1
|
Heterologous (Over) Expression of Human SoLute Carrier (SLC) in Yeast: A Well-Recognized Tool for Human Transporter Function/Structure Studies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081206. [PMID: 36013385 PMCID: PMC9410066 DOI: 10.3390/life12081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
For more than 20 years, yeast has been a widely used system for the expression of human membrane transporters. Among them, more than 400 are members of the largest transporter family, the SLC superfamily. SLCs play critical roles in maintaining cellular homeostasis by transporting nutrients, ions, and waste products. Based on their involvement in drug absorption and in several human diseases, they are considered emerging therapeutic targets. Despite their critical role in human health, a large part of SLCs' is 'orphans' for substrate specificity or function. Moreover, very few data are available concerning their 3D structure. On the basis of the human health benefits of filling these knowledge gaps, an understanding of protein expression in systems that allow functional production of these proteins is essential. Among the 500 known yeast species, S. cerevisiae and P. pastoris represent those most employed for this purpose. This review aims to provide a comprehensive state-of-the-art on the attempts of human SLC expression performed by exploiting yeast. The collected data will hopefully be useful for guiding new attempts in SLCs expression with the aim to reveal new fundamental data that could lead to potential effects on human health.
Collapse
|
2
|
Dilworth MV, Piel MS, Bettaney KE, Ma P, Luo J, Sharples D, Poyner DR, Gross SR, Moncoq K, Henderson PJF, Miroux B, Bill RM. Microbial expression systems for membrane proteins. Methods 2018; 147:3-39. [PMID: 29656078 DOI: 10.1016/j.ymeth.2018.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Despite many high-profile successes, recombinant membrane protein production remains a technical challenge; it is still the case that many fewer membrane protein structures have been published than those of soluble proteins. However, progress is being made because empirical methods have been developed to produce the required quantity and quality of these challenging targets. This review focuses on the microbial expression systems that are a key source of recombinant prokaryotic and eukaryotic membrane proteins for structural studies. We provide an overview of the host strains, tags and promoters that, in our experience, are most likely to yield protein suitable for structural and functional characterization. We also catalogue the detergents used for solubilization and crystallization studies of these proteins. Here, we emphasize a combination of practical methods, not necessarily high-throughput, which can be implemented in any laboratory equipped for recombinant DNA technology and microbial cell culture.
Collapse
Affiliation(s)
- Marvin V Dilworth
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mathilde S Piel
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université Paris Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Kim E Bettaney
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Pikyee Ma
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ji Luo
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David Sharples
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David R Poyner
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Stephane R Gross
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Karine Moncoq
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université Paris Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Peter J F Henderson
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université Paris Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
3
|
Fernández FJ, López-Estepa M, Querol-García J, Vega MC. Production of Protein Complexes in Non-methylotrophic and Methylotrophic Yeasts : Nonmethylotrophic and Methylotrophic Yeasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:137-53. [PMID: 27165323 DOI: 10.1007/978-3-319-27216-0_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Protein complexes can be produced in multimilligram quantities using nonmethylotrophic and methylotrophic yeasts such as Saccharomyces cerevisiae and Komagataella (Pichia) pastoris. Yeasts have distinct advantages as hosts for recombinant protein production owing to their cost efficiency, ease of cultivation and genetic manipulation, fast growth rates, capacity to introduce post-translational modifications, and high protein productivity (yield) of correctly folded protein products. Despite those advantages, yeasts have surprisingly lagged behind other eukaryotic hosts in their use for the production of multisubunit complexes. As our knowledge of the metabolic and genomic bottlenecks that yeast microorganisms face when overexpressing foreign proteins expands, new possibilities emerge for successfully engineering yeasts as superb expression hosts. In this chapter, we describe the current state of the art and discuss future possibilities for the development of yeast-based systems for the production of protein complexes.
Collapse
Affiliation(s)
- Francisco J Fernández
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Miguel López-Estepa
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Javier Querol-García
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - M Cristina Vega
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Pedro AQ, Martins LM, Dias JML, Bonifácio MJ, Queiroz JA, Passarinha LA. An artificial neural network for membrane-bound catechol-O-methyltransferase biosynthesis with Pichia pastoris methanol-induced cultures. Microb Cell Fact 2015; 14:113. [PMID: 26246150 PMCID: PMC4527236 DOI: 10.1186/s12934-015-0304-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Membrane proteins are important drug targets in many human diseases and gathering structural information regarding these proteins encourages the pharmaceutical industry to develop new molecules using structure-based drug design studies. Specifically, membrane-bound catechol-O-methyltransferase (MBCOMT) is an integral membrane protein that catalyzes the methylation of catechol substrates and has been linked to several diseases such as Parkinson's disease and Schizophrenia. Thereby, improvements in the clinical outcome of the therapy to these diseases may come from structure-based drug design where reaching MBCOMT samples in milligram quantities are crucial for acquiring structural information regarding this target protein. Therefore, the main aim of this work was to optimize the temperature, dimethylsulfoxide (DMSO) concentration and the methanol flow-rate for the biosynthesis of recombinant MBCOMT by Pichia pastoris bioreactor methanol-induced cultures using artificial neural networks (ANN). RESULTS The optimization trials intended to evaluate MBCOMT expression by P. pastoris bioreactor cultures led to the development of a first standard strategy for MBCOMT bioreactor biosynthesis with a batch growth on glycerol until the dissolved oxygen spike, 3 h of glycerol feeding and 12 h of methanol induction. The ANN modeling of the aforementioned fermentation parameters predicted a maximum MBCOMT specific activity of 384.8 nmol/h/mg of protein at 30°C, 2.9 mL/L/H methanol constant flow-rate and with the addition of 6% (v/v) DMSO with almost 90% of healthy cells at the end of the induction phase. These results allowed an improvement of MBCOMT specific activity of 6.4-fold in comparison to that from the small-scale biosynthesis in baffled shake-flasks. CONCLUSIONS The ANN model was able to describe the effects of temperature, DMSO concentration and methanol flow-rate on MBCOMT specific activity, as shown by the good fitness between predicted and observed values. This experimental procedure highlights the potential role of chemical chaperones such as DMSO in improving yields of recombinant membrane proteins with a different topology than G-coupled receptors. Finally, the proposed ANN shows that the manipulation of classic fermentation parameters coupled with the addition of specific molecules can open and reinforce new perspectives in the optimization of P. pastoris bioprocesses for membrane proteins biosynthesis.
Collapse
Affiliation(s)
- Augusto Q Pedro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6201-001, Covilhã, Portugal.
| | - Luís M Martins
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6201-001, Covilhã, Portugal.
| | - João M L Dias
- Department of Biochemistry, Cambridge System Biology Centre, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Maria J Bonifácio
- Departamento de Investigação e Desenvolvimento, Bial, 4745-457, São Mamede do Coronado, Portugal.
| | - João A Queiroz
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6201-001, Covilhã, Portugal.
| | - Luís A Passarinha
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6201-001, Covilhã, Portugal.
| |
Collapse
|
5
|
Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Overexpression of membrane proteins from higher eukaryotes in yeasts. Appl Microbiol Biotechnol 2014; 98:7671-98. [PMID: 25070595 DOI: 10.1007/s00253-014-5948-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 02/08/2023]
Abstract
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug-target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.
Collapse
Affiliation(s)
- Anita Emmerstorfer
- ACIB-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | | | | | | |
Collapse
|
6
|
Bill RM. Playing catch-up with Escherichia coli: using yeast to increase success rates in recombinant protein production experiments. Front Microbiol 2014; 5:85. [PMID: 24634668 PMCID: PMC3942658 DOI: 10.3389/fmicb.2014.00085] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/17/2014] [Indexed: 11/13/2022] Open
Abstract
Several host systems are available for the production of recombinant proteins, ranging from Escherichia coli to mammalian cell-lines. This article highlights the benefits of using yeast, especially for more challenging targets such as membrane proteins. On account of the wide range of molecular, genetic, and microbiological tools available, use of the well-studied model organism, Saccharomyces cerevisiae, provides many opportunities to optimize the functional yields of a target protein. Despite this wealth of resources, it is surprisingly under-used. In contrast, Pichia pastoris, a relative new-comer as a host organism, is already becoming a popular choice, particularly because of the ease with which high biomass (and hence recombinant protein) yields can be achieved. In the last few years, advances have been made in understanding how a yeast cell responds to the stress of producing a recombinant protein and how this information can be used to identify improved host strains in order to increase functional yields. Given these advantages, and their industrial importance in the production of biopharmaceuticals, I argue that S. cerevisiae and P. pastoris should be considered at an early stage in any serious strategy to produce proteins.
Collapse
Affiliation(s)
- Roslyn M Bill
- School of Life and Health Sciences, Aston University Birmingham, UK
| |
Collapse
|
7
|
Vogl T, Thallinger GG, Zellnig G, Drew D, Cregg JM, Glieder A, Freigassner M. Towards improved membrane protein production in Pichia pastoris: general and specific transcriptional response to membrane protein overexpression. N Biotechnol 2014; 31:538-52. [PMID: 24594271 DOI: 10.1016/j.nbt.2014.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/20/2014] [Accepted: 02/23/2014] [Indexed: 01/13/2023]
Abstract
Membrane proteins are the largest group of human drug targets and are also used as biocatalysts. However, due to their complexity, efficient expression remains a bottleneck for high level production. In recent years, the methylotrophic yeast Pichia pastoris has emerged as one of the most commonly used expression systems for membrane protein production. Here, we have analysed the transcriptomes of P. pastoris strains producing different classes of membrane proteins (mitochondrial, ER/Golgi and plasma membrane localized) to understand the cellular response and to identify targets to engineer P. pastoris towards an improved chassis for membrane protein production. Microarray experiments revealed varying transcriptional responses depending on the enzymatic activity, subcellular localization and physiological role of the membrane proteins. While an alternative oxidase evoked primarily a response within the mitochondria, the overexpression of transporters entering the secretory pathway had a wide effect on lipid metabolism and induced the upregulation of the UPR (unfolded protein response) transcription factor Hac1p. Coexpression of P. pastoris endogenous HAC1 increased the levels of ER-resident membrane proteins 1.5- to 2.1-fold. Subsequent transcriptome analysis of HAC1 coexpression revealed an upregulation of the folding machinery correlating with an expansion of the ER membrane capacity, thus boosting membrane protein production. Hence, our study has helped to elucidate the cellular response of P. pastoris to the expression of different classes of membrane proteins and led specifically to new insights into the effect of PpHac1p on membrane proteins entering the secretory pathway.
Collapse
Affiliation(s)
- Thomas Vogl
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria
| | - Gerhard G Thallinger
- Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14/5, 8010 Graz, Austria; Omics Center Graz, Stiftingtalstrasse 24, 8036 Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14/5, 8010 Graz, Austria
| | - Guenther Zellnig
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - David Drew
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James M Cregg
- Keck Graduate Institute of Applied Life Sciences, 535 Watson Drive, Claremont, CA 91711, USA
| | - Anton Glieder
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14/5, 8010 Graz, Austria
| | - Maria Freigassner
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria.
| |
Collapse
|
8
|
Salcedo-Sora JE, Ward SA, Biagini GA. A yeast expression system for functional and pharmacological studies of the malaria parasite Ca²⁺/H⁺ antiporter. Malar J 2012; 11:254. [PMID: 22853777 PMCID: PMC3488005 DOI: 10.1186/1475-2875-11-254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 07/23/2012] [Indexed: 12/26/2022] Open
Abstract
Background Calcium (Ca2+) signalling is fundamental for host cell invasion, motility, in vivo synchronicity and sexual differentiation of the malaria parasite. Consequently, cytoplasmic free Ca2+ is tightly regulated through the co-ordinated action of primary and secondary Ca2+ transporters. Identifying selective inhibitors of Ca2+ transporters is key towards understanding their physiological role as well as having therapeutic potential, therefore screening systems to facilitate the search for potential inhibitors are a priority. Here, the methodology for the expression of a Calcium membrane transporter that can be scaled to high throughputs in yeast is presented. Methods The Plasmodium falciparum Ca2+/H+ antiporter (PfCHA) was expressed in the yeast Saccharomyces cerevisiae and its activity monitored by the bioluminescence from apoaequorin triggered by divalent cations, such as calcium, magnesium and manganese. Results Bioluminescence assays demonstrated that PfCHA effectively suppressed induced cytoplasmic peaks of Ca2+, Mg2+ and Mn2+ in yeast mutants lacking the homologue yeast antiporter Vcx1p. In the scalable format of 96-well culture plates pharmacological assays with a cation antiporter inhibitor allowed the measurement of inhibition of the Ca2+ transport activity of PfCHA conveniently translated to the familiar concept of fractional inhibitory concentrations. Furthermore, the cytolocalization of this antiporter in the yeast cells showed that whilst PfCHA seems to locate to the mitochondrion of P. falciparum, in yeast PfCHA is sorted to the vacuole. This facilitates the real-time Ca2+-loading assays for further functional and pharmacological studies. Discussion The functional expression of PfCHA in S. cerevisiae and luminescence-based detection of cytoplasmic cations as presented here offer a tractable system that facilitates functional and pharmacological studies in a high-throughput format. PfCHA is shown to behave as a divalent cation/H+ antiporter susceptible to the effects of cation/H+ inhibitors such as KB-R7943. This type of gene expression systems should advance the efforts for the screening of potential inhibitors of this type of divalent cation transporters as part of the malaria drug discovery initiatives and for functional studies in general. Conclusion The expression and activity of the PfCHA detected in yeast by a bioluminescence assay that follows the levels of cytoplasmic Ca2+ as well as Mg2+ and Mn2+ lend itself to high-throughput and quantitative settings for pharmacological screening and functional studies.
Collapse
|
9
|
Darby RAJ, Cartwright SP, Dilworth MV, Bill RM. Which yeast species shall I choose? Saccharomyces cerevisiae versus Pichia pastoris (review). Methods Mol Biol 2012; 866:11-23. [PMID: 22454110 DOI: 10.1007/978-1-61779-770-5_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Having decided on yeast as a production host, the choice of species is often the first question any researcher new to the field will ask. With over 500 known species of yeast to date, this could pose a significant challenge. However, in reality, only very few species of yeast have been employed as host organisms for the production of recombinant proteins. The two most widely used, Saccharomyces cerevisiae and Pichia pastoris, are compared and contrasted here.
Collapse
Affiliation(s)
- Richard A J Darby
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
10
|
Abstract
The production of recombinant therapeutic proteins is an active area of research in drug development. These bio-therapeutic drugs target nearly 150 disease states and promise to bring better treatments to patients. However, if new bio-therapeutics are to be made more accessible and affordable, improvements in production performance and optimization of processes are necessary. A major challenge lies in controlling the effect of process conditions on production of intact functional proteins. To achieve this, improved tools are needed for bio-processing. For example, implementation of process modeling and high-throughput technologies can be used to achieve quality by design, leading to improvements in productivity. Commercially, the most sought after targets are secreted proteins due to the ease of handling in downstream procedures. This chapter outlines different approaches for production and optimization of secreted proteins in the host Pichia pastoris.
Collapse
Affiliation(s)
- Nagamani Bora
- School of Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK.
| |
Collapse
|
11
|
Abstract
This Biochemical Society Annual Symposium on Recent Advances in Membrane Biochemistry was organized to bring together experts from across the spectrum of biomembrane disciplines from the biological to the biophysical/structural, with the intention of promoting interactions and collaborations across the field. We were keen that the potential for improving human health that stems from a deeper understanding of membrane structure/function should be acknowledged, especially in the light of the increasing numbers of membrane protein structures that continue to be made available to the biomembrane community. This foreword provides an idea of what was communicated in the various sessions and, we hope, gives an impression of the excitement generated by the speakers and delegates at this over-subscribed Symposium.
Collapse
|