1
|
Bhowal B, Hasija Y, Singla-Pareek SL. Tracing the intraspecies expansion of glyoxalase genes and their expanding roles across the genus Oryza. Funct Integr Genomics 2024; 24:220. [PMID: 39586889 DOI: 10.1007/s10142-024-01492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024]
Abstract
The genus Oryza is of utmost importance to human civilization as two of its species became agronomically productive and widely cultivated, and also because wild rice is a treasure trove of beneficial alleles that can be used for crop improvement. Most of the wild rice genotypes are known for their stress tolerance several times more than the domesticated rice varieties. In this study, we aimed to carry out an exhaustive genomic survey to identify glyoxalase I (GLYI) and glyoxalase II (GLYII) genes across the 11 rice genomes sequenced so far. Notably, we found the putatively functional metal-dependent GLYI and GLYII enzymes to be conserved throughout domestication and a few homologous pairs to have undergone beneficial mutations to drive positive selection, and thus, acquire newer functions. Interestingly, we also report four newly identified GLYII members in O. sativa subsp. japonica in addition to the three previously reported GLYII genes. The presence of different types of cis-elements in the promoter region of the glyoxalase genes gives insights into their role and regulation under various developmental processes besides stress adaptation. Publicly available data suggests the role of glyoxalase genes particularly in salinity stress in both wild and cultivated rice as is also confirmed through qRT-PCR. Interestingly, we found less accumulation of MG and concurrently higher enzymatic activity of GLYI and GLYII proteins in stressed seedlings of selected wild rice genotypes indicating that glyoxalases indeed contribute to the intrinsic stress tolerance of wild rice.
Collapse
Affiliation(s)
- Bidisha Bhowal
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Shahbad, Daulatpur, Delhi, 110042, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Shahbad, Daulatpur, Delhi, 110042, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
2
|
Zhou H, Peng J, Zhao W, Zeng Y, Xie K, Huang G. Leaf diffusional capacity largely contributes to the reduced photosynthesis in rice plants under magnesium deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108565. [PMID: 38537380 DOI: 10.1016/j.plaphy.2024.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Numerous studies have clarified the impacts of magnesium (Mg) on leaf photosynthesis from the perspectives of protein synthesis, enzymes activation and carbohydrate partitioning. However, it still remains largely unknown how stomatal and mesophyll conductances (gs and gm, respectively) are regulated by Mg. In the present study, leaf gas exchanges, leaf hydraulic parameters, leaf structural traits and cell wall composition were examined in rice plants grown under high and low Mg treatments to elucidate the impacts of Mg on gs and gm. Our results showed that reduction of leaf photosynthesis under Mg deficiency was mainly caused by the decreased gm, followed by reduced leaf biochemical capacity and gs, and leaf outside-xylem hydraulic conductance (Kox) was the major factor restricting gs under Mg deficiency. Moreover, increased leaf hemicellulose, lignin and pectin contents and decreased cell wall effective porosity were observed in low Mg plants relative to high Mg plants. These results suggest that Kox and cell wall composition play important roles in regulating gs and gm, respectively, in rice plants under Mg shortages.
Collapse
Affiliation(s)
- Haimei Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jiang Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Wanling Zhao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yongjun Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Kailiu Xie
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| | - Guanjun Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
3
|
Lin YH, Zhou YN, Liang XG, Jin YK, Xiao ZD, Zhang YJ, Huang C, Hong B, Chen ZY, Zhou SL, Shen S. Exogenous methylglyoxal alleviates drought-induced 'plant diabetes' and leaf senescence in maize. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1982-1996. [PMID: 38124377 DOI: 10.1093/jxb/erad503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Drought-induced leaf senescence is associated with high sugar levels, which bears some resemblance to the syndrome of diabetes in humans; however, the underlying mechanisms of such 'plant diabetes' on carbon imbalance and the corresponding detoxification strategy are not well understood. Here, we investigated the regulatory mechanism of exogenous methylglyoxal (MG) on 'plant diabetes' in maize plants under drought stress applied via foliar spraying during the grain-filling stage. Exogenous MG delayed leaf senescence and promoted photoassimilation, thereby reducing the yield loss induced by drought by 14%. Transcriptome and metabolite analyses revealed that drought increased sugar accumulation in leaves through inhibition of sugar transporters that facilitate phloem loading. This led to disequilibrium of glycolysis and overaccumulation of endogenous MG. Application of exogenous MG up-regulated glycolytic flux and the glyoxalase system that catabolyses endogenous MG and glycation end-products, ultimately alleviating 'plant diabetes'. In addition, the expression of genes facilitating anabolism and catabolism of trehalose-6-phosphate was promoted and suppressed by drought, respectively, and exogenous MG reversed this effect, implying that trehalose-6-phosphate signaling in the mediation of 'plant diabetes'. Furthermore, exogenous MG activated the phenylpropanoid biosynthetic pathway, promoting the production of lignin and phenolic compounds, which are associated with drought tolerance. Overall, our findings indicate that exogenous MG activates defense-related pathways to alleviate the toxicity derived from 'plant diabetes', thereby helping to maintain leaf function and yield production under drought.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ya-Ning Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-Gui Liang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yu-Ka Jin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zu-Dong Xiao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ying-Jun Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Cheng Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bo Hong
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen-Yuan Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao 061802, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao 061802, China
| |
Collapse
|
4
|
Alhammad BA, Saleem K, Asghar MA, Raza A, Ullah A, Farooq TH, Yong JWH, Xu F, Seleiman MF, Riaz A. Cobalt and Titanium Alleviate the Methylglyoxal-Induced Oxidative Stress in Pennisetum divisum Seedlings under Saline Conditions. Metabolites 2023; 13:1162. [PMID: 37999257 PMCID: PMC10673477 DOI: 10.3390/metabo13111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Salinity is considered to be a global problem and a severe danger to modern agriculture since it negatively impacts plants' growth and development at both cellular- and whole-plant level. However, cobalt (Co) and titanium (Ti), multifunctional non-essential micro-elements, play a crucial role in improving plant growth and development under salinity stress. In the current study, Co and Ti impact on the morphological, biochemical, nutritional, and metabolic profile of Pennisetum divisum plants under three salinity levels which were assessed. Two concentrations of Co (Co-1; 15.0 mg/L and Co-2; 25.0 mg/L), and two concentrations of Ti (Ti-1; 50.0 mg/L and Ti-2; 100.0 mg/L) were applied as foliar application to the P. divisum plants under salinity (S1; 200 mM, S2; 500 mM, and S3; 1000 mM) stress. The results revealed that various morphological, biochemical, and metabolic processes were drastically impacted by the salinity-induced methylglyoxal (MG) stress. The excessive accumulation of salt ions, including Na+ (1.24- and 1.21-fold), and Cl- (1.53- and 1.15-fold) in leaves and roots of P. divisum, resulted in the higher production of MG (2.77- and 2.95-fold) in leaves and roots under severe (1000 mM) salinity stress, respectively. However, Ti-treated leaves showed a significant reduction in ionic imbalance and MG concentrations, whereas considerable improvement was shown in K+ and Ca2+ under salinity stress, and Co treatment showed downregulation of MG content (26, 16, and 14%) and improved the antioxidant activity, such as a reduction in glutathione (GSH), oxidized glutathione (GSSG), Glutathione reductase (GR), Glyoxalase I (Gly I), and Glyoxalase II (Gly II) by up to 1.13-, 1.35-, 3.75-, 2.08-, and 1.68-fold under severe salinity stress in P. divisum roots. Furthermore, MG-induced stress negatively impacted the metabolic profile and antioxidants activity of P. divisum's root and leaves; however, Co and Ti treatment considerably improved the biochemical processes and metabolic profile in both underground and aerial parts of the studied plants. Collectively, the results depicted that Co treatment showed significant results in roots and Ti treatment presented considerable changes in leaves of P. divism under salinity stress.
Collapse
Affiliation(s)
- Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia
| | - Khansa Saleem
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 6300, Pakistan
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunzvik St., 2462 Martonvásár, Hungary
| | - Ali Raza
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abd Ullah
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taimoor Hassan Farooq
- Bangor College China, A Joint Unit of Bangor University and Central South University of Forestry and Technology, Changsha 410004, China
| | - Jean W. H. Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), 234 22 Lomma, Sweden
| | - Fei Xu
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| | - Aamir Riaz
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 6300, Pakistan
| |
Collapse
|
5
|
Gambhir P, Raghuvanshi U, Parida AP, Kujur S, Sharma S, Sopory SK, Kumar R, Sharma AK. Elevated methylglyoxal levels inhibit tomato fruit ripening by preventing ethylene biosynthesis. PLANT PHYSIOLOGY 2023; 192:2161-2184. [PMID: 36879389 PMCID: PMC10315284 DOI: 10.1093/plphys/kiad142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Methylglyoxal (MG), a toxic compound produced as a by-product of several cellular processes, such as respiration and photosynthesis, is well known for its deleterious effects, mainly through glycation of proteins during plant stress responses. However, very little is known about its impact on fruit ripening. Here, we found that MG levels are maintained at high levels in green tomato (Solanum lycopersicum L.) fruits and decline during fruit ripening despite a respiratory burst during this transition. We demonstrate that this decline is mainly mediated through a glutathione-dependent MG detoxification pathway and primarily catalyzed by a Glyoxalase I enzyme encoded by the SlGLYI4 gene. SlGLYI4 is a direct target of the MADS-box transcription factor RIPENING INHIBITOR (RIN), and its expression is induced during fruit ripening. Silencing of SlGLYI4 leads to drastic MG overaccumulation at ripening stages of transgenic fruits and interferes with the ripening process. MG most likely glycates and inhibits key enzymes such as methionine synthase and S-adenosyl methionine synthase in the ethylene biosynthesis pathway, thereby indirectly affecting fruit pigmentation and cell wall metabolism. MG overaccumulation in fruits of several nonripening or ripening-inhibited tomato mutants suggests that the tightly regulated MG detoxification process is crucial for normal ripening progression. Our results underpin a SlGLYI4-mediated regulatory mechanism by which MG detoxification controls fruit ripening in tomato.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Stuti Kujur
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Shweta Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
6
|
Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes. Antioxidants (Basel) 2023; 12:1199. [PMID: 37371929 DOI: 10.3390/antiox12061199] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively).
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Fanny Marceau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Sandrine Farci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Prasad M, Kataria P, Ningaraju S, Buddidathi R, Bankapalli K, Swetha C, Susarla G, Venkatesan R, D'Silva P, Shivaprasad PV. Double DJ-1 domain containing Arabidopsis DJ-1D is a robust macromolecule deglycase. THE NEW PHYTOLOGIST 2022; 236:1061-1074. [PMID: 35976797 DOI: 10.1111/nph.18414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Plants, being sessile, are prone to genotoxin-induced macromolecule damage. Among the inevitable damaging agents are reactive carbonyls that induce glycation of DNA, RNA and proteins to result in the build-up of advanced glycated end-products. However, it is unclear how plants repair glycated macromolecules. DJ-1/PARK7 members are a highly conserved family of moonlighting proteins having double domains in higher plants and single domains in other phyla. Here we show that Arabidopsis DJ-1D offers robust tolerance to endogenous and exogenous stresses through its ability to repair glycated DNA, RNA and proteins. DJ-1D also reduced the formation of reactive carbonyls through its efficient methylglyoxalase activity. Strikingly, full-length double domain-containing DJ-1D suppressed the formation of advanced glycated end-products in yeast and plants. DJ-1D also efficiently repaired glycated nucleic acids and nucleotides in vitro and mitochondrial DNA in vivo under stress, indicating the existence of a new DNA repair pathway in plants. We propose that multi-stress responding plant DJ-1 members, often present in multiple copies among plants, probably contributed to the adaptation to a variety of endogenous and exogenous stresses.
Collapse
Affiliation(s)
- Melvin Prasad
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
| | - Priyanka Kataria
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Sunayana Ningaraju
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Radhika Buddidathi
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
| | - Kondalarao Bankapalli
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Chenna Swetha
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
| | - Gautam Susarla
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Radhika Venkatesan
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | | |
Collapse
|
8
|
Shimakawa G, Krieger‐Liszkay A, Roach T. ROS-derived lipid peroxidation is prevented in barley leaves during senescence. PHYSIOLOGIA PLANTARUM 2022; 174:e13769. [PMID: 36018559 PMCID: PMC9544269 DOI: 10.1111/ppl.13769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Senescence in plants enables resource recycling from senescent leaves to sink organs. Under stress, increased production of reactive oxygen species (ROS) and associated signalling activates senescence. However, senescence is not always associated with stress since it has a prominent role in plant development, in which the role of ROS signalling is less clear. To address this, we investigated lipid metabolism and patterns of lipid peroxidation related to signalling during sequential senescence in first-emerging barley leaves grown under natural light conditions. Leaf fatty acid compositions were dominated by linolenic acid (75% of total), the major polyunsaturated fatty acid (PUFA) in galactolipids of thylakoid membranes, known to be highly sensitive to peroxidation. Lipid catabolism during senescence, including increased lipoxygenase activity, led to decreased levels of PUFA and increased levels of short-chain saturated fatty acids. When normalised to leaf area, only concentrations of hexanal, a product from the 13-lipoxygenase pathway, increased early upon senescence, whereas reactive electrophile species (RES) from ROS-associated lipid peroxidation, such as 4-hydroxynonenal, 4-hydroxyhexenal and acrolein, as well as β-cyclocitral derived from oxidation of β-carotene, decreased. However, relative to total chlorophyll, amounts of most RES increased at late-senescence stages, alongside increased levels of α-tocopherol, zeaxanthin and non-photochemical quenching, an energy dissipative pathway that prevents ROS production. Overall, our results indicate that lipid peroxidation derived from enzymatic oxidation occurs early during senescence in first barley leaves, while ROS-derived lipid peroxidation associates weaker with senescence.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental SciencesKwansei‐Gakuin UniversitySandaJapan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Anja Krieger‐Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Thomas Roach
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
9
|
Rivero-Marcos M, Ariz I. Can N Nutrition Lead to "Plant Diabetes"? The Perspective From Ammonium Nutrition and Methylglyoxal Accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:928876. [PMID: 35712552 PMCID: PMC9194766 DOI: 10.3389/fpls.2022.928876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
|
10
|
Garai S, Bhowal B, Kaur C, Singla-Pareek SL, Sopory SK. What signals the glyoxalase pathway in plants? PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2407-2420. [PMID: 34744374 PMCID: PMC8526643 DOI: 10.1007/s12298-021-00991-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 05/06/2023]
Abstract
Glyoxalase (GLY) system, comprising of GLYI and GLYII enzymes, has emerged as one of the primary methylglyoxal (MG) detoxification pathways with an indispensable role during abiotic and biotic stresses. MG homeostasis is indeed very closely guarded by the cell as its higher levels are cytotoxic for the organism. The dynamic responsiveness of MG-metabolizing GLY pathway to both endogenous cues such as, phytohormones, nutrient status, etc., as well as external environmental fluctuations (abiotic and biotic stresses) indicates that a tight regulation occurs in the cell to maintain physiological levels of MG in the system. Interestingly, GLY pathway is also manipulated by its substrates and reaction products. Hence, an investigation of signalling and regulatory aspects of GLY pathway would be worthwhile. Herein, we have attempted to converge all known factors acting as signals or directly regulating GLYI/II enzymes in plants. Further, we also discuss how crosstalk between these different signal molecules might facilitate the regulation of glyoxalase pathway. We believe that MG detoxification is controlled by intricate mechanisms involving a plethora of signal molecules.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sudhir K. Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
11
|
Methylglyoxal Detoxification Revisited: Role of Glutathione Transferase in Model Cyanobacterium Synechocystis sp. Strain PCC 6803. mBio 2020; 11:mBio.00882-20. [PMID: 32753490 PMCID: PMC7407080 DOI: 10.1128/mbio.00882-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In most organisms, methylglyoxal (MG), a toxic metabolite by-product that causes diabetes in humans, is predominantly detoxified by the glyoxalase enzymes. This process begins with the so-called “spontaneous” conjugation of MG with the cytoprotectant metabolite glutathione (GSH). In this study, we unravel a logical, but as yet unsuspected, link between MG detoxification and a (prokaryotic) representative of the ubiquitous glutathione transferase (GST) enzymes. We show that a GST of a model cyanobacterium plays a prominent role in the detoxification of MG in catalyzing its conjugation with GSH. This finding is important because this reaction, always regarded as nonenzymatic, could exist in plants and/or human and thus have an impact on agriculture and/or human health. Methylglyoxal (MG) is a detrimental metabolic by-product that threatens most organisms (in humans MG causes diabetes). MG is predominantly detoxified by the glyoxalase pathway. This process begins with the conjugation of MG with glutathione (GSH), yielding a hemithioacetal product that is subsequently transformed by the glyoxalase enzymes into d-lactate and GSH. MG has been overlooked in photosynthetic organisms, although they inevitably produce it not only by the catabolism of sugars, lipids, and amino acids, as do heterotrophic organisms, but also by their active photoautotrophic metabolism. This is especially true for cyanobacteria that are regarded as having developed photosynthesis and GSH-dependent enzymes to detoxify the reactive oxygen species produced by their photosynthesis (CO2 assimilation) and respiration (glucose catabolism), which they perform in the same cell compartment. In this study, we used a combination of in vivo and in vitro approaches to characterize a logical, but as yet never described, link between MG detoxification and a (prokaryotic) representative of the evolutionarily conserved glutathione transferase (GST) detoxification enzymes. We show that the Sll0067 GST of the model cyanobacterium Synechocystis sp. strain PCC 6803 plays a prominent role in MG tolerance and detoxification, unlike the other five GSTs of this organism. Sll0067 catalyzes the conjugation of MG with GSH to initiate its elimination driven by glyoxalases. These results are novel because the conjugation of MG with GSH is always described as nonenzymatic. They will certainly stimulate the analysis of Sll0067 orthologs from other organisms with possible impacts on human health (development of biomarkers or drugs) and/or agriculture.
Collapse
|
12
|
Shimakawa G, Ifuku K, Suzuki Y, Makino A, Ishizaki K, Fukayama H, Morita R, Sakamoto K, Nishi A, Miyake C. Responses of the chloroplast glyoxalase system to high CO 2 concentrations. Biosci Biotechnol Biochem 2018; 82:2072-2083. [PMID: 30122118 DOI: 10.1080/09168451.2018.1507724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Sugar metabolism pathways such as photosynthesis produce dicarbonyls, e.g. methylglyoxal (MG), which can cause cellular damage. The glyoxalase (GLX) system comprises two enzymes GLX1 and GLX2, and detoxifies MG; however, this system is poorly understood in the chloroplast, compared with the cytosol. In the present study, we determined GLX1 and GLX2 activities in spinach chloroplasts, which constituted 40% and 10%, respectively, of the total leaf glyoxalase activity. In Arabidopsis thaliana, five GFP-fusion GLXs were present in the chloroplasts. Under high CO2 concentrations, where increased photosynthesis promotes the MG production, GLX1 and GLX2 activities in A. thaliana increased and the expression of AtGLX1-2 and AtGLX2-5 was enhanced. On the basis of these findings and the phylogeny of GLX in oxygenic phototrophs, we propose that the GLX system scavenges MG produced in chloroplasts during photosynthesis.
Collapse
Affiliation(s)
- Ginga Shimakawa
- a Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Kentaro Ifuku
- b Division of Integrated Life Science, Graduate School of Biostudies , Kyoto University , Kyoto , Japan.,c Core Research for Environmental Science and Technology , Japan Science and Technology Agency , Tokyo , Japan
| | - Yuji Suzuki
- c Core Research for Environmental Science and Technology , Japan Science and Technology Agency , Tokyo , Japan.,d Graduate School of Agricultural Science , Tohoku University , Sendai , Japan.,e Faculty of Agriculture , Iwate University , Morioka , Iwate , Japan
| | - Amane Makino
- d Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | | | - Hiroshi Fukayama
- a Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Ryutaro Morita
- a Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Katsuhiko Sakamoto
- a Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Akiko Nishi
- a Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Chikahiro Miyake
- a Graduate School of Agricultural Science , Kobe University , Kobe , Japan.,c Core Research for Environmental Science and Technology , Japan Science and Technology Agency , Tokyo , Japan
| |
Collapse
|
13
|
Mostofa MG, Ghosh A, Li ZG, Siddiqui MN, Fujita M, Tran LSP. Methylglyoxal - a signaling molecule in plant abiotic stress responses. Free Radic Biol Med 2018; 122:96-109. [PMID: 29545071 DOI: 10.1016/j.freeradbiomed.2018.03.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Abiotic stresses are the most common harmful factors, adversely affecting all aspects of plants' life. Plants have to elicit appropriate responses against multifaceted effects of abiotic stresses by reprogramming various cellular processes. Signaling molecules play vital roles in sensing environmental stimuli to modulate gene expression, metabolism and physiological processes in plants to cope with the adverse effects. Methylglyoxal (MG), a dicarbonyl compound, is known to accumulate in cells as a byproduct of various metabolic pathways, including glycolysis. Several works in recent years have demonstrated that MG could play signaling roles via Ca2+, reactive oxygen species (ROS), K+ and abscisic acid. Recently, global gene expression profiling has shown that MG could induce signaling cascades, and an overlap between MG-responsive and stress-responsive signaling events might exist in plants. Once overaccumulated in cells, MG can provoke detrimental effects by generating ROS, forming advanced glycation end products and inactivating antioxidant systems. Plants are also equipped with MG-detoxifying glyoxalase system to save cellular organelles from MG toxicity. Since MG has regulatory functions in plant growth and development, and glyoxalase system is an integral component of abiotic stress adaptation, an in-depth understanding on MG metabolism and glyoxalase system will help decipher mechanisms underlying plant responses to abiotic stresses. Here, we provide a comprehensive update on the current knowledge of MG production and detoxification in plants, and highlight the putative functions of glyoxalase system in mediating plant defense against abiotic stresses. We particularly emphasize on the dual roles of MG and its connection with glutathione-related redox regulation, which is crucial for plant defense and adaptive responses under changing environmental conditions.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming 650500, PR China.
| | - Md Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
14
|
Shimakawa G, Kohara A, Miyake C. Medium-chain dehydrogenase/reductase and aldo-keto reductase scavenge reactive carbonyls in Synechocystis sp. PCC 6803. FEBS Lett 2018; 592:1010-1019. [PMID: 29430658 DOI: 10.1002/1873-3468.13003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 01/24/2023]
Abstract
Reactive carbonyls (RCs), which are inevitably produced during respiratory and photosynthetic metabolism, have the potential to cause oxidative damage to photosynthetic organisms. Previously, we proposed a scavenging model for RCs in the cyanobacterium Synechocystis sp. PCC 6803 (S. 6803). In the current study, we constructed mutants deficient in the enzymes medium-chain dehydrogenase/reductase (ΔMDR) and aldo-keto reductase (ΔAKR) to investigate their contributions to RC scavenging in vivo. We found that treatment with the lipid-derived RC acrolein causes growth inhibition and promotes greater protein carbonylation in ΔMDR, compared with the wild-type and ΔAKR. In both ΔMDR and ΔAKR, photosynthesis is severely inhibited in the presence of acrolein. These results suggest that these enzymes function as part of the scavenging systems for RCs in S. 6803 in vivo.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Japan
| | - Ayaka Kohara
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Japan.,Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
15
|
Shimakawa G, Watanabe S, Miyake C. A Carbon Dioxide Limitation-Inducible Protein, ColA, Supports the Growth of Synechococcus sp. PCC 7002. Mar Drugs 2017; 15:md15120390. [PMID: 29244744 PMCID: PMC5742850 DOI: 10.3390/md15120390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/30/2017] [Accepted: 12/09/2017] [Indexed: 11/16/2022] Open
Abstract
A limitation in carbon dioxide (CO₂), which occurs as a result of natural environmental variation, suppresses photosynthesis and has the potential to cause photo-oxidative damage to photosynthetic cells. Oxygenic phototrophs have strategies to alleviate photo-oxidative damage to allow life in present atmospheric CO₂ conditions. However, the mechanisms for CO₂ limitation acclimation are diverse among the various oxygenic phototrophs, and many mechanisms remain to be discovered. In this study, we found that the gene encoding a CO₂ limitation-inducible protein, ColA, is required for the cyanobacterium Synechococcus sp. PCC 7002 (S. 7002) to acclimate to limited CO₂ conditions. An S. 7002 mutant deficient in ColA (ΔcolA) showed lower chlorophyll content, based on the amount of nitrogen, than that in S. 7002 wild-type (WT) under ambient air but not high CO₂ conditions. Both thermoluminescence and protein carbonylation detected in the ambient air grown cells indicated that the lack of ColA promotes oxidative stress in S. 7002. Alterations in the photosynthetic O₂ evolution rate and relative electron transport rate in the short-term response, within an hour, to CO₂ limitation were the same between the WT and ΔcolA. Conversely, these photosynthetic parameters were mostly lower in the long-term response of a few days in ΔcolA than in the WT. These data suggest that ColA is required to sustain photosynthetic activity for living under ambient air in S. 7002. The unique phylogeny of ColA revealed diverse strategies to acclimate to CO₂ limitation among cyanobacteria.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
16
|
Szwergold B. A Hypothesis: Moderate Consumption of Alcohol Contributes to Lower Prevalence of Type 2 Diabetes Due to the Scavenging of Alpha-Dicarbonyls by Dietary Polyphenols. Rejuvenation Res 2017; 21:389-404. [PMID: 28891383 DOI: 10.1089/rej.2017.1974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The world is experiencing an epidemic of type-2-diabetes mellitus (T2DM). This has led to increased morbidity and mortality, explosive growth in health care budgets, and an even greater adverse, if indirect, impact on societies and economies of affected countries. While genetic susceptibility to T2DM is a major determinant of its prevalence, changes in lifestyles also play a role. One such change has been a transition from traditional diets characterized by low caloric and high nutrient density to calorie-rich but nutrient-poor Western diets. Given this, one solution to the epidemic of T2DM would be to abandon Western diets and revert to traditional eating patterns. However, traditional diets cannot provide enough calories for the increasing global population, so transition from traditional to Western foodstuffs appears to be irreversible. Consequently, the only practical solution to problems caused by these changes is to modify Western diets, possibly by supplementing them with functional foods containing nutrients that would compensate for these dietary deficits. I present in this study a hypothesis to explain why shifts from traditional to Western diets have been so problematic and to suggest nutrients that may counteract these adverse effects. I postulate that the components of traditional diets that may compensate for deficiencies of Westerns diets are scavengers of reactive α-dicarbonyls produced as unavoidable by-products of glucose and lipid metabolism. Most important among these scavengers are some plant secondary metabolites: polyphenols, phlorotannins, and carotenoids. They are found in alcoholic beverages and are abundant in seasonings, cocoa, coffee, tea, whole grains, pigmented vegetables, fruits, and berries.
Collapse
|
17
|
Bilova T, Paudel G, Shilyaev N, Schmidt R, Brauch D, Tarakhovskaya E, Milrud S, Smolikova G, Tissier A, Vogt T, Sinz A, Brandt W, Birkemeyer C, Wessjohann LA, Frolov A. Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation hot spots. J Biol Chem 2017; 292:15758-15776. [PMID: 28611063 DOI: 10.1074/jbc.m117.794537] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/27/2017] [Indexed: 01/05/2023] Open
Abstract
Glycation is a post-translational modification resulting from the interaction of protein amino and guanidino groups with carbonyl compounds. Initially, amino groups react with reducing carbohydrates, yielding Amadori and Heyns compounds. Their further degradation results in formation of advanced glycation end products (AGEs), also originating from α-dicarbonyl products of monosaccharide autoxidation and primary metabolism. In mammals, AGEs are continuously formed during the life of the organism, accumulate in tissues, are well-known markers of aging, and impact age-related tissue stiffening and atherosclerotic changes. However, the role of AGEs in age-related molecular alterations in plants is still unknown. To fill this gap, we present here a comprehensive study of the age-related changes in the Arabidopsis thaliana glycated proteome, including the proteins affected and specific glycation sites therein. We also consider the qualitative and quantitative changes in glycation patterns in terms of the general metabolic background, pathways of AGE formation, and the status of plant anti-oxidative/anti-glycative defense. Although the patterns of glycated proteins were only minimally influenced by plant age, the abundance of 96 AGE sites in 71 proteins was significantly affected in an age-dependent manner and clearly indicated the existence of age-related glycation hot spots in the plant proteome. Homology modeling revealed glutamyl and aspartyl residues in close proximity (less than 5 Å) to these sites in three aging-specific and eight differentially glycated proteins, four of which were modified in catalytic domains. Thus, the sites of glycation hot spots might be defined by protein structure that indicates, at least partly, site-specific character of glycation.
Collapse
Affiliation(s)
- Tatiana Bilova
- From the Departments of Bioorganic Chemistry and .,the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany.,the Departments of Plant Physiology and Biochemistry and
| | - Gagan Paudel
- From the Departments of Bioorganic Chemistry and.,the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | - Nikita Shilyaev
- Biochemistry, Faculty of Biology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
| | - Rico Schmidt
- the Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany, and
| | - Dominic Brauch
- the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany.,the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland, Germany
| | | | - Svetlana Milrud
- the Departments of Plant Physiology and Biochemistry and.,Biochemistry, Faculty of Biology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
| | | | - Alain Tissier
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle (Saale), Germany
| | - Thomas Vogt
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- the Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany, and
| | | | - Claudia Birkemeyer
- the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | | | - Andrej Frolov
- From the Departments of Bioorganic Chemistry and .,the Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
18
|
Sankaranarayanan S, Jamshed M, Kumar A, Skori L, Scandola S, Wang T, Spiegel D, Samuel MA. Glyoxalase Goes Green: The Expanding Roles of Glyoxalase in Plants. Int J Mol Sci 2017; 18:ijms18040898. [PMID: 28441779 PMCID: PMC5412477 DOI: 10.3390/ijms18040898] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 01/01/2023] Open
Abstract
The ubiquitous glyoxalase enzymatic pathway is involved in the detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis. The glyoxalase system has been more extensively studied in animals versus plants. Plant glyoxalases have been primarily associated with stress responses and their overexpression is known to impart tolerance to various abiotic stresses. In plants, glyoxalases exist as multigene families, and new roles for glyoxalases in various developmental and signaling pathways have started to emerge. Glyoxalase-based MG detoxification has now been shown to be important for pollination responses. During self-incompatibility response in Brassicaceae, MG is required to target compatibility factors for proteasomal degradation, while accumulation of glyoxalase leads to MG detoxification and efficient pollination. In this review, we discuss the importance of glyoxalase systems and their emerging biological roles in plants.
Collapse
Affiliation(s)
- Subramanian Sankaranarayanan
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Muhammad Jamshed
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| | - Abhinandan Kumar
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| | - Logan Skori
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| | - Sabine Scandola
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| | - Tina Wang
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06511, USA.
| | - David Spiegel
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06511, USA.
| | - Marcus A Samuel
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| |
Collapse
|
19
|
Doucet J, Lee HK, Goring DR. Pollen Acceptance or Rejection: A Tale of Two Pathways. TRENDS IN PLANT SCIENCE 2016; 21:1058-1067. [PMID: 27773670 DOI: 10.1016/j.tplants.2016.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 05/21/2023]
Abstract
While the molecular and cellular basis of self-incompatibility leading to self-pollen rejection in the Brassicaceae has been extensively studied, relatively little attention has been paid to compatible pollen recognition and the corresponding cellular responses in the stigmatic papillae. This is now changing because research has started to uncover steps in the Brassicaceae 'basal compatible pollen response pathway' in the stigma leading to pollen hydration and germination. Furthermore, recent studies suggest that self-incompatible pollen activates both the basal compatible pathway and the self-incompatibility pathway in the stigma, with the self-incompatibility response ultimately prevailing to reject self-pollen. We review here recent discoveries in both pathways and discuss how compatible pollen is accepted by the stigma versus the rejection of self-incompatible pollen.
Collapse
Affiliation(s)
- Jennifer Doucet
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - Hyun Kyung Lee
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - Daphne R Goring
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3B2, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto M5S 3B2, Canada.
| |
Collapse
|
20
|
|
21
|
Bhattacharya D, Agrawal S, Aranda M, Baumgarten S, Belcaid M, Drake JL, Erwin D, Foret S, Gates RD, Gruber DF, Kamel B, Lesser MP, Levy O, Liew YJ, MacManes M, Mass T, Medina M, Mehr S, Meyer E, Price DC, Putnam HM, Qiu H, Shinzato C, Shoguchi E, Stokes AJ, Tambutté S, Tchernov D, Voolstra CR, Wagner N, Walker CW, Weber AP, Weis V, Zelzion E, Zoccola D, Falkowski PG. Comparative genomics explains the evolutionary success of reef-forming corals. eLife 2016; 5. [PMID: 27218454 PMCID: PMC4878875 DOI: 10.7554/elife.13288] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/20/2016] [Indexed: 12/30/2022] Open
Abstract
Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years. DOI:http://dx.doi.org/10.7554/eLife.13288.001 For millions of years, reef-building stony corals have created extensive habitats for numerous marine plants and animals in shallow tropical seas. Stony corals consist of many small, tentacled animals called polyps. These polyps secrete a mineral called aragonite to create the reef – an external ‘skeleton’ that supports and protects the corals. Photosynthesizing algae live inside the cells of stony corals, and each species depends on the other to survive. The algae produce the coral’s main source of food, although they also produce some waste products that can harm the coral if they build up inside cells. If the oceans become warmer and more acidic, the coral are more likely to become stressed and expel the algae from their cells in a process known as coral bleaching. This makes the coral more likely to die or become diseased. Corals have survived previous periods of ocean warming, although it is not known how they evolved to do so. The evolutionary history of an organism can be traced by studying its genome – its complete set of DNA – and the RNA molecules encoded by these genes. Bhattacharya et al. performed this analysis for twenty stony coral species, and compared the resulting genome and RNA sequences with the genomes of other related marine organisms, such as sea anemones and sponges. In particular, Bhattacharya et al. examined “ortholog” groups of genes, which are present in different species and evolved from a common ancestral gene. This analysis identified the genes in the corals that encode the proteins responsible for constructing the aragonite skeleton. The coral genome also encodes a network of environmental sensors that coordinate how the polyps respond to temperature, light and acidity. Bhattacharya et al. also uncovered a variety of stress-related pathways, including those that detoxify the polyps of the damaging molecules generated by algae, and the pathways that enable the polyps to adapt to environmental stress. Many of these genes were recruited from other species in a process known as horizontal gene transfer. The oceans are expected to become warmer and more acidic in the coming centuries. Provided that humans do not physically destroy the corals’ habitats, the evidence found by Bhattacharya et al. suggests that the genome of the corals contains the diversity that will allow them to adapt to these new conditions. DOI:http://dx.doi.org/10.7554/eLife.13288.002
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, United States.,Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, United States
| | - Shobhit Agrawal
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manuel Aranda
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sebastian Baumgarten
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mahdi Belcaid
- Hawaii Institute of Marine Biology, Kaneohe, United States
| | - Jeana L Drake
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, United States
| | - Douglas Erwin
- Smithsonian Institution, National Museum of Natural History, Washington, United States
| | - Sylvian Foret
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia.,Research School of Biology, Australian National University, Canberra, Australia
| | - Ruth D Gates
- Hawaii Institute of Marine Biology, Kaneohe, United States
| | - David F Gruber
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, United States.,Department of Natural Sciences, City University of New York, Baruch College and The Graduate Center, New York, United States
| | - Bishoy Kamel
- Department of Biology, Mueller Lab, Penn State University, University Park, United States
| | - Michael P Lesser
- School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, United States
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gam, Israel
| | - Yi Jin Liew
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matthew MacManes
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Tali Mass
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, United States.,Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Israel
| | - Monica Medina
- Department of Biology, Mueller Lab, Penn State University, University Park, United States
| | - Shaadi Mehr
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, United States.,Biological Science Department, State University of New York, College at Old Westbury, New York, United States
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Dana C Price
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, United States
| | | | - Huan Qiu
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, United States
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Alexander J Stokes
- Laboratory of Experimental Medicine and Department of Cell and Molecular Biology, John A. Burns School of Medicine, Honolulu, United States.,Chaminade University, Honolulu, United States
| | | | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Israel
| | - Christian R Voolstra
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nicole Wagner
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, United States
| | - Charles W Walker
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Andreas Pm Weber
- Institute of Plant Biochemistry, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Virginia Weis
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Ehud Zelzion
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, United States
| | | | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, United States.,Department of Earth and Planetary Sciences, Rutgers University, New Jersey, United States
| |
Collapse
|
22
|
Abstract
AbstractThe glyoxalase enzyme system utilizes intracellular thiols such as glutathione to convert α-ketoaldehydes, such as methylglyoxal, into D-hydroxyacids. This overview discusses several main aspects of the glyoxalase system and its likely function in the cell. The control of methylglyoxal levels in the cell is an important biochemical imperative and high levels have been associated with major medical symptoms that relate to this metabolite’s capability to covalently modify proteins, lipids and nucleic acid.
Collapse
|
23
|
Sankaranarayanan S, Jamshed M, Samuel MA. Degradation of glyoxalase I in Brassica napus stigma leads to self-incompatibility response. NATURE PLANTS 2015; 1:15185. [PMID: 27251720 DOI: 10.1038/nplants.2015.185] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Self-incompatibility (rejection of 'self'-pollen) is a reproductive barrier that allows hermaphroditic flowering plants to prevent inbreeding, to promote outcrossing and hybrid vigour. The self-incompatibility response in Brassica involves allele-specific interaction between the pollen small cysteine-rich, secreted protein ligand (SCR/SP11) and the stigmatic S-receptor kinase (SRK), which leads to the activation of the E3 ubiquitin ligase ARC1 (Armadillo repeat-containing 1), resulting in proteasomal degradation of compatibility factors needed for successful pollination. Despite this, targets of ARC1 and the intracellular signalling network that is regulated by these targets, have remained elusive. Here we show that glyoxalase I (GLO1), an enzyme that is required for the detoxification of methylglyoxal (MG, a cytotoxic by-product of glycolysis), is a stigmatic compatibility factor required for pollination to occur and is targeted by the self-incompatibility system. Suppression of GLO1 was sufficient to reduce compatibility, and overexpression of GLO1 in self-incompatible Brassica napus stigmas resulted in partial breakdown of the self-incompatibility response. ARC1-mediated destruction of GLO1 after self-pollination results in increased MG levels and a concomitant increase in MG-modified proteins (including GLO1), which are efficiently targeted for destruction in the papillary cells, leading to pollen rejection. Our findings demonstrate the elegant nature of plants to use a metabolic by-product to regulate the self-incompatibility response.
Collapse
Affiliation(s)
| | - Muhammad Jamshed
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Marcus A Samuel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
24
|
Maurino VG, Engqvist MKM. 2-Hydroxy Acids in Plant Metabolism. THE ARABIDOPSIS BOOK 2015; 13:e0182. [PMID: 26380567 PMCID: PMC4568905 DOI: 10.1199/tab.0182] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis.
Collapse
Affiliation(s)
- Veronica G. Maurino
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Martin K. M. Engqvist
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|