regulate cell metabolism and cell death pathways, emerging data posit that mitochondria may also act as powerful initiators and masters of the innate immune response. This new paradigm complements the current mitochondrial dogma, whereby molecules endogenously present on or inside the mitochondria may act as immune regulators in response to stress or pathogens and may also be responsible for the initiation and/or manifestation of chronic inflammation observed in many diseases and disorders.
Collapse
|
30
|
Escames G, López LC, García JA, García-Corzo L, Ortiz F, Acuña-Castroviejo D. Mitochondrial DNA and inflammatory diseases. Hum Genet 2011; 131:161-73. [DOI: 10.1007/s00439-011-1057-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/26/2011] [Indexed: 12/21/2022]
|
31
|
Tannahill GM, O'Neill LAJ. The emerging role of metabolic regulation in the functioning of Toll-like receptors and the NOD-like receptor Nlrp3. FEBS Lett 2011; 585:1568-72. [PMID: 21565193 DOI: 10.1016/j.febslet.2011.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 12/12/2022]
Abstract
While it has long been suspected that inflammation participates in the pathogenesis of metabolic disorders such as the insulin resistance that occurs in type 2 diabetes, recent work suggests that this is not the only important interaction between metabolism and inflammation. Inroads into the understanding of the relationship between metabolic pathways and inflammation are indicating that signaling by innate immune receptors such as TLR4 and Nlrp3 regulate metabolism. TLRs have been shown to promote glycolysis, whilst Nlrp3-mediated production of IL-1β causes insulin resistance. A key role for the hypoxia-sensing transcription factor HIF1α in the functioning of macrophages activated by TLRs has also recently emerged. This review will assess recent evidence for these complex interactions and speculate on their importance for innate immunity and inflammation.
Collapse
|