1
|
Torres-López M, Spiller PF, Gao L, García-Flores P, Murphy MP, Ortega-Sáenz P, López-Barneo J. Acute oxygen sensing by arterial chemoreceptors with a mutant mitochondrial complex I ND6 subunit lacking reverse electron transport. FEBS Lett 2025; 599:1122-1134. [PMID: 39981615 DOI: 10.1002/1873-3468.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
Carotid body glomus cells are essential for stimulating breathing in response to hypoxia. They contain specialized mitochondria in which hypoxia induces the accumulation of NADH and H2O2 that modulate membrane ion channel activity. We investigated whether hypoxia induces reverse electron transport (RET) at mitochondrial complex I (MCI). We studied glomus cells from mice with a mutation in ND6, a core protein of MCI, which maintain normal MCI NADH dehydrogenase activity but cannot catalyze RET. The ND6 mutation increases the propensity of MCI to deactivate, and glomus cells with deactivated MCI are insensitive to acute hypoxia. These findings further indicate that MCI function is necessary for glomus cell responsiveness to hypoxia, although MCI RET does not seem to be required for this process.
Collapse
Affiliation(s)
- María Torres-López
- Institute of Biomedicine of Seville (IBiS), University Hospital 'Virgen del Rocío'/CSIC/University of Seville, Spain
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Spain
- CIBERNED, Madrid, Spain
| | - Pedro F Spiller
- Institute of Biomedicine of Seville (IBiS), University Hospital 'Virgen del Rocío'/CSIC/University of Seville, Spain
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Spain
| | - Lin Gao
- Institute of Biomedicine of Seville (IBiS), University Hospital 'Virgen del Rocío'/CSIC/University of Seville, Spain
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Spain
- CIBERNED, Madrid, Spain
| | - Paula García-Flores
- Institute of Biomedicine of Seville (IBiS), University Hospital 'Virgen del Rocío'/CSIC/University of Seville, Spain
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Spain
- CIBERNED, Madrid, Spain
| | | | - Patricia Ortega-Sáenz
- Institute of Biomedicine of Seville (IBiS), University Hospital 'Virgen del Rocío'/CSIC/University of Seville, Spain
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Spain
- CIBERNED, Madrid, Spain
| | - José López-Barneo
- Institute of Biomedicine of Seville (IBiS), University Hospital 'Virgen del Rocío'/CSIC/University of Seville, Spain
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Spain
- CIBERNED, Madrid, Spain
| |
Collapse
|
2
|
Chinopoulos C. Complex I activity in hypoxia: implications for oncometabolism. Biochem Soc Trans 2024; 52:529-538. [PMID: 38526218 PMCID: PMC11088919 DOI: 10.1042/bst20230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Certain cancer cells within solid tumors experience hypoxia, rendering them incapable of oxidative phosphorylation (OXPHOS). Despite this oxygen deficiency, these cells exhibit biochemical pathway activity that relies on NAD+. This mini-review scrutinizes the persistent, residual Complex I activity that oxidizes NADH in the absence of oxygen as the electron acceptor. The resulting NAD+ assumes a pivotal role in fueling the α-ketoglutarate dehydrogenase complex, a critical component in the oxidative decarboxylation branch of glutaminolysis - a hallmark oncometabolic pathway. The proposition is that through glutamine catabolism, high-energy phosphate intermediates are produced via substrate-level phosphorylation in the mitochondrial matrix substantiated by succinyl-CoA ligase, partially compensating for an OXPHOS deficiency. These insights provide a rationale for exploring Complex I inhibitors in cancer treatment, even when OXPHOS functionality is already compromised.
Collapse
|
3
|
Ravasz D, Bui D, Nazarian S, Pallag G, Karnok N, Roberts J, Marzullo BP, Tennant DA, Greenwood B, Kitayev A, Hill C, Komlódi T, Doerrier C, Cunatova K, Fernandez-Vizarra E, Gnaiger E, Kiebish MA, Raska A, Kolev K, Czumbel B, Narain NR, Seyfried TN, Chinopoulos C. Residual Complex I activity and amphidirectional Complex II operation support glutamate catabolism through mtSLP in anoxia. Sci Rep 2024; 14:1729. [PMID: 38242919 PMCID: PMC10798963 DOI: 10.1038/s41598-024-51365-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. 13C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD+ regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate. Complex II operated amphidirectionally during the anoxic event, providing quinones to Complex I and reducing fumarate to succinate. Our results highlight the importance of quinone provision to Complex I oxidizing NADH maintaining glutamate catabolism and mtSLP in the absence of OXPHOS.
Collapse
Affiliation(s)
- Dora Ravasz
- Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - David Bui
- Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Sara Nazarian
- Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Gergely Pallag
- Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Noemi Karnok
- Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Bryan P Marzullo
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | | - Timea Komlódi
- Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
- Oroboros Instruments, Innsbruck, Austria
| | | | - Kristyna Cunatova
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | | | | | | | - Alexandra Raska
- Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Krasimir Kolev
- Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Bence Czumbel
- Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | | | - Thomas N Seyfried
- Biology Department, Boston College, Chestnut Hill, Boston, MA, 02467, USA
| | | |
Collapse
|
4
|
Monroy-Cárdenas M, Andrades V, Almarza C, Vera MJ, Martínez J, Pulgar R, Amalraj J, Araya-Maturana R, Urra FA. A New Quinone-Based Inhibitor of Mitochondrial Complex I in D-Conformation, Producing Invasion Reduction and Sensitization to Venetoclax in Breast Cancer Cells. Antioxidants (Basel) 2023; 12:1597. [PMID: 37627592 PMCID: PMC10451541 DOI: 10.3390/antiox12081597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial Complex I plays a crucial role in the proliferation, chemoresistance, and metastasis of breast cancer (BC) cells. This highlights it as an attractive target for anti-cancer drugs. Using submitochondrial particles, we identified FRV-1, an ortho-carbonyl quinone, which inhibits NADH:duroquinone activity in D-active conformation and reduces the 3ADP state respiration dependent on Complex I, causing mitochondrial depolarization, ATP drop, increased superoxide levels, and metabolic remodeling towards glycolysis in BC cells. Introducing methyl groups at FRV-1 structure produced analogs that acted as electron acceptors at the Complex I level or increased the inhibitory effect of FCCP-stimulated oxygen consumption rate, which correlated with their redox potential, but increased toxicity on RMF-621 human breast fibroblasts was observed. FRV-1 was inactive in the naphthoquinone oxidoreductase 1 (NOQ1)-positive BC cell line, MCF7, but the sensitivity was recovered by dicoumarol, a NOQ1 inhibitor, suggesting that FRV-1 is a NOQ1 substrate. Importantly, FRV-1 selectively inhibited the proliferation, migration, and invasion of NQO1 negative BC cell, MDA-MB-231, in an OXPHOS- and ROS-dependent manner and sensitized it to the BH3 mimetic drug venetoclax. Overall, FRV-1 is a novel Complex I inhibitor in D-active conformation, blocking possibly the re-activation to A-state, producing selective anti-cancer effects in NQO1-negative BC cell lines.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
| | - Víctor Andrades
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Cristopher Almarza
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - María Jesús Vera
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Jorge Martínez
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Rodrigo Pulgar
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830490, Chile
| | - John Amalraj
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Félix A. Urra
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| |
Collapse
|
5
|
Transgenic NADH dehydrogenase restores oxygen regulation of breathing in mitochondrial complex I-deficient mice. Nat Commun 2023; 14:1172. [PMID: 36859533 PMCID: PMC9977773 DOI: 10.1038/s41467-023-36894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The hypoxic ventilatory response (HVR) is a life-saving reflex, triggered by the activation of chemoreceptor glomus cells in the carotid body (CB) connected with the brainstem respiratory center. The molecular mechanisms underlying glomus cell acute oxygen (O2) sensing are unclear. Genetic disruption of mitochondrial complex I (MCI) selectively abolishes the HVR and glomus cell responsiveness to hypoxia. However, it is unknown what functions of MCI (metabolic, proton transport, or signaling) are essential for O2 sensing. Here we show that transgenic mitochondrial expression of NDI1, a single-molecule yeast NADH/quinone oxidoreductase that does not directly contribute to proton pumping, fully recovers the HVR and glomus cell sensitivity to hypoxia in MCI-deficient mice. Therefore, maintenance of mitochondrial NADH dehydrogenase activity and the electron transport chain are absolutely necessary for O2-dependent regulation of breathing. NDI1 expression also rescues other systemic defects caused by MCI deficiency. These data explain the role of MCI in acute O2 sensing by arterial chemoreceptors and demonstrate the optimal recovery of complex organismal functions by gene therapy.
Collapse
|
6
|
Pak O, Nolte A, Knoepp F, Giordano L, Pecina P, Hüttemann M, Grossman LI, Weissmann N, Sommer N. Mitochondrial oxygen sensing of acute hypoxia in specialized cells - Is there a unifying mechanism? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148911. [PMID: 35988811 DOI: 10.1016/j.bbabio.2022.148911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Acclimation to acute hypoxia through cardiorespiratory responses is mediated by specialized cells in the carotid body and pulmonary vasculature to optimize systemic arterial oxygenation and thus oxygen supply to the tissues. Acute oxygen sensing by these cells triggers hyperventilation and hypoxic pulmonary vasoconstriction which limits pulmonary blood flow through areas of low alveolar oxygen content. Oxygen sensing of acute hypoxia by specialized cells thus is a fundamental pre-requisite for aerobic life and maintains systemic oxygen supply. However, the primary oxygen sensing mechanism and the question of a common mechanism in different specialized oxygen sensing cells remains unresolved. Recent studies unraveled basic oxygen sensing mechanisms involving the mitochondrial cytochrome c oxidase subunit 4 isoform 2 that is essential for the hypoxia-induced release of mitochondrial reactive oxygen species and subsequent acute hypoxic responses in both, the carotid body and pulmonary vasculature. This review compares basic mitochondrial oxygen sensing mechanisms in the pulmonary vasculature and the carotid body.
Collapse
Affiliation(s)
- Oleg Pak
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Anika Nolte
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Fenja Knoepp
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Luca Giordano
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Petr Pecina
- Laboratory of Bioenergetics, Institute of Physiology CAS, Prague, Czech Republic
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Norbert Weissmann
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Natascha Sommer
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
7
|
Bakare AB, Lesnefsky EJ, Iyer S. Leigh Syndrome: A Tale of Two Genomes. Front Physiol 2021; 12:693734. [PMID: 34456746 PMCID: PMC8385445 DOI: 10.3389/fphys.2021.693734] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Leigh syndrome is a rare, complex, and incurable early onset (typically infant or early childhood) mitochondrial disorder with both phenotypic and genetic heterogeneity. The heterogeneous nature of this disorder, based in part on the complexity of mitochondrial genetics, and the significant interactions between the nuclear and mitochondrial genomes has made it particularly challenging to research and develop therapies. This review article discusses some of the advances that have been made in the field to date. While the prognosis is poor with no current substantial treatment options, multiple studies are underway to understand the etiology, pathogenesis, and pathophysiology of Leigh syndrome. With advances in available research tools leading to a better understanding of the mitochondria in health and disease, there is hope for novel treatment options in the future.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Edward J. Lesnefsky
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Physiology/Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
8
|
Abstract
The electron transport chain of mitochondria is initiated by the respiratory complex I that converts chemical energy into a proton motive force to power synthesis of adenosine triphosphate. On a chemical level, complex I catalyzes elementary electron and proton transfer processes that couple across large molecular distances of >300 Å. However, under low oxygen concentrations, the respiratory chain operates in reverse mode and produces harmful reactive oxygen species. To avoid cell damage, the mitochondrial complex I transitions into a deactive state that inhibits turnover by molecular principles that remain elusive. By combining large-scale molecular simulations with cryo-electron microscopy data, we show here that complex I deactivation blocks the communication between proton pumping and redox modules by conformational and hydration changes. Cellular respiration is powered by membrane-bound redox enzymes that convert chemical energy into an electrochemical proton gradient and drive the energy metabolism. By combining large-scale classical and quantum mechanical simulations with cryo-electron microscopy data, we resolve here molecular details of conformational changes linked to proton pumping in the mammalian complex I. Our data suggest that complex I deactivation blocks water-mediated proton transfer between a membrane-bound quinone site and proton-pumping modules, decoupling the energy-transduction machinery. We identify a putative gating region at the interface between membrane domain subunits ND1 and ND3/ND4L/ND6 that modulates the proton transfer by conformational changes in transmembrane helices and bulky residues. The region is perturbed by mutations linked to human mitochondrial disorders and is suggested to also undergo conformational changes during catalysis of simpler complex I variants that lack the “active”-to-“deactive” transition. Our findings suggest that conformational changes in transmembrane helices modulate the proton transfer dynamics by wetting/dewetting transitions and provide important functional insight into the mammalian respiratory complex I.
Collapse
|
9
|
Galkin A. Brain Ischemia/Reperfusion Injury and Mitochondrial Complex I Damage. BIOCHEMISTRY. BIOKHIMIIA 2019; 84:1411-1423. [PMID: 31760927 DOI: 10.1134/s0006297919110154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 10/08/2024]
Abstract
Ischemic stroke and neonatal hypoxic-ischemic encephalopathy are two of the leading causes of disability in adults and infants. The energy demands of the brain are provided by mitochondrial oxidative phosphorylation. Ischemia/reperfusion (I/R) affects the production of ATP in brain mitochondria, leading to energy failure and death of the affected tissue. Among the enzymes of the mitochondrial respiratory chain, mitochondrial complex I is the most sensitive to I/R; however, the mechanisms of its inhibition are poorly understood. This article reviews some of the existing data on the mitochondria impairment during I/R and proposes two distinct mechanisms of complex I damage emerging from recent studies. One mechanism is a reversible dissociation of natural flavin mononucleotide cofactor from the enzyme I after ischemia. Another mechanism is a modification of critical cysteine residue of complex I involved into the active/deactive conformational transition of the enzyme. I describe potential effects of these two processes in the development of mitochondrial I/R injury and briefly discuss possible neuroprotective strategies to ameliorate I/R brain injury.
Collapse
Affiliation(s)
- A Galkin
- Division of Neonatology, Department of Pediatrics, Columbia University William Black Building, NY 10032, New York, USA.
| |
Collapse
|
10
|
Kaila VRI. Long-range proton-coupled electron transfer in biological energy conversion: towards mechanistic understanding of respiratory complex I. J R Soc Interface 2019; 15:rsif.2017.0916. [PMID: 29643224 PMCID: PMC5938582 DOI: 10.1098/rsif.2017.0916] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Biological energy conversion is driven by efficient enzymes that capture, store and transfer protons and electrons across large distances. Recent advances in structural biology have provided atomic-scale blueprints of these types of remarkable molecular machinery, which together with biochemical, biophysical and computational experiments allow us to derive detailed energy transduction mechanisms for the first time. Here, I present one of the most intricate and least understood types of biological energy conversion machinery, the respiratory complex I, and how its redox-driven proton-pump catalyses charge transfer across approximately 300 Å distances. After discussing the functional elements of complex I, a putative mechanistic model for its action-at-a-distance effect is presented, and functional parallels are drawn to other redox- and light-driven ion pumps.
Collapse
Affiliation(s)
- Ville R I Kaila
- Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| |
Collapse
|
11
|
Stepanova A, Konrad C, Guerrero-Castillo S, Manfredi G, Vannucci S, Arnold S, Galkin A. Deactivation of mitochondrial complex I after hypoxia-ischemia in the immature brain. J Cereb Blood Flow Metab 2019; 39:1790-1802. [PMID: 29629602 PMCID: PMC6727140 DOI: 10.1177/0271678x18770331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mortality from perinatal hypoxic-ischemic (HI) brain injury reached 1.15 million worldwide in 2010 and is also a major factor for neurological disability in infants. HI directly influences the oxidative phosphorylation enzyme complexes in mitochondria, but the exact mechanism of HI-reoxygenation response in brain remains largely unresolved. After induction of HI-reoxygenation in postnatal day 10 rats, activities of mitochondrial respiratory chain enzymes were analysed and complexome profiling was performed. The effect of conformational state (active/deactive (A/D) transition) of mitochondrial complex I on H2O2 release was measured simultaneously with mitochondrial oxygen consumption. In contrast to cytochrome c oxidase and succinate dehydrogenase, HI-reoxygenation resulted in inhibition of mitochondrial complex I at 4 h after reoxygenation. Immediately after HI, we observed a robust increase in the content of deactive (D) form of complex I. The D-form is less active in reactive oxygen species (ROS) production via reversed electron transfer, indicating the key role of the deactivation of complex I in ischemia/reoxygenation. We describe a novel mechanism of mitochondrial response to ischemia in the immature brain. HI induced a deactivation of complex I in order to reduce ROS production following reoxygenation. Delayed activation of complex I represents a novel mitochondrial target for pathological-activated therapy.
Collapse
Affiliation(s)
- Anna Stepanova
- 1 School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, UK.,2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Csaba Konrad
- 2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sergio Guerrero-Castillo
- 3 Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giovanni Manfredi
- 2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Susan Vannucci
- 4 Department of Pediatrics/Newborn Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Susanne Arnold
- 3 Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Galkin
- 1 School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, UK.,2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
12
|
Ait-Aissa K, Blaszak SC, Beutner G, Tsaih SW, Morgan G, Santos JH, Flister MJ, Joyce DL, Camara AKS, Gutterman DD, Donato AJ, Porter GA, Beyer AM. Mitochondrial Oxidative Phosphorylation defect in the Heart of Subjects with Coronary Artery Disease. Sci Rep 2019; 9:7623. [PMID: 31110224 PMCID: PMC6527853 DOI: 10.1038/s41598-019-43761-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
Coronary artery disease (CAD) is a leading cause of death worldwide and frequently associated with mitochondrial dysfunction. Detailed understanding of abnormalities in mitochondrial function that occur in patients with CAD is lacking. We evaluated mitochondrial damage, energy production, and mitochondrial complex activity in human non-CAD and CAD hearts. Fresh and frozen human heart tissue was used. Cell lysate or mitochondria were isolated using standard techniques. Mitochondrial DNA (mtDNA), NAD + and ATP levels, and mitochondrial oxidative phosphorylation capacity were evaluated. Proteins critical to the regulation of mitochondrial metabolism and function were also evaluated in tissue lysates. PCR analysis revealed an increase in mtDNA lesions and the frequency of mitochondrial common deletion, both established markers for impaired mitochondrial integrity in CAD compared to non-CAD patient samples. NAD+ and ATP levels were significantly decreased in CAD subjects compared to Non-CAD (NAD+ fold change: non-CAD 1.00 ± 0.17 vs. CAD 0.32 ± 0.12* and ATP fold change: non-CAD 1.00 ± 0.294 vs. CAD 0.01 ± 0.001*; N = 15, P < 0.005). We observed decreased respiration control index in CAD tissue and decreased activity of complexes I, II, and III. Expression of ETC complex subunits and respirasome formation were increased; however, elevations in the de-active form of complex I were observed in CAD. We observed a corresponding increase in glycolytic flux, indicated by a rise in pyruvate kinase and lactate dehydrogenase activity, indicating a compensatory increase in glycolysis for cellular energetics. Together, these results indicate a shift in mitochondrial metabolism from oxidative phosphorylation to glycolysis in human hearts subjects with CAD.
Collapse
Affiliation(s)
- Karima Ait-Aissa
- Cardiovascular Center, Department of Medicine, Med College of Wisconsin, Milwaukee, WI, USA.
| | - Scott C Blaszak
- Cardiovascular Center, Department of Medicine, Med College of Wisconsin, Milwaukee, WI, USA
| | - Gisela Beutner
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Shirng-Wern Tsaih
- Department of Physiology, Med College of Wisconsin, Milwaukee, WI, USA
| | - Garrett Morgan
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Janine H Santos
- Genome Integrity and Structural Biology Laboratory, NIHEHS, Raleigh-Durham, NC, USA
| | - Michael J Flister
- Department of Physiology, Med College of Wisconsin, Milwaukee, WI, USA
| | - David L Joyce
- Department of Surgery, Med College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Physiology, Med College of Wisconsin, Milwaukee, WI, USA.,Department of Anesthesiology, Med College of Wisconsin, Milwaukee, WI, USA
| | - David D Gutterman
- Cardiovascular Center, Department of Medicine, Med College of Wisconsin, Milwaukee, WI, USA
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,VA Medical Center-Salt Lake City, GRECC, Salt Lake City, Utah, USA
| | - George A Porter
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Medicine (Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Andreas M Beyer
- Cardiovascular Center, Department of Medicine, Med College of Wisconsin, Milwaukee, WI, USA. .,Department of Physiology, Med College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
13
|
Mohsin AA, Chen Q, Quan N, Rousselle T, Maceyka MW, Samidurai A, Thompson J, Hu Y, Li J, Lesnefsky EJ. Mitochondrial Complex I Inhibition by Metformin Limits Reperfusion Injury. J Pharmacol Exp Ther 2019; 369:282-290. [PMID: 30846619 PMCID: PMC6474909 DOI: 10.1124/jpet.118.254300] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Transient, reversible blockade of complex I during early reperfusion after ischemia limits cardiac injury. We studied the cardioprotection of high dose of metformin in cultured cells and mouse hearts via the novel mechanism of acute downregulation of complex I. The effect of high dose of metformin on complex I activity was studied in isolated heart mitochondria and cultured H9c2 cells. Protection with metformin was evaluated in H9c2 cells at reoxygenation and at early reperfusion in isolated perfused mouse hearts and in vivo regional ischemia reperfusion. Acute, high-dose metformin treatment inhibited complex I in ischemia-damaged mitochondria and in H9c2 cells following hypoxia. Accompanying the complex I modulation, high-dose metformin at reoxygenation decreased death in H9c2 cells. Acute treatment with high-dose metformin at the end of ischemia reduced infarct size following ischemia reperfusion in vitro and in vivo, including in the AMP kinase-dead mouse. Metformin treatment during early reperfusion improved mitochondrial calcium retention capacity, indicating decreased permeability transition pore (MPTP) opening. Acute, high-dose metformin therapy decreased cardiac injury through inhibition of complex I accompanied by attenuation of MPTP opening. Moreover, in contrast to chronic metformin treatment, protection by acute, high-dose metformin is independent of AMP-activated protein kinase activation. Thus, a single, high-dose metformin treatment at reperfusion reduces cardiac injury via modulation of complex I.
Collapse
Affiliation(s)
- Ahmed A Mohsin
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Qun Chen
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Nanhu Quan
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Thomas Rousselle
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Michael W Maceyka
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Arun Samidurai
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Jeremy Thompson
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Ying Hu
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Ji Li
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Edward J Lesnefsky
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| |
Collapse
|
14
|
Saura P, Kaila VRI. Molecular dynamics and structural models of the cyanobacterial NDH-1 complex. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2019; 1860:201-208. [PMID: 30448269 PMCID: PMC6358722 DOI: 10.1016/j.bbabio.2018.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
NDH-1 is a gigantic redox-driven proton pump linked with respiration and cyclic electron flow in cyanobacterial cells. Based on experimentally resolved X-ray and cryo-EM structures of the respiratory complex I, we derive here molecular models of two isoforms of the cyanobacterial NDH-1 complex involved in redox-driven proton pumping (NDH-1L) and CO2-fixation (NDH-1MS). Our models show distinct structural and dynamic similarities to the core architecture of the bacterial and mammalian respiratory complex I. We identify putative plastoquinone-binding sites that are coupled by an electrostatic wire to the proton pumping elements in the membrane domain of the enzyme. Molecular simulations suggest that the NDH-1L isoform undergoes large-scale hydration changes that support proton-pumping within antiporter-like subunits, whereas the terminal subunit of the NDH-1MS isoform lacks such structural motifs. Our work provides a putative molecular blueprint for the complex I-analogue in the photosynthetic energy transduction machinery and demonstrates that general mechanistic features of the long-range proton-pumping machinery are evolutionary conserved in the complex I-superfamily.
Collapse
Affiliation(s)
- Patricia Saura
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstraße 4, Garching D-85747, Germany
| | - Ville R I Kaila
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstraße 4, Garching D-85747, Germany.
| |
Collapse
|
15
|
LINC00116 codes for a mitochondrial peptide linking respiration and lipid metabolism. Proc Natl Acad Sci U S A 2019; 116:4940-4945. [PMID: 30796188 PMCID: PMC6421467 DOI: 10.1073/pnas.1809105116] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Short peptides are encoded in genomes of all organisms and have important functions. Due to the small size of such open reading frames, they are frequently overlooked by automatic genome annotation. We investigated the gene that was misannotated as long noncoding RNA LINC00116 and demonstrated that this gene codes for a 56-amino-acid-long peptide, Mtln, which is localized in mitochondria. Inactivation of the Mtln coding gene leads to reduction of oxygen consumption attributed to respiratory complex I activity and perturbs lipid composition of the cell. This influence is mediated by Mtln interaction with NADH-dependent cytochrome b5 reductase. Disruption of the mitochondrial localization of the latter phenocopies Mtln inactivation. Genes coding for small peptides have been frequently misannotated as long noncoding RNA (lncRNA) genes. Here we have demonstrated that one such transcript is translated into a 56-amino-acid-long peptide conserved in chordates, corroborating the work published while this manuscript was under review. The Mtln peptide could be detected in mitochondria of mouse cell lines and tissues. In line with its mitochondrial localization, lack of the Mtln decreases the activity of mitochondrial respiratory chain complex I. Unlike the integral components and assembly factors of NADH:ubiquinone oxidoreductase, Mtln does not alter its enzymatic activity directly. Interaction of Mtln with NADH-dependent cytochrome b5 reductase stimulates complex I functioning most likely by providing a favorable lipid composition of the membrane. Study of Mtln illuminates the importance of small peptides, whose genes might frequently be misannotated as lncRNAs, for the control of vitally important cellular processes.
Collapse
|
16
|
Fiedorczuk K, Sazanov LA. Mammalian Mitochondrial Complex I Structure and Disease-Causing Mutations. Trends Cell Biol 2018; 28:835-867. [PMID: 30055843 DOI: 10.1016/j.tcb.2018.06.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Abstract
Complex I has an essential role in ATP production by coupling electron transfer from NADH to quinone with translocation of protons across the inner mitochondrial membrane. Isolated complex I deficiency is a frequent cause of mitochondrial inherited diseases. Complex I has also been implicated in cancer, ageing, and neurodegenerative conditions. Until recently, the understanding of complex I deficiency on the molecular level was limited due to the lack of high-resolution structures of the enzyme. However, due to developments in single particle cryo-electron microscopy (cryo-EM), recent studies have reported nearly atomic resolution maps and models of mitochondrial complex I. These structures significantly add to our understanding of complex I mechanism and assembly. The disease-causing mutations are discussed here in their structural context.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria; Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria.
| |
Collapse
|
17
|
A modeling and simulation perspective on the mechanism and function of respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:510-523. [DOI: 10.1016/j.bbabio.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
|
18
|
Moulder DE, Hatoum D, Tay E, Lin Y, McGowan EM. The Roles of p53 in Mitochondrial Dynamics and Cancer Metabolism: The Pendulum between Survival and Death in Breast Cancer? Cancers (Basel) 2018; 10:cancers10060189. [PMID: 29890631 PMCID: PMC6024909 DOI: 10.3390/cancers10060189] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/29/2022] Open
Abstract
Cancer research has been heavily geared towards genomic events in the development and progression of cancer. In contrast, metabolic regulation, such as aberrant metabolism in cancer, is poorly understood. Alteration in cellular metabolism was once regarded simply as a consequence of cancer rather than as playing a primary role in cancer promotion and maintenance. Resurgence of cancer metabolism research has identified critical metabolic reprogramming events within biosynthetic and bioenergetic pathways needed to fulfill the requirements of cancer cell growth and maintenance. The tumor suppressor protein p53 is emerging as a key regulator of metabolic processes and metabolic reprogramming in cancer cells—balancing the pendulum between cell death and survival. This review provides an overview of the classical and emerging non-classical tumor suppressor roles of p53 in regulating mitochondrial dynamics: mitochondrial engagement in cell death processes in the prevention of cancer. On the other hand, we discuss p53 as a key metabolic switch in cellular function and survival. The focus is then on the conceivable roles of p53 in breast cancer metabolism. Understanding the metabolic functions of p53 within breast cancer metabolism will, in due course, reveal critical metabolic hotspots that cancers advantageously re-engineer for sustenance. Illustration of these events will pave the way for finding novel therapeutics that target cancer metabolism and serve to overcome the breast cancer burden.
Collapse
Affiliation(s)
- David E Moulder
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Diana Hatoum
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Enoch Tay
- Viral Hepatitis Pathogenesis Group, The Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead NSW 2145, Australia.
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Eileen M McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
| |
Collapse
|
19
|
Global collective motions in the mammalian and bacterial respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:326-332. [DOI: 10.1016/j.bbabio.2018.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 01/12/2023]
|
20
|
Hernansanz-Agustín P, Ramos E, Navarro E, Parada E, Sánchez-López N, Peláez-Aguado L, Cabrera-García JD, Tello D, Buendia I, Marina A, Egea J, López MG, Bogdanova A, Martínez-Ruiz A. Mitochondrial complex I deactivation is related to superoxide production in acute hypoxia. Redox Biol 2017; 12:1040-1051. [PMID: 28511347 PMCID: PMC5430576 DOI: 10.1016/j.redox.2017.04.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/28/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Mitochondria use oxygen as the final acceptor of the respiratory chain, but its incomplete reduction can also produce reactive oxygen species (ROS), especially superoxide. Acute hypoxia produces a superoxide burst in different cell types, but the triggering mechanism is still unknown. Herein, we show that complex I is involved in this superoxide burst under acute hypoxia in endothelial cells. We have also studied the possible mechanisms by which complex I could be involved in this burst, discarding reverse electron transport in complex I and the implication of PTEN-induced putative kinase 1 (PINK1). We show that complex I transition from the active to ‘deactive’ form is enhanced by acute hypoxia in endothelial cells and brain tissue, and we suggest that it can trigger ROS production through its Na+/H+ antiporter activity. These results highlight the role of complex I as a key actor in redox signalling in acute hypoxia. Complex I is involved in the superoxide burst produced by cells in acute hypoxia. Complex I is deactivated in acute hypoxia. Deactive complex I is involved in superoxide production in acute hypoxia, probably through its Na+/H+ antiporter activity. Complex I deactivation occurs in brain tissue hypoxia ex vivo and in vivo.
Collapse
Affiliation(s)
- Pablo Hernansanz-Agustín
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, E-28029 Madrid, Spain
| | - Elena Ramos
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain
| | - Elisa Navarro
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Esther Parada
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Nuria Sánchez-López
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain; Servicio de Proteómica, Centro de Biología Molecular "Severo Ochoa (CBSMO), Consejo Superior de Investigaciones Científicas (CSIC) - UAM, E-28049 Madrid, Spain
| | - Laura Peláez-Aguado
- Servicio de Proteómica, Centro de Biología Molecular "Severo Ochoa (CBSMO), Consejo Superior de Investigaciones Científicas (CSIC) - UAM, E-28049 Madrid, Spain
| | - J Daniel Cabrera-García
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain
| | - Daniel Tello
- Unidad de Investigación, Hospital Santa Cristina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IP), E-28009 Madrid, Spain
| | - Izaskun Buendia
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular "Severo Ochoa (CBSMO), Consejo Superior de Investigaciones Científicas (CSIC) - UAM, E-28049 Madrid, Spain
| | - Javier Egea
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, CH-8057 Zurich, Switzerland
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.
| |
Collapse
|
21
|
Galkin A, Moncada S. Modulation of the conformational state of mitochondrial complex I as a target for therapeutic intervention. Interface Focus 2017; 7:20160104. [PMID: 28382200 DOI: 10.1098/rsfs.2016.0104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In recent years, there have been significant advances in our understanding of the functions of mitochondrial complex I other than the generation of energy. These include its role in generation of reactive oxygen species, involvement in the hypoxic tissue response and its possible regulation by nitric oxide (NO) metabolites. In this review, we will focus on the hypoxic conformational change of this mitochondrial enzyme, the so-called active/deactive transition. This conformational change is physiological and relevant to the understanding of certain pathological conditions including, in the cardiovascular system, ischaemia/reperfusion (I/R) damage. We will discuss how complex I can be affected by NO metabolites and will outline some potential mitochondria-targeted therapies in I/R damage.
Collapse
Affiliation(s)
- Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 401 East 61st Street, 5th floor, New York, NY 10065, USA; Queens University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Salvador Moncada
- Manchester Cancer Research Centre , University of Manchester , Wilmslow Road, Manchester M20 4QL , UK
| |
Collapse
|
22
|
Belevich N, Verkhovskaya M. Resting state of respiratory Complex I from Escherichia coli. FEBS Lett 2016; 590:1570-5. [PMID: 27148945 DOI: 10.1002/1873-3468.12199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022]
Abstract
Respiratory Complex I from Escherichia coli may exist in two states, resting (R) and active (A). The conversion from the R- to A-forms occurs spontaneously upon turnover. The fast resting-to-active (R/A) transition of membrane-bound and purified Complex I was studied with the stopped-flow technique by following NADH oxidation either by absorption decay at 340 nm or using the fluorescent pH indicator, trisodium 8-hydroxypyrene-1,3,6-trisulfonate (pyranine). The R/A transition of Complex I from E. coli occurs upon its turnover in a time interval of ~ 1.5 s. Comparisons between the bacterial Complex I R/A transition and the active/deactive transition of mitochondrial Complex I are discussed.
Collapse
|
23
|
Dröse S, Stepanova A, Galkin A. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:946-57. [PMID: 26777588 PMCID: PMC4893024 DOI: 10.1016/j.bbabio.2015.12.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/11/2015] [Accepted: 12/25/2015] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a key enzyme in cellular energy metabolism and provides approximately 40% of the proton-motive force that is utilized during mitochondrial ATP production. The dysregulation of complex I function – either genetically, pharmacologically, or metabolically induced – has severe pathophysiological consequences that often involve an imbalance in the production of reactive oxygen species (ROS). Slow transition of the active (A) enzyme to the deactive, dormant (D) form takes place during ischemia in metabolically active organs such as the heart and brain. The reactivation of complex I occurs upon reoxygenation of ischemic tissue, a process that is usually accompanied by an increase in cellular ROS production. Complex I in the D-form serves as a protective mechanism preventing the oxidative burst upon reperfusion. Conversely, however, the D-form is more vulnerable to oxidative/nitrosative damage. Understanding the so-called active/deactive (A/D) transition may contribute to the development of new therapeutic interventions for conditions like stroke, cardiac infarction, and other ischemia-associated pathologies. In this review, we summarize current knowledge on the mechanism of A/D transition of mitochondrial complex I considering recently available structural data and site-specific labeling experiments. In addition, this review discusses in detail the impact of the A/D transition on ROS production by complex I and the S-nitrosation of a critical cysteine residue of subunit ND3 as a strategy to prevent oxidative damage and tissue damage during ischemia–reperfusion injury. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. The current knowledge on active/deactive (A/D) transition of complex I is reviewed. The mechanism and driving force of the A/D conformational change are discussed. The A/D transition can affect ROS production and ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Stefan Dröse
- Clinic of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main 60590, Germany.
| | - Anna Stepanova
- Medical Biology Centre, School of Biological Sciences, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alexander Galkin
- Medical Biology Centre, School of Biological Sciences, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA.
| |
Collapse
|
24
|
Zouein FA, Altara R, Chen Q, Lesnefsky EJ, Kurdi M, Booz GW. Pivotal Importance of STAT3 in Protecting the Heart from Acute and Chronic Stress: New Advancement and Unresolved Issues. Front Cardiovasc Med 2015; 2:36. [PMID: 26664907 PMCID: PMC4671345 DOI: 10.3389/fcvm.2015.00036] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/12/2015] [Indexed: 12/25/2022] Open
Abstract
The transcription factor, signal transducer and activator of transcription 3 (STAT3), has been implicated in protecting the heart from acute ischemic injury under both basal conditions and as a crucial component of pre- and post-conditioning protocols. A number of anti-oxidant and antiapoptotic genes are upregulated by STAT3 via canonical means involving phosphorylation on Y705 and S727, although other incompletely defined posttranslational modifications are involved. In addition, STAT3 is now known to be present in cardiac mitochondria and to exert actions that regulate the electron transport chain, reactive oxygen species production, and mitochondrial permeability transition pore opening. These non-canonical actions of STAT3 are enhanced by S727 phosphorylation. The molecular basis for the mitochondrial actions of STAT3 is poorly understood, but STAT3 is known to interact with a critical subunit of complex I and to regulate complex I function. Dysfunctional complex I has been implicated in ischemic injury, heart failure, and the aging process. Evidence also indicates that STAT3 is protective to the heart under chronic stress conditions, including hypertension, pregnancy, and advanced age. Paradoxically, the accumulation of unphosphorylated STAT3 (U-STAT3) in the nucleus has been suggested to drive pathological cardiac hypertrophy and inflammation via non-canonical gene expression, perhaps involving a distinct acetylation profile. U-STAT3 may also regulate chromatin stability. Our understanding of how the non-canonical genomic and mitochondrial actions of STAT3 in the heart are regulated and coordinated with the canonical actions of STAT3 is rudimentary. Here, we present an overview of what is currently known about the pleotropic actions of STAT3 in the heart in order to highlight controversies and unresolved issues.
Collapse
Affiliation(s)
- Fouad A Zouein
- American University of Beirut Faculty of Medicine , Beirut , Lebanon
| | - Raffaele Altara
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University , Richmond, VA , USA
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University , Richmond, VA , USA ; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA ; McGuire Department of Veterans Affairs Medical Center , Richmond, VA , USA
| | - Mazen Kurdi
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA ; Department of Chemistry and Biochemistry, Faculty of Sciences, Lebanese University , Hadath , Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA
| |
Collapse
|
25
|
Fernández-Agüera MC, Gao L, González-Rodríguez P, Pintado CO, Arias-Mayenco I, García-Flores P, García-Pergañeda A, Pascual A, Ortega-Sáenz P, López-Barneo J. Oxygen Sensing by Arterial Chemoreceptors Depends on Mitochondrial Complex I Signaling. Cell Metab 2015; 22:825-37. [PMID: 26437605 DOI: 10.1016/j.cmet.2015.09.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/17/2015] [Accepted: 09/08/2015] [Indexed: 12/30/2022]
Abstract
O2 sensing is essential for mammalian homeostasis. Peripheral chemoreceptors such as the carotid body (CB) contain cells with O2-sensitive K(+) channels, which are inhibited by hypoxia to trigger fast adaptive cardiorespiratory reflexes. How variations of O2 tension (PO2) are detected and the mechanisms whereby these changes are conveyed to membrane ion channels have remained elusive. We have studied acute O2 sensing in conditional knockout mice lacking mitochondrial complex I (MCI) genes. We inactivated Ndufs2, which encodes a protein that participates in ubiquinone binding. Ndufs2-null mice lose the hyperventilatory response to hypoxia, although they respond to hypercapnia. Ndufs2-deficient CB cells have normal functions and ATP content but are insensitive to changes in PO2. Our data suggest that chemoreceptor cells have a specialized succinate-dependent metabolism that induces an MCI state during hypoxia, characterized by the production of reactive oxygen species and accumulation of reduced pyridine nucleotides, which signal neighboring K(+) channels.
Collapse
Affiliation(s)
- M Carmen Fernández-Agüera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - C Oscar Pintado
- Centro de Producción y Experimentación Animal, Universidad de Sevilla, Calle San Fernando, 4, 41004 Seville, Spain
| | - Ignacio Arias-Mayenco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Paula García-Flores
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Antonio García-Pergañeda
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain.
| |
Collapse
|
26
|
Stepanova A, Valls A, Galkin A. Effect of monovalent cations on the kinetics of hypoxic conformational change of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1085-92. [PMID: 26009015 PMCID: PMC4607728 DOI: 10.1016/j.bbabio.2015.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/13/2022]
Abstract
Mitochondrial complex I is a large, membrane-bound enzyme central to energy metabolism, and its dysfunction is implicated in cardiovascular and neurodegenerative diseases. An interesting feature of mammalian complex I is the so-called A/D transition, when the idle enzyme spontaneously converts from the active (A) to the de-active, dormant (D) form. The A/D transition plays an important role in tissue response to ischemia and rate of the conversion can be a crucial factor determining outcome of ischemia/reperfusion. Here, we describe the effects of alkali cations on the rate of the D-to-A transition to define whether A/D conversion may be regulated by sodium. At neutral pH (7–7.5) sodium resulted in a clear increase of rates of activation (D-to-A conversion) while other cations had minor effects. The stimulating effect of sodium in this pH range was not caused by an increase in ionic strength. EIPA, an inhibitor of Na+/H+ antiporters, decreased the rate of D-to-A conversion and sodium partially eliminated this effect of EIPA. At higher pH (> 8.0), acceleration of the D-to-A conversion by sodium was abolished, and all tested cations decreased the rate of activation, probably due to the effect of ionic strength. The implications of this finding for the mechanism of complex I energy transduction and possible physiological importance of sodium stimulation of the D-to-A conversion at pathophysiological conditions in vivo are discussed. The active/dormant (A/D) transition of complex I is affected by monovalent cations. Na+ increases the rate of the D/A conversion at neutral pH. Lithium and caesium decrease D/A transition at all tested pH Matrix ion balance may influence the rate of the activation of the enzyme in situ.
Collapse
Affiliation(s)
- Anna Stepanova
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow 119334, Russia
| | - Alba Valls
- University of Barcelona, Faculty of Biology, Diagonal, 643, 08028 Barcelona, Spain
| | - Alexander Galkin
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
27
|
Babot M, Birch A, Labarbuta P, Galkin A. Characterisation of the active/de-active transition of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1083-92. [PMID: 24569053 PMCID: PMC4331042 DOI: 10.1016/j.bbabio.2014.02.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 12/12/2022]
Abstract
Oxidation of NADH in the mitochondrial matrix of aerobic cells is catalysed by mitochondrial complex I. The regulation of this mitochondrial enzyme is not completely understood. An interesting characteristic of complex I from some organisms is the ability to adopt two distinct states: the so-called catalytically active (A) and the de-active, dormant state (D). The A-form in situ can undergo de-activation when the activity of the respiratory chain is limited (i.e. in the absence of oxygen). The mechanisms and driving force behind the A/D transition of the enzyme are currently unknown, but several subunits are most likely involved in the conformational rearrangements: the accessory subunit 39 kDa (NDUFA9) and the mitochondrially encoded subunits, ND3 and ND1. These three subunits are located in the region of the quinone binding site. The A/D transition could represent an intrinsic mechanism which provides a fast response of the mitochondrial respiratory chain to oxygen deprivation. The physiological role of the accumulation of the D-form in anoxia is most probably to protect mitochondria from ROS generation due to the rapid burst of respiration following reoxygenation. The de-activation rate varies in different tissues and can be modulated by the temperature, the presence of free fatty acids and divalent cations, the NAD+/NADH ratio in the matrix, the presence of nitric oxide and oxygen availability. Cysteine-39 of the ND3 subunit, exposed in the D-form, is susceptible to covalent modification by nitrosothiols, ROS and RNS. The D-form in situ could react with natural effectors in mitochondria or with pharmacological agents. Therefore the modulation of the re-activation rate of complex I could be a way to ameliorate the ischaemia/reperfusion damage. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira. The potential mechanism of complex I A/D transition is discussed. An —SH group exposed in the D-form is susceptible to covalent modification. The role of A/D transition in tissue response to ischaemia is proposed.
Collapse
Affiliation(s)
- Marion Babot
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Amanda Birch
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Paola Labarbuta
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alexander Galkin
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
28
|
Babot M, Labarbuta P, Birch A, Kee S, Fuszard M, Botting CH, Wittig I, Heide H, Galkin A. ND3, ND1 and 39kDa subunits are more exposed in the de-active form of bovine mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:929-39. [PMID: 24560811 PMCID: PMC4331043 DOI: 10.1016/j.bbabio.2014.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/20/2014] [Accepted: 02/12/2014] [Indexed: 12/12/2022]
Abstract
An intriguing feature of mitochondrial complex I from several species is the so-called A/D transition, whereby the idle enzyme spontaneously converts from the active (A) form to the de-active (D) form. The A/D transition plays an important role in tissue response to the lack of oxygen and hypoxic deactivation of the enzyme is one of the key regulatory events that occur in mitochondria during ischaemia. We demonstrate for the first time that the A/D conformational change of complex I does not affect the macromolecular organisation of supercomplexes in vitro as revealed by two types of native electrophoresis. Cysteine 39 of the mitochondrially-encoded ND3 subunit is known to become exposed upon de-activation. Here we show that even if complex I is a constituent of the I + III2 + IV (S1) supercomplex, cysteine 39 is accessible for chemical modification in only the D-form. Using lysine-specific fluorescent labelling and a DIGE-like approach we further identified two new subunits involved in structural rearrangements during the A/D transition: ND1 (MT-ND1) and 39 kDa (NDUFA9). These results clearly show that structural rearrangements during de-activation of complex I include several subunits located at the junction between hydrophilic and hydrophobic domains, in the region of the quinone binding site. De-activation of mitochondrial complex I results in concerted structural rearrangement of membrane subunits which leads to the disruption of the sealed quinone chamber required for catalytic turnover. Supercomplex composition is not affected by mitochondrial complex I conformation. The D-form of complex I is selectively inhibited by tyrosine-reactive reagents. ND3, ND1 & 39 kDa subunits become exposed upon deactivation of complex I.
Collapse
Affiliation(s)
- Marion Babot
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Paola Labarbuta
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Amanda Birch
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Kee
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Matthew Fuszard
- School of Chemistry, Biomedical Sciences Research Complex, BMS Annexe, University of St. Andrews, KY16 9ST, UK
| | - Catherine H Botting
- School of Chemistry, Biomedical Sciences Research Complex, BMS Annexe, University of St. Andrews, KY16 9ST, UK
| | - Ilka Wittig
- Functional Proteomics, SFB Core Unit, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Heinrich Heide
- Functional Proteomics, SFB Core Unit, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alexander Galkin
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|