1
|
Datola A, Melchiorre M, Baroni F, Iozzino L, Palmese A. Characterization of disulfide bridges pattern of recombinant human interleukin 12 fusion protein p40 subunit and identification and quantification of cysteinylated free cysteine 252. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9313. [PMID: 35411965 PMCID: PMC10078324 DOI: 10.1002/rcm.9313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 05/05/2023]
Abstract
RATIONALE We show evidence of cysteinylation on Cys252 of recombinant human p40 subunit of interleukin 12 (IL-12). This was reported in 1996. However, no paper detailing this concept has been published yet. Our paper reports the quantification of Cys252 cysteinylation as well as the full disulfide bridges assignment by nonreducing peptide mapping using mass spectrometry (MS) detection. METHODS Nonreducing peptide mapping was applied for disulfide bridges assignment. This study presents an ad hoc method in which applying a neutral pH in the presence of an alkylating agent allowed to mitigate the formation of artifacts such as reshuffled disulfide bridges and permitted the detection of free cysteine. Ultra-high-performance liquid chromatography-MS analysis was performed on a Waters quadrupole time-of-flight Xevo G2-XS mass spectrometer acquiring data in MSE mode. MS data were processed using Expressionist MS Refiner 13.5 (Genedata). RESULTS Scouting experiments were performed using two batches of drug substance. An in-depth study of the LC tandem mass spectrometry profiles revealed the presence of additional species related to "free" Cys252; this cysteine residue was also detected in its S-cysteinylated and S-homocysteinylated forms. This result is consistent with that reported in literature so far. The relative abundance of overall "cysteinylated" species resulted in the range between 46% and 36%, which has also been confirmed using orthogonal techniques such as Ellman's assay. CONCLUSIONS Our data clearly demonstrate that the free cysteine (Cys252) on the p40 subunit of recombinant IL-12 is also present in its cysteinylated and homocysteinylated forms at a considerable rate. Our observations, although based on results obtained on an IL-12-derived fusion protein, are consistent with the current literature.
Collapse
Affiliation(s)
- Antonio Datola
- Analytical Development Biotech, Characterization and Innovative Analytics UnitGlobal Healthcare Operations, A Business of Merck KGaADarmstadtGermany
- Merck Serono S.p.A. Via Luigi EinaudiRomeItaly
| | - Maura Melchiorre
- Analytical Development Biotech, Characterization and Innovative Analytics UnitGlobal Healthcare Operations, A Business of Merck KGaADarmstadtGermany
- Merck Serono S.p.A. Via Luigi EinaudiRomeItaly
| | - Fabio Baroni
- Analytical Development Biotech, Characterization and Innovative Analytics UnitGlobal Healthcare Operations, A Business of Merck KGaADarmstadtGermany
- Merck Serono S.p.A. Via Luigi EinaudiRomeItaly
| | - Luisa Iozzino
- Analytical Development Biotech, Characterization and Innovative Analytics UnitGlobal Healthcare Operations, A Business of Merck KGaADarmstadtGermany
- Merck Serono S.p.A. Via Luigi EinaudiRomeItaly
| | - Angelo Palmese
- Analytical Development Biotech, Characterization and Innovative Analytics UnitGlobal Healthcare Operations, A Business of Merck KGaADarmstadtGermany
- Merck Serono S.p.A. Via Luigi EinaudiRomeItaly
| |
Collapse
|
2
|
Abstract
The immune repertoires of mollusks beyond commercially important organisms such as the pacific oyster Crassostrea gigas or vectors for human pathogens like the bloodfluke planorb Biomphalaria glabrata are understudied. Despite being an important model for neural aging and the role of inflammation in neuropathic pain, the immune repertoire of Aplysia californica is poorly understood. Recent discovery of a neurotropic nidovirus in Aplysia has highlighted the need for a better understanding of the Aplysia immunome. To address this gap in the literature, the Aplysia reference genome was mined using InterProScan and OrthoFinder for putative immune genes. The Aplysia genome encodes orthologs of all critical components of the classical Toll-like receptor (TLR) signaling pathway. The presence of many more TLRs and TLR associated adapters than known from vertebrates suggest yet uncharacterized, novel TLR associated signaling pathways. Aplysia also retains many nucleotide receptors and antiviral effectors known to play a key role in viral defense in vertebrates. However, the absence of key antiviral signaling adapters MAVS and STING in the Aplysia genome suggests divergence from vertebrates and bivalves in these pathways. The resulting immune gene set of this in silico study provides a basis for interpretation of future immune studies in this important model organism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| |
Collapse
|
3
|
Magalhães LS, Bomfim LGS, Santos CNO, Dos Santos PL, Tanajura DM, Lipscomb MW, de Jesus AR, de Almeida RP, de Moura TR. Antimony resistance associated with persistence of Leishmania (Leishmania) infantum infection in macrophages. Parasitol Res 2021; 120:2959-2964. [PMID: 34272999 DOI: 10.1007/s00436-021-07231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Visceral leishmaniasis is a severe disease caused by protozoan parasites that include Leishmania (L.) infantum. The disease is established when parasites subvert the immune response of the host. Notably, chemotherapy-based use of antimonial compounds can partially alleviate disease burden. Unfortunately, the resistance to drug treatments is increasing in areas endemic to the disease. In this report, we investigated immune responses within macrophages infected with antimony-resistant L. infantum isolates from patients with a relapse in the disease. Results revealed that antimony-resistant parasites persist in the first 24 h of infection. Activation of macrophage or blocking of thiol production during infection shows enhanced clearance of parasites, which is coordinately associated with increased production of pro-inflammatory cytokines. Taken together, these results suggest that the mechanism of antimony resistance in L. infantum isolates may be related to a decrease in macrophage microbicidal functions.
Collapse
Affiliation(s)
- Lucas Sousa Magalhães
- Laboratory of Molecular Biology and Immunology, Federal University of Sergipe, Aracaju, Brazil
| | | | | | - Priscila Lima Dos Santos
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil.,Department of Health Education, Federal University of Sergipe, Lagarto, Brazil
| | | | | | - Amélia Ribeiro de Jesus
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil.,Instituto de Investigação Em Imunologia, São Paulo, Brazil
| | - Roque Pacheco de Almeida
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil.,Instituto de Investigação Em Imunologia, São Paulo, Brazil
| | - Tatiana Rodrigues de Moura
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil. .,Department of Morphology, Federal University of Sergipe, São Cristóvão, Brazil.
| |
Collapse
|
4
|
DHA from microalgae Schizochytrium spp. (Thraustochytriaceae) modifies the inflammatory response and gonadal lipid profile in domestic cats. Br J Nutr 2020; 126:172-182. [PMID: 33054887 DOI: 10.1017/s0007114520004067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present study aimed to evaluate the inflammatory response, oxidative status and fatty acid deposition in reproductive tissues of cats supplemented with the dried microalgae Schizochytrium spp. (Thraustochytriaceae) as a DHA source. Thirty-seven cats (males, n 21; females, n 16; 11·5 (sd 0·5) months of age) were divided by sex into five groups. Treatment diets contained algae biomass at 4·0, 8·0, 12·0 or 16·0 g/kg replacing poultry fat (n-6 source). Cats were fed the respective diet for 62 d and neutered on day 58. Blood samples were collected at the beginning of the experiment (day 1), before neutering (day 58) and 4 d after surgery (day 62) for analysis of inflammation and oxidative markers. Acute-phase protein levels were altered (P < 0·01) in the postoperative period, without any treatment effect (P > 0·05). PGE2 concentrations after surgery were reduced linearly (R2 0·8706; P = 0·002) with microalgal inclusion. Blood platelet count was reduced (P = 0·001) after the surgery regardless treatment, but it was higher in the DHA group compared with control (P < 0·001). The DHA deposition (testicles, R2 0·846; ovaries, R2 0·869) and the n-6:n-3 ratio (testicles, R2 0·859; ovaries, R2 0·955) in gonads had a pattern which fitted a quadratic model. DHA from Schizochytrium spp. modifies PGE2 response after the surgery in cats. The physiological roles of the DHA in the reproduction of cats were not investigated, but its gonadal deposition after supplementation was observed.
Collapse
|
5
|
de Lira Silva NS, Borges BC, da Silva AA, de Castilhos P, Teixeira TL, Teixeira SC, Dos Santos MA, Servato JPS, Justino AB, Caixeta DC, Tomiosso TC, Espindola FS, da Silva CV. The Deleterious Impact of Interleukin 9 to Hepatorenal Physiology. Inflammation 2020; 42:1360-1369. [PMID: 30887397 DOI: 10.1007/s10753-019-00997-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IL-9 is a pleiotropic cytokine, recently recognized as belonging to Th9 cells that are involved in various pathologies. We aimed to evaluate the role of IL-9 in the course of hepatic and renal fibrosis. Female C57BL/6 mice were treated subcutaneously with IL-9 10 ng/mouse and 20 ng/mouse for 40 days, alternating every 5 days each application, the negative control of which was treated with PBS and positive control with CCL4. IL-9 demonstrated fibrogenic activity, leading to increased collagen I and III deposition in both liver and kidney, as well as triggering lobular hepatitis. In addition, IL-9 induced an inflammatory response with recruitment of lymphocytes, neutrophils, and macrophages to both organs. The inflammation was present in the region of the portal and parenchymal zone in the liver and in the cortical and medullary zone in the kidney. IL-9 deregulated liver and kidney antioxidant activities. Our results showed that IL-9 was able to promote hepatorenal dysfunction. Moreover, IL-9 poses as a promising target for therapeutic interventions.
Collapse
Affiliation(s)
- Nadjania Saraiva de Lira Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Rua Piauí, Bloco 2B, sala 2B200, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Rua Piauí, Bloco 2B, sala 2B200, Uberlândia, MG, Brazil
| | - Aline Alves da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Rua Piauí, Bloco 2B, sala 2B200, Uberlândia, MG, Brazil
| | - Patrícia de Castilhos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Rua Piauí, Bloco 2B, sala 2B200, Uberlândia, MG, Brazil
| | - Thaíse Lara Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Rua Piauí, Bloco 2B, sala 2B200, Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Rua Piauí, Bloco 2B, sala 2B200, Uberlândia, MG, Brazil
| | - Marlus Alves Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Rua Piauí, Bloco 2B, sala 2B200, Uberlândia, MG, Brazil
| | | | | | | | - Tatiana Carla Tomiosso
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Rua Piauí, Bloco 2B, sala 2B200, Uberlândia, MG, Brazil
| | - Foued Salmen Espindola
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Claudio Vieira da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Rua Piauí, Bloco 2B, sala 2B200, Uberlândia, MG, Brazil.
| |
Collapse
|
6
|
Leichner C, Jelkmann M, Bernkop-Schnürch A. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Adv Drug Deliv Rev 2019; 151-152:191-221. [PMID: 31028759 DOI: 10.1016/j.addr.2019.04.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Thiolated polymers designated "thiomers" are obtained by covalent attachment of thiol functionalities on the polymeric backbone of polymers. In 1998 these polymers were first described as mucoadhesive and in situ gelling compounds forming disulfide bonds with cysteine-rich substructures of mucus glycoproteins and crosslinking through inter- and intrachain disulfide bond formation. In the following, it was shown that thiomers are able to form disulfides with keratins and membrane-associated proteins exhibiting also cysteine-rich substructures. Furthermore, permeation enhancing, enzyme inhibiting and efflux pump inhibiting properties were demonstrated. Because of these capabilities thiomers are promising tools for drug delivery guaranteeing a strongly prolonged residence time as well as sustained release on mucosal membranes. Apart from that, thiomers are used as drugs per se. In particular, for treatment of dry eye syndrome various thiolated polymers are in development and a first product has already reached the market. Within this review an overview about the thiomer-technology and its potential for different applications is provided discussing especially the outcome of studies in non-rodent animal models and that of numerous clinical trials. Moreover, an overview on product developments is given.
Collapse
|
7
|
Cazzola M, Calzetta L, Page C, Rogliani P, Matera MG. Thiol-Based Drugs in Pulmonary Medicine: Much More than Mucolytics. Trends Pharmacol Sci 2019; 40:452-463. [DOI: 10.1016/j.tips.2019.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/03/2019] [Accepted: 04/30/2019] [Indexed: 02/02/2023]
|
8
|
Gorudko IV, Grigorieva DV, Sokolov AV, Shamova EV, Kostevich VA, Kudryavtsev IV, Syromiatnikova ED, Vasilyev VB, Cherenkevich SN, Panasenko OM. Neutrophil activation in response to monomeric myeloperoxidase. Biochem Cell Biol 2018; 96:592-601. [DOI: 10.1139/bcb-2017-0290] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myeloperoxidase (MPO) is an oxidant-producing enzyme that can also regulate cellular functions via its nonenzymatic effects. Mature active MPO isolated from normal human neutrophils is a 145 kDa homodimer, which consists of 2 identical protomers, connected by a single disulfide bond. By binding to CD11b/CD18 integrin, dimeric MPO induces neutrophil activation and adhesion augmenting leukocyte accumulation at sites of inflammation. This study was performed to compare the potency of dimeric and monomeric MPO to elicit selected neutrophil responses. Monomeric MPO (hemi-MPO) was obtained by treating the dimeric MPO by reductive alkylation. Analysis of the crucial signal transducer, intracellular Ca2+, showed that dimeric MPO induces Ca2+ mobilization from the intracellular calcium stores of neutrophils and influx of extracellular Ca2+ whereas the effect of monomeric MPO on Ca2+ increase in neutrophils was less. It was also shown that monomeric MPO was less efficient than dimeric MPO at inducing actin cytoskeleton reorganization, cell survival, and neutrophil degranulation. Furthermore, we have detected monomeric MPO in the blood plasma of patients with acute inflammation. Our data suggest that the decomposition of dimeric MPO into monomers can serve as a regulatory mechanism that controls MPO-dependent activation of neutrophils and reduces the proinflammatory effects of MPO.
Collapse
Affiliation(s)
| | | | - Alexey V. Sokolov
- FSBSI “Institute of Experimental Medicine”, St. Petersburg 197376, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Centre of Preclinical Translational Research, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | | | - Valeria A. Kostevich
- FSBSI “Institute of Experimental Medicine”, St. Petersburg 197376, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Igor V. Kudryavtsev
- FSBSI “Institute of Experimental Medicine”, St. Petersburg 197376, Russia
- Far Eastern Federal University, Vladivostok 690090, Russia
| | | | - Vadim B. Vasilyev
- FSBSI “Institute of Experimental Medicine”, St. Petersburg 197376, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Oleg M. Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| |
Collapse
|
9
|
Diotallevi M, Checconi P, Palamara AT, Celestino I, Coppo L, Holmgren A, Abbas K, Peyrot F, Mengozzi M, Ghezzi P. Glutathione Fine-Tunes the Innate Immune Response toward Antiviral Pathways in a Macrophage Cell Line Independently of Its Antioxidant Properties. Front Immunol 2017; 8:1239. [PMID: 29033950 PMCID: PMC5626850 DOI: 10.3389/fimmu.2017.01239] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023] Open
Abstract
Glutathione (GSH), a major cellular antioxidant, is considered an inhibitor of the inflammatory response involving reactive oxygen species (ROS). However, evidence is largely based on experiments with exogenously added antioxidants/reducing agents or pro-oxidants. We show that depleting macrophages of 99% of GSH does not exacerbate the inflammatory gene expression profile in the RAW264 macrophage cell line or increase expression of inflammatory cytokines in response to the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS); only two small patterns of LPS-induced genes were sensitive to GSH depletion. One group, mapping to innate immunity and antiviral responses (Oas2, Oas3, Mx2, Irf7, Irf9, STAT1, il1b), required GSH for optimal induction. Consequently, GSH depletion prevented the LPS-induced activation of antiviral response and its inhibition of influenza virus infection. LPS induction of a second group of genes (Prdx1, Srxn1, Hmox1, GSH synthase, cysteine transporters), mapping to nrf2 and the oxidative stress response, was increased by GSH depletion. We conclude that the main function of endogenous GSH is not to limit inflammation but to fine-tune the innate immune response to infection.
Collapse
Affiliation(s)
| | - Paola Checconi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.,IRCCS, San Raffaele Pisana, Telematic University, Rome, Italy
| | | | - Lucia Coppo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS-Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS-Paris Descartes University, Sorbonne Paris Cité, Paris, France.,ESPE of Paris, Paris Sorbonne University, Paris, France
| | | | - Pietro Ghezzi
- Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
10
|
Kolgelier S, Ergin M, Demir LS, Inkaya AC, Aktug Demir N, Alisik M, Erel O. Impaired Thiol-Disulfide Balance in Acute Brucellosis. Jpn J Infect Dis 2016; 70:258-262. [PMID: 27795469 DOI: 10.7883/yoken.jjid.2016.196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The objective of this study was to examine a novel profile: thiol-disulfide homeostasis in acute brucellosis. The study included 90 patients with acute brucellosis, and 27 healthy controls. Thiol-disulfide profile tests were analyzed by a recently developed method, and ceruloplasmin levels were determined. Native thiol levels were 256.72 ± 48.20 μmol/L in the acute brucellosis group and 461.13 ± 45.37 μmol/L in the healthy group, and total thiol levels were 298.58 ± 51.78 μmol/L in the acute brucellosis group and 504.83 ± 51.05 μmol/L in the healthy group (p < 0.001, for both). The disulfide/native thiol ratios and disulfide/total thiol ratios were significantly higher, and native thiol/total thiol ratios were significantly lower in patients with acute brucellosis than in the healthy controls (p < 0.001, for all ratios). There were either positive or negative relationships between ceruloplasmin levels and thiol-disulfide parameters. The thiol-disulfide homeostasis was impaired in acute brucellosis. The strong associations between thiol-disulfide parameters and a positive acute-phase reactant reflected the disruption of the balance between the antioxidant and oxidant systems. Since thiol groups act as anti-inflammatory mediators, the alteration in the thiol-disulfide homeostasis may be involved in brucellosis.
Collapse
Affiliation(s)
- Servet Kolgelier
- Department of Infectious Diseases and Clinical Microbiology, Adiyaman University Faculty of Medicine
| | - Merve Ergin
- Department of Biochemistry, 25 Aralik State Hospital
| | - Lutfi Saltuk Demir
- Department of Public Health, Necmettin Erbakan University Faculty of Medicine
| | - Ahmet Cagkan Inkaya
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Faculty of Medicine
| | - Nazlim Aktug Demir
- Department of Infectious Diseases and Clinical Microbiology, Selcuk University Faculty of Medicine
| | - Murat Alisik
- Department of Biochemistry, Yildirim Beyazit University Faculty of Medicine
| | - Ozcan Erel
- Department of Biochemistry, Yildirim Beyazit University Faculty of Medicine
| |
Collapse
|
11
|
Evidence for a role for the putative Drosophila hGRX1 orthologue in copper homeostasis. Biometals 2016; 29:705-13. [PMID: 27379771 DOI: 10.1007/s10534-016-9946-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022]
Abstract
Glutaredoxins are a family of small molecular weight proteins that have a central role in cellular redox regulation. Human GRX1 (hGRX1) has also been shown to play an integral role in copper homeostasis by regulating the redox activity of the metalated sites of copper chaperones such as ATOX1 and SOD1, and the copper efflux proteins ATP7A and ATP7B. To further elucidate the role of hGRX1 in copper homeostasis, we examined the impact of RNA interference-mediated knockdown of CG6852, a putative Drosophila orthologue of hGRX1. CG6852 shares ~41 % amino acid identity with hGRX1 and key functional domains including the metal-binding CXXC motif are conserved between the two proteins. Knockdown of CG6852 in the adult midline caused a thoracic cleft and reduced scutellum, phenotypes that were exacerbated by additional knockdown of copper uptake transporters Ctr1A and Ctr1B. Knockdown of CG6852 in the adult eye enhanced a copper-deficiency phenotype caused by Ctr1A knockdown while ubiquitous knockdown of CG6852 resulted a mild systemic copper deficiency. Therefore we conclude that CG6852 is a putative orthologue of hGRX1 and may play an important role in Drosophila copper homeostasis.
Collapse
|
12
|
Gupta A, Pandey T, Kumar B, Tripathi T. Preferential regeneration of thioredoxin from parasitic flatworm Fasciola gigantica using glutathione system. Int J Biol Macromol 2015; 81:983-90. [DOI: 10.1016/j.ijbiomac.2015.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/03/2015] [Accepted: 09/21/2015] [Indexed: 01/09/2023]
|
13
|
Checconi P, Salzano S, Bowler L, Mullen L, Mengozzi M, Hanschmann EM, Lillig CH, Sgarbanti R, Panella S, Nencioni L, Palamara AT, Ghezzi P. Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress. PLoS One 2015; 10:e0127086. [PMID: 25985305 PMCID: PMC4436175 DOI: 10.1371/journal.pone.0127086] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/11/2015] [Indexed: 01/06/2023] Open
Abstract
Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions.
Collapse
Affiliation(s)
- Paola Checconi
- Institute Pasteur, Cenci-Bolognetti Foundation, "Sapienza" University of Rome, Rome, Italy
- Brighton & Sussex Medical School, Falmer, Brighton, United Kingdom
| | - Sonia Salzano
- Brighton & Sussex Medical School, Falmer, Brighton, United Kingdom
| | - Lucas Bowler
- University of Brighton, Pharmacy and Biomolecular Sciences, Moulsecoomb, Brighton, United Kingdom
| | - Lisa Mullen
- Brighton & Sussex Medical School, Falmer, Brighton, United Kingdom
| | - Manuela Mengozzi
- Brighton & Sussex Medical School, Falmer, Brighton, United Kingdom
| | - Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | | | - Simona Panella
- IRCSS San Raffaele Pisana, Telematic University, Rome, Italy
- Department of Public Health and Infectious Diseases, Institute Pasteur Cenci-Bolognetti Foundation, "Sapienza" University of Rome, Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Institute Pasteur Cenci-Bolognetti Foundation, "Sapienza" University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- IRCSS San Raffaele Pisana, Telematic University, Rome, Italy
- Department of Public Health and Infectious Diseases, Institute Pasteur Cenci-Bolognetti Foundation, "Sapienza" University of Rome, Rome, Italy
| | - Pietro Ghezzi
- Brighton & Sussex Medical School, Falmer, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Calabrese V, Dattilo S, Petralia A, Parenti R, Pennisi M, Koverech G, Calabrese V, Graziano A, Monte I, Maiolino L, Ferreri T, Calabrese EJ. Analytical approaches to the diagnosis and treatment of aging and aging-related disease: redox status and proteomics. Free Radic Res 2015; 49:511-24. [PMID: 25824967 DOI: 10.3109/10715762.2015.1020799] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Basal levels of oxidants are indispensible for redox signaling to produce adaptive cellular responses such as vitagenes linked to cell survival; however, at higher levels, they are detrimental to cells, contributing to aging and to the pathogenesis of numerous age-related diseases. Aging is a complex systemic process and the major gap in aging research reminds the insufficient knowledge about pathways shifting from normal "healthy" aging to disease-associated pathological aging. The major complication of normal "healthy" aging is in fact the increasing risk of age-related diseases such as cardiovascular diseases, diabetes mellitus, and neurodegenerative pathologies that can adversely affect the quality of life in general, with enhanced incidences of comorbidities and mortality. In this context, global "omics" approaches may help to dissect and fully study the cellular and molecular mechanisms of aging and age-associated processes. The proteome, being more close to the phenotype than the transcriptome and more stable than the metabolome, represents the most promising "omics" field in aging research. In the present study, we exploit recent advances in the redox biology of aging and discuss the potential of proteomics approaches as innovative tools for monitoring at the proteome level the extent of protein oxidative insult and related modifications with the identification of targeted proteins.
Collapse
Affiliation(s)
- V Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania , Catania , Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zagorchev L, Terzieva M, Stoichkova M, Odjakova M. Changes in protein thiols in response to salt stress in embryogenic suspension cultures of Dactylis glomerata L. BIOTECHNOL BIOTEC EQ 2014; 28:616-621. [PMID: 26019548 PMCID: PMC4433836 DOI: 10.1080/13102818.2014.946798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/19/2014] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study is to assess the rate of protein disulphide formation and the activity of NADPH-dependent thioredoxin and glutaredoxin systems, responsible for the reverse reduction of protein and mixed protein-glutathione disulphides, in embryogenic suspension cultures of Dactylis glomerata, subjected to salt stress. Two concentrations of NaCl previously established as enhancing (0.085 mol/L) and inhibiting (0.17 mol/L) somatic embryogenesis were used. The quantitative (by colour reaction with Ellman's reagent) and qualitative (by diagonal gel electrophoresis) analyses showed a significant increase in protein disulphide formation in salt-treated cultures compared to controls. The ratio of disulphides to free thiols is higher in 0.17 mol/L NaCl-treated cultures. The activity of the thioredoxin-thioredoxin reductase system has been increased accordingly in 0.085 mol/L NaCl-treated cultures but decreased at the higher salt concentration. The activity of glutaredoxins was also estimated, by using glutathionylated bovine serum albumin as substrate and following the decrease of NADPH absorbance at 340 nm in the presence of glutathione and glutathione reductase. Mild salt (0.085 mol/L NaCl) treated cultures again showed the highest activity compared to controls and 0.17 mol/L NaCl-treated cultures. Based on these observations it was suggested that salt treatment resulted in increased protein disulphide formation and thioredoxin and glutaredoxin systems are important regulators of this process, strongly involved in salt stress response. The highest activity at 0.085 mol/L NaCl may be also related to the regulatory mechanisms, involved in the potentiating of somatic embryogenesis at this salt concentration.
Collapse
Affiliation(s)
- Lyuben Zagorchev
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia, Bulgaria
| | - Miroslava Terzieva
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia, Bulgaria
| | - Marina Stoichkova
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia, Bulgaria
| | - Mariela Odjakova
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia, Bulgaria
| |
Collapse
|
16
|
Moreno ML, Escobar J, Izquierdo-Álvarez A, Gil A, Pérez S, Pereda J, Zapico I, Vento M, Sabater L, Marina A, Martínez-Ruiz A, Sastre J. Disulfide stress: a novel type of oxidative stress in acute pancreatitis. Free Radic Biol Med 2014; 70:265-77. [PMID: 24456905 DOI: 10.1016/j.freeradbiomed.2014.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/26/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
Abstract
Glutathione oxidation and protein glutathionylation are considered hallmarks of oxidative stress in cells because they reflect thiol redox status in proteins. Our aims were to analyze the redox status of thiols and to identify mixed disulfides and targets of redox signaling in pancreas in experimental acute pancreatitis as a model of acute inflammation associated with glutathione depletion. Glutathione depletion in pancreas in acute pancreatitis is not associated with any increase in oxidized glutathione levels or protein glutathionylation. Cystine and homocystine levels as well as protein cysteinylation and γ-glutamyl cysteinylation markedly rose in pancreas after induction of pancreatitis. Protein cysteinylation was undetectable in pancreas under basal conditions. Targets of disulfide stress were identified by Western blotting, diagonal electrophoresis, and proteomic methods. Cysteinylated albumin was detected. Redox-sensitive PP2A and tyrosine protein phosphatase activities diminished in pancreatitis and this loss was abrogated by N-acetylcysteine. According to our findings, disulfide stress may be considered a specific type of oxidative stress in acute inflammation associated with protein cysteinylation and γ-glutamylcysteinylation and oxidation of the pair cysteine/cystine, but without glutathione oxidation or changes in protein glutathionylation. Two types of targets of disulfide stress were identified: redox buffers, such as ribonuclease inhibitor or albumin, and redox-signaling thiols, which include thioredoxin 1, APE1/Ref1, Keap1, tyrosine and serine/threonine phosphatases, and protein disulfide isomerase. These targets exhibit great relevance in DNA repair, cell proliferation, apoptosis, endoplasmic reticulum stress, and inflammatory response. Disulfide stress would be a specific mechanism of redox signaling independent of glutathione redox status involved in inflammation.
Collapse
Affiliation(s)
- Mari-Luz Moreno
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Javier Escobar
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain; Division of Neonatology, University Hospital Materno-Infantil La Fe, 46026 Valencia, Spain
| | - Alicia Izquierdo-Álvarez
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Anabel Gil
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Salvador Pérez
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Javier Pereda
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Inés Zapico
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Máximo Vento
- Division of Neonatology, University Hospital Materno-Infantil La Fe, 46026 Valencia, Spain
| | - Luis Sabater
- Department of Surgery, University Clinic Hospital, University of Valencia, 46010 Valencia, Spain
| | - Anabel Marina
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Juan Sastre
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain.
| |
Collapse
|
17
|
Auclair JR, Salisbury JP, Johnson JL, Petsko GA, Ringe D, Bosco DA, Agar NYR, Santagata S, Durham HD, Agar JN. Artifacts to avoid while taking advantage of top-down mass spectrometry based detection of protein S-thiolation. Proteomics 2014; 14:1152-7. [PMID: 24634066 DOI: 10.1002/pmic.201300450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/14/2014] [Accepted: 03/07/2014] [Indexed: 11/12/2022]
Abstract
Bottom-up MS studies typically employ a reduction and alkylation step that eliminates a class of PTM, S-thiolation. Given that molecular oxygen can mediate S-thiolation from reduced thiols, which are abundant in the reducing intracellular milieu, we investigated the possibility that some S-thiolation modifications are artifacts of protein preparation. Cu/Zn-superoxide dismutase (SOD1) was chosen for this case study as it has a reactive surface cysteine residue, which is readily cysteinylated in vitro. The ability of oxygen to generate S-thiolation artifacts was tested by comparing purification of SOD1 from postmortem human cerebral cortex under aerobic and anaerobic conditions. S-thiolation was ∼50% higher in aerobically processed preparations, consistent with oxygen-dependent artifactual S-thiolation. The ability of endogenous small molecule disulfides (e.g. cystine) to participate in artifactual S-thiolation was tested by blocking reactive protein cysteine residues during anaerobic homogenization. A 50-fold reduction in S-thiolation occurred indicating that the majority of S-thiolation observed aerobically was artifact. Tissue-specific artifacts were explored by comparing brain- and blood-derived protein, with remarkably more artifacts observed in brain-derived SOD1. Given the potential for such artifacts, rules of thumb for sample preparation are provided. This study demonstrates that without taking extraordinary precaution, artifactual S-thiolation of highly reactive, surface-exposed, cysteine residues can result.
Collapse
Affiliation(s)
- Jared R Auclair
- Department of Chemistry and Chemical Biology, Barnett Institute, Northeastern University, Boston, MA, USA; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA; Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA; Department of Chemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Janssen-Heininger YMW, Nolin JD, Hoffman SM, van der Velden JL, Tully JE, Lahue KG, Abdalla ST, Chapman DG, Reynaert NL, van der Vliet A, Anathy V. Emerging mechanisms of glutathione-dependent chemistry in biology and disease. J Cell Biochem 2013; 114:1962-8. [PMID: 23554102 DOI: 10.1002/jcb.24551] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 01/18/2023]
Abstract
Glutathione has traditionally been considered as an antioxidant that protects cells against oxidative stress. Hence, the loss of reduced glutathione and formation of glutathione disulfide is considered a classical parameter of oxidative stress that is increased in diseases. Recent studies have emerged that demonstrate that glutathione plays a more direct role in biological and pathophysiological processes through covalent modification to reactive cysteines within proteins, a process known as S-glutathionylation. The formation of an S-glutathionylated moiety within the protein can lead to structural and functional modifications. Activation, inactivation, loss of function, and gain of function have all been attributed to S-glutathionylation. In pathophysiological settings, S-glutathionylation is tightly regulated. This perspective offers a concise overview of the emerging field of protein thiol redox modifications. We will also cover newly developed methodology to detect S-glutathionylation in situ, which will enable further discovery into the role of S-glutathionylation in biology and disease.
Collapse
|
19
|
Tian H, Matsuo Y, Fukunaga A, Ono R, Nishigori C, Yodoi J. Thioredoxin ameliorates cutaneous inflammation by regulating the epithelial production and release of pro-inflammatory cytokines. Front Immunol 2013; 4:269. [PMID: 24058364 PMCID: PMC3766902 DOI: 10.3389/fimmu.2013.00269] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/20/2013] [Indexed: 12/19/2022] Open
Abstract
Human thioredoxin-1 (TRX) is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys-. It has been demonstrated that systemic administration and transgenic overexpression of TRX ameliorate inflammation in various animal models, but its anti-inflammatory mechanism is not well characterized. We investigated the anti-inflammatory effects of topically applied recombinant human TRX (rhTRX) in a murine irritant contact dermatitis (ICD) induced by croton oil. Topically applied rhTRX was distributed only in the skin tissues under both non-inflammatory and inflammatory conditions, and significantly suppressed the inflammatory response by inhibiting the production of cytokines and chemokines, such as TNF-α, Il-1β, IL-6, CXCL-1, and MCP-1. In an in vitro study, rhTRX also significantly inhibited the formation of cytokines and chemokines produced by keratinocytes after exposure to croton oil and phorbol 12-myristate 13-acetate. These results indicate that TRX prevents skin inflammation via the inhibition of local formation of inflammatory cytokines and chemokines. As a promising new approach, local application of TRX may be useful for the treatment of various skin and mucosal inflammatory disorders.
Collapse
Affiliation(s)
- Hai Tian
- Redox Bio Science Inc , Kyoto , Japan
| | | | | | | | | | | |
Collapse
|
20
|
McConnachie LA, Botta D, White CC, Weldy CS, Wilkerson HW, Yu J, Dills R, Yu X, Griffith WC, Faustman EM, Farin FM, Gill SE, Parks WC, Hu X, Gao X, Eaton DL, Kavanagh TJ. The glutathione synthesis gene Gclm modulates amphiphilic polymer-coated CdSe/ZnS quantum dot-induced lung inflammation in mice. PLoS One 2013; 8:e64165. [PMID: 23724032 PMCID: PMC3664581 DOI: 10.1371/journal.pone.0064165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/10/2013] [Indexed: 11/18/2022] Open
Abstract
Quantum dots (QDs) are unique semi-conductor fluorescent nanoparticles with potential uses in a variety of biomedical applications. However, concerns exist regarding their potential toxicity, specifically their capacity to induce oxidative stress and inflammation. In this study we synthesized CdSe/ZnS core/shell QDs with a tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coating and assessed their effects on lung inflammation in mice. Previously published in vitro data demonstrated these TOPO-PMAT QDs cause oxidative stress resulting in increased expression of antioxidant proteins, including heme oxygenase, and the glutathione (GSH) synthesis enzyme glutamate cysteine ligase (GCL). We therefore investigated the effects of these QDs in vivo in mice deficient in GSH synthesis (Gclm +/− and Gclm −/− mice). When mice were exposed via nasal instillation to a TOPO-PMAT QD dose of 6 µg cadmium (Cd) equivalents/kg body weight, neutrophil counts in bronchoalveolar lavage fluid (BALF) increased in both Gclm wild-type (+/+) and Gclm heterozygous (+/−) mice, whereas Gclm null (−/−) mice exhibited no such increase. Levels of the pro-inflammatory cytokines KC and TNFα increased in BALF from Gclm +/+ and +/− mice, but not from Gclm −/− mice. Analysis of lung Cd levels suggested that QDs were cleared more readily from the lungs of Gclm −/− mice. There was no change in matrix metalloproteinase (MMP) activity in any of the mice. However, there was a decrease in whole lung myeloperoxidase (MPO) content in Gclm −/− mice, regardless of treatment, relative to untreated Gclm +/+ mice. We conclude that in mice TOPO-PMAT QDs have in vivo pro-inflammatory properties, and the inflammatory response is dependent on GSH synthesis status. Because there is a common polymorphism in humans that influences GCLM expression, these findings imply that humans with reduced GSH synthesis capabilities may be more susceptible to the pro-inflammatory effects of QDs.
Collapse
Affiliation(s)
- Lisa A. McConnachie
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Dianne Botta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Collin C. White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Chad S. Weldy
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Hui-Wen Wilkerson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Jianbo Yu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Russell Dills
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Xiaozhong Yu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - William C. Griffith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Elaine M. Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Federico M. Farin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Sean E. Gill
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - William C. Parks
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Xiaoge Hu
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - David L. Eaton
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Terrance J. Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
SIGNIFICANCE Glutaredoxins (Grxs) are small oxidoreductases of the thioredoxin family of proteins regulating the thiol redox state of several proteins. Thereby, Grxs are key elements in redox signaling. RECENT ADVANCES Redox signaling via protein thiols depends on reversible oxidative modifications induced mainly by reactive oxygen/nitrogen species and glutathione (GSH) in form of its oxidized disulfide or S-nitroso-glutathione. Grxs contribute to redox signaling by the catalysis of glutathionylation, de-glutathionylation, as well as reduction of disulfide bridges via two distinct enzymatic mechanisms. The dithiol mechanism utilizes both active site cysteines to reduce disulfides, whereas the monothiol mechanism utilizes only the N-terminal active site cysteine for the reduction of GSH mixed disulfides. The sphere of action of Grxs continues to grow with the recent identification of novel targets. CRITICAL ISSUES Because of limited methodological tools, the identification of new substrates for oxidoreductases in general is one of the biggest challenges in this research area. FUTURE DIRECTIONS With this review, we provide a condensed summary of the current knowledge of thiol/disulfide exchange reactions catalyzed by Grxs regarding the mechanistic, structural, and functional aspects. The latter will be of high importance for future research directions, gaining novel insights into redox signaling in general, and the role of Grxs in particular.
Collapse
Affiliation(s)
- Christopher Horst Lillig
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst Moritz Arndt-Universität Greifswald, Greifswald, Germany
| | | |
Collapse
|
22
|
Galli F, Battistoni A, Gambari R, Pompella A, Bragonzi A, Pilolli F, Iuliano L, Piroddi M, Dechecchi MC, Cabrini G. Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:690-713. [DOI: 10.1016/j.bbadis.2011.12.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/16/2011] [Accepted: 12/17/2011] [Indexed: 01/07/2023]
|
23
|
Analysis of radicals and radical reaction products in cell signalling and biomolecular damage: the long hard road to gold-standard measures. Biochem Soc Trans 2012; 39:1217-20. [PMID: 21936792 DOI: 10.1042/bst0391217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The field of free radical biology and medicine continues to move at a tremendous pace, with a constant flow of ground-breaking discoveries. The following collection of papers in this issue of Biochemical Society Transactions highlights several key areas of topical interest, including the crucial role of validated measurements of radicals and reactive oxygen species in underpinning nearly all research in the field, the important advances being made as a result of the overlap of free radical research with the reinvigorated field of lipidomics (driven in part by innovations in MS-based analysis), the acceleration of new insights into the role of oxidative protein modifications (particularly to cysteine residues) in modulating cell signalling, and the effects of free radicals on the functions of mitochondria, extracellular matrix and the immune system. In the present article, we provide a brief overview of these research areas, but, throughout this discussion, it must be remembered that it is the availability of reliable analytical methodologies that will be a key factor in facilitating continuing developments in this exciting research area.
Collapse
|