1
|
Galarreta CI, Kennedy C, Blair DR, Slavotinek A. Expanding the phenotype of PIK3C2A related syndrome: Report of two siblings with novel features and genotype. Am J Med Genet A 2022; 188:2724-2731. [PMID: 35770347 DOI: 10.1002/ajmg.a.62881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
A pair of siblings was ascertained due to multiple congenital anomalies, including strikingly similar facial, skeletal, and ocular abnormalities. Exome sequencing of both the children and their mother revealed two novel PIK3C2A variants in the siblings, c.4381delC (p.Arg1461Glufs*31) and c.1555C > T (p.Arg519Ter). PIK3C2A belongs to the Class IIa family of Phosphatidylinositol-3-kinases, which create second messenger lipids that regulate a wide range of downstream signaling pathways involved in cell growth, survival and migration. Tiosano et al. (2019) identified the first monogenic disorder associated with biallelic PIK3C2A loss-of-function variants (oculoskeletodental syndrome). The novel syndrome was characterized by short stature, coarse facial features, ocular and skeletal abnormalities. This report describes two additional siblings affected by the PIK3C2A-related syndrome, confirms core clinical features, establishes intrafamilial variability and expands the phenotype to include proteinuria.
Collapse
Affiliation(s)
- Carolina I Galarreta
- Medical Genetics and Metabolism Department, Valley Children's Hospital, Madera, California, USA
| | - Colleen Kennedy
- Medical Genetics and Metabolism Department, Valley Children's Hospital, Madera, California, USA
| | - David R Blair
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, California, USA
| | - Anne Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, California, USA
| |
Collapse
|
2
|
Diverse activation mechanisms of PI3Ks. Nat Struct Mol Biol 2022; 29:185-187. [PMID: 35256803 DOI: 10.1038/s41594-022-00744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Selvadurai MV, Moon MJ, Mountford SJ, Ma X, Zheng Z, Jennings IG, Setiabakti NM, Iman RP, Brazilek RJ, Z Abidin NA, Chicanne G, Severin S, Nicholls AJ, Wong CHY, Rinckel JY, Eckly A, Gachet C, Nesbitt WS, Thompson PE, Hamilton JR. Disrupting the platelet internal membrane via PI3KC2α inhibition impairs thrombosis independently of canonical platelet activation. Sci Transl Med 2021; 12:12/553/eaar8430. [PMID: 32718993 DOI: 10.1126/scitranslmed.aar8430] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022]
Abstract
Arterial thrombosis causes heart attacks and most strokes and is the most common cause of death in the world. Platelets are the cells that form arterial thrombi, and antiplatelet drugs are the mainstay of heart attack and stroke prevention. Yet, current drugs have limited efficacy, preventing fewer than 25% of lethal cardiovascular events without clinically relevant effects on bleeding. The key limitation on the ability of all current drugs to impair thrombosis without causing bleeding is that they block global platelet activation, thereby indiscriminately preventing platelet function in hemostasis and thrombosis. Here, we identify an approach with the potential to overcome this limitation by preventing platelet function independently of canonical platelet activation and in a manner that appears specifically relevant in the setting of thrombosis. Genetic or pharmacological targeting of the class II phosphoinositide 3-kinase (PI3KC2α) dilates the internal membrane reserve of platelets but does not affect activation-dependent platelet function in standard tests. Despite this, inhibition of PI3KC2α is potently antithrombotic in human blood ex vivo and mice in vivo and does not affect hemostasis. Mechanistic studies reveal this antithrombotic effect to be the result of impaired platelet adhesion driven by pronounced hemodynamic shear stress gradients. These findings demonstrate an important role for PI3KC2α in regulating platelet structure and function via a membrane-dependent mechanism and suggest that drugs targeting the platelet internal membrane may be a suitable approach for antithrombotic therapies with an improved therapeutic window.
Collapse
Affiliation(s)
- Maria V Selvadurai
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Mitchell J Moon
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Simon J Mountford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Xiao Ma
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Zhaohua Zheng
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ian G Jennings
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Natasha M Setiabakti
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.,Faculty of Medicine, Universitas Indonesia, Salemba, Jakarta 10430, Indonesia
| | - Rizani P Iman
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.,Faculty of Medicine, Universitas Indonesia, Salemba, Jakarta 10430, Indonesia
| | - Rose J Brazilek
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Nurul Aisha Z Abidin
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, 31432 Toulouse CEDEX 4, France
| | - Sonia Severin
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, 31432 Toulouse CEDEX 4, France
| | - Alyce J Nicholls
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC 3800, Australia
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC 3800, Australia
| | - Jean-Yves Rinckel
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000 Strasbourg, France
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000 Strasbourg, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000 Strasbourg, France
| | - Warwick S Nesbitt
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.,Microplatforms Research Group, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
4
|
Class II phosphatidylinositol 3-kinase isoforms in vesicular trafficking. Biochem Soc Trans 2021; 49:893-901. [PMID: 33666217 PMCID: PMC8106491 DOI: 10.1042/bst20200835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/14/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are critical regulators of many cellular processes including cell survival, proliferation, migration, cytoskeletal reorganization, and intracellular vesicular trafficking. They are a family of lipid kinases that phosphorylate membrane phosphoinositide lipids at the 3′ position of their inositol rings, and in mammals they are divided into three classes. The role of the class III PI3K Vps34 is well-established, but recent evidence suggests the physiological significance of class II PI3K isoforms in vesicular trafficking. This review focuses on the recently discovered functions of the distinct PI3K-C2α and PI3K-C2β class II PI3K isoforms in clathrin-mediated endocytosis and consequent endosomal signaling, and discusses recently reported data on class II PI3K isoforms in different physiological contexts in comparison with class I and III isoforms.
Collapse
|
5
|
Downregulation of class II phosphoinositide 3-kinase PI3K-C2β delays cell division and potentiates the effect of docetaxel on cancer cell growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:472. [PMID: 31752944 PMCID: PMC6873561 DOI: 10.1186/s13046-019-1472-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Background Alteration of signalling pathways regulating cell cycle progression is a common feature of cancer cells. Several drugs targeting distinct phases of the cell cycle have been developed but the inability of many of them to discriminate between normal and cancer cells has strongly limited their clinical potential because of their reduced efficacy at the concentrations used to limit adverse side effects. Mechanisms of resistance have also been described, further affecting their efficacy. Identification of novel targets that can potentiate the effect of these drugs or overcome drug resistance can provide a useful strategy to exploit the anti-cancer properties of these agents to their fullest. Methods The class II PI3K isoform PI3K-C2β was downregulated in prostate cancer PC3 cells and cervical cancer HeLa cells using selective siRNAs and the effect on cell growth was determined in the absence or presence of the microtubule-stabilizing agent/anti-cancer drug docetaxel. Mitosis progression was monitored by time-lapse microscopy. Clonogenic assays were performed to determine the ability of PC3 and HeLa cells to form colonies upon PI3K-C2β downregulation in the absence or presence of docetaxel. Cell multi-nucleation was assessed by immunofluorescence. Tumour growth in vivo was assessed using a xenograft model of PC3 cells upon PI3K-C2β downregulation and in combination with docetaxel. Results Downregulation of PI3K-C2β delays mitosis progression in PC3 and HeLa cells, resulting in reduced ability to form colonies in clonogenic assays in vitro. Compared to control cells, PC3 cells lacking PI3K-C2β form smaller and more compact colonies in vitro and they form tumours more slowly in vivo in the first weeks after cells implant. Stable and transient PI3K-C2β downregulation potentiates the effect of low concentrations of docetaxel on cancer cell growth. Combination of PI3K-C2β downregulation and docetaxel almost completely prevents colonies formation in clonogenic assays in vitro and strongly inhibits tumour growth in vivo. Conclusions These data reveal a novel role for the class II PI3K PI3K-C2β during mitosis progression. Furthermore, data indicate that blockade of PI3K-C2β might represent a novel strategy to potentiate the effect of docetaxel on cancer cell growth.
Collapse
|
6
|
Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol 2019; 9:150. [PMID: 31245297 PMCID: PMC6563779 DOI: 10.3389/fcimb.2019.00150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes. Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of seven species generated by reversible phosphorylation of the inositol moieties at the positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P), PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups, plasma membrane, and phagocytic cups, respectively. The localization of these PIs in E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize PIs in this organism has not been well-documented. In this review, we summarized the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via a genome-wide survey of the current genomic information. E. histolytica appears to have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved enzymes that generate all the seven PI species. However, class II PI 3-kinases, type II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI 3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate (PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI metabolism also has conserved roles related to nuclear functions in E. histolytica, as it does in model organisms.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Gulluni F, De Santis MC, Margaria JP, Martini M, Hirsch E. Class II PI3K Functions in Cell Biology and Disease. Trends Cell Biol 2019; 29:339-359. [DOI: 10.1016/j.tcb.2019.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
|
8
|
Margaria JP, Ratto E, Gozzelino L, Li H, Hirsch E. Class II PI3Ks at the Intersection between Signal Transduction and Membrane Trafficking. Biomolecules 2019; 9:E104. [PMID: 30884740 PMCID: PMC6468456 DOI: 10.3390/biom9030104] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphorylation of inositol phospholipids by the family of phosphoinositide 3-kinases (PI3Ks) is crucial in controlling membrane lipid composition and regulating a wide range of intracellular processes, which include signal transduction and vesicular trafficking. In spite of the extensive knowledge on class I PI3Ks, recent advances in the study of the three class II PI3Ks (PIK3C2A, PIK3C2B and PIK3C2G) reveal their distinct and non-overlapping cellular roles and localizations. By finely tuning membrane lipid composition in time and space among different cellular compartments, this class of enzymes controls many cellular processes, such as proliferation, survival and migration. This review focuses on the recent developments regarding the coordination of membrane trafficking and intracellular signaling of class II PI3Ks through the confined phosphorylation of inositol phospholipids.
Collapse
Affiliation(s)
- Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Edoardo Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Luca Gozzelino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Huayi Li
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
9
|
Robinson DC, Mammel AE, Logan AM, Larson AA, Schmidt EJ, Condon AF, Robinson FL. An In Vitro Model of Charcot-Marie-Tooth Disease Type 4B2 Provides Insight Into the Roles of MTMR13 and MTMR2 in Schwann Cell Myelination. ASN Neuro 2018; 10:1759091418803282. [PMID: 30419760 PMCID: PMC6236487 DOI: 10.1177/1759091418803282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/16/2023] Open
Abstract
Charcot-Marie-Tooth Disorder Type 4B (CMT4B) is a demyelinating peripheral neuropathy caused by mutations in myotubularin-related (MTMR) proteins 2, 13, or 5 (CMT4B1/2/3), which regulate phosphoinositide turnover and endosomal trafficking. Although mouse models of CMT4B2 exist, an in vitro model would make possible pharmacological and reverse genetic experiments needed to clarify the role of MTMR13 in myelination. We have generated such a model using Schwann cell-dorsal root ganglion (SC-DRG) explants from Mtmr13-/- mice. Myelin sheaths in mutant cultures contain outfoldings highly reminiscent of those observed in the nerves of Mtmr13-/- mice and CMT4B2 patients. Mtmr13-/- SC-DRG explants also contain reduced Mtmr2, further supporting a role of Mtmr13 in stabilizing Mtmr2. Elevated PI(3,5)P2 has been implicated as a cause of myelin outfoldings in Mtmr2-/- models. In contrast, the role of elevated PI3P or PI(3,5)P2 in promoting outfoldings in Mtmr13-/- models is unclear. We found that over-expression of MTMR2 in Mtmr13-/- SC-DRGs moderately reduced the prevalence of myelin outfoldings. Thus, a manipulation predicted to lower PI3P and PI(3,5)P2 partially suppressed the phenotype caused by Mtmr13 deficiency. We also explored the relationship between CMT4B2-like myelin outfoldings and kinases that produce PI3P and PI(3,5)P2 by analyzing nerve pathology in mice lacking both Mtmr13 and one of two specific PI 3-kinases. Intriguingly, the loss of vacuolar protein sorting 34 or PI3K-C2β in Mtmr13-/- mice had no impact on the prevalence of myelin outfoldings. In aggregate, our findings suggest that the MTMR13 scaffold protein likely has critical functions other than stabilizing MTMR2 to achieve an adequate level of PI 3-phosphatase activity.
Collapse
Affiliation(s)
- Danielle C. Robinson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Anna E. Mammel
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Cell, Developmental & Cancer Biology Graduate
Program, Oregon Health & Science University, Portland, OR,
USA
| | - Anne M. Logan
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Aubree A. Larson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
| | - Eric J. Schmidt
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
| | - Alec F. Condon
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Fred L. Robinson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Vollum Institute, Oregon Health & Science
University, Portland, OR, USA
| |
Collapse
|
10
|
Srivastava S, Li Z, Skolnik EY. Phosphatidlyinositol-3-kinase C2 beta (PI3KC2β) is a potential new target to treat IgE mediated disease. PLoS One 2017; 12:e0183474. [PMID: 28820911 PMCID: PMC5562315 DOI: 10.1371/journal.pone.0183474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/04/2017] [Indexed: 12/14/2022] Open
Abstract
Cross linking of the IgE receptor (FcεRI) on mast cells plays a critical role in IgE-dependent allergy including allergic rhinitis, asthma, anaphylaxis, and delayed type hypersensitivity reactions. The Ca2+ activated K+ channel, KCa3.1, plays a critical role in IgE-stimulated Ca2+ entry and degranulation in mast cells by helping to maintain a negative membrane potential, which provides an electrochemical gradient to drive Ca2+ influx. Of the 3 classes of PI3K, the class II PI3Ks are the least studied and little is known about the roles for class II PI3Ks in vivo in the context of the whole organism under normal and pathological conditions. Studying bone marrow derived mast cells (BMMC) isolated from PI3KC2β-/- mice, we now show that the class II PI3KC2β is critical for FcεRI stimulated KCa3.1 channel activation and the subsequent activation of mast cells. We found FcεRI-stimulated Ca2+ entry, cytokine production, and degranulation are decreased in BMMC isolated from PI3KC2β-/- mice. In addition, PI3KC2β-/- mice are markedly resistant to both passive cutaneous and passive systemic anaphylaxis. These findings identify PI3KC2β as a new pharmacologic target to treat IgE-mediated disease.
Collapse
Affiliation(s)
- Shekhar Srivastava
- Division of Nephrology, New York University Langone Medical Center, New York, New York, United States of America
- Department of Molecular Pathogenesis, Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, New York, United States of America
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Zhai Li
- Division of Nephrology, New York University Langone Medical Center, New York, New York, United States of America
- Department of Molecular Pathogenesis, Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, New York, United States of America
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Edward Y. Skolnik
- Division of Nephrology, New York University Langone Medical Center, New York, New York, United States of America
- Department of Molecular Pathogenesis, Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, New York, United States of America
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, New York, United States of America
- Department of Pharmacology, Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Phosphoinositide 3-Kinase-Dependent Signalling Pathways in Cutaneous Squamous Cell Carcinomas. Cancers (Basel) 2017; 9:cancers9070086. [PMID: 28696382 PMCID: PMC5532622 DOI: 10.3390/cancers9070086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 01/11/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) derives from keratinocytes in the epidermis and accounts for 15–20% of all cutaneous malignancies. Although it is usually curable by surgery, 5% of these tumours metastasise leading to poor prognosis mostly because of a lack of therapies and validated biomarkers. As the incidence rate is rising worldwide it has become increasingly important to better understand the mechanisms involved in cSCC development and progression in order to develop therapeutic strategies. Here we discuss some of the evidence indicating that activation of phosphoinositide 3-kinases (PI3Ks)-dependent signalling pathways (in particular the PI3Ks targets Akt and mTOR) has a key role in cSCC. We further discuss available data suggesting that inhibition of these pathways can be beneficial to counteract the disease. With the growing number of different inhibitors currently available, it would be important to further investigate the specific contribution of distinct components of the PI3Ks/Akt/mTOR pathways in order to identify the most promising molecular targets and the best strategy to inhibit cSCC.
Collapse
|
12
|
Chikh A, Ferro R, Abbott JJ, Piñeiro R, Buus R, Iezzi M, Ricci F, Bergamaschi D, Ostano P, Chiorino G, Lattanzio R, Broggini M, Piantelli M, Maffucci T, Falasca M. Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression. Oncotarget 2017; 7:18325-45. [PMID: 26934321 PMCID: PMC4951291 DOI: 10.18632/oncotarget.7761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/11/2016] [Indexed: 12/15/2022] Open
Abstract
It is now well established that the enzymes phosphoinositide 3-kinases (PI3Ks) have a key role in the development and progression of many cancer types and indeed PI3Ks inhibitors are currently being tested in clinical trials. Although eight distinct PI3K isoforms exist, grouped into three classes, most of the evidence currently available are focused on one specific isoform with very little known about the potential role of the other members of this family in cancer. Here we demonstrate that the class II enzyme PI3K-C2β is overexpressed in several human breast cancer cell lines and in human breast cancer specimens. Our data indicate that PI3K-C2β regulates breast cancer cell growth in vitro and in vivo and that PI3K-C2β expression in breast tissues is correlated with the proliferative status of the tumor. Specifically we show that downregulation of PI3K-C2β in breast cancer cell lines reduces colony formation, induces cell cycle arrest and inhibits tumor growth, in particular in an estrogen-dependent in vivo xenograft. Investigation of the mechanism of the PI3K-C2β-dependent regulation of cell cycle progression and cell growth revealed that PI3K-C2β regulates cyclin B1 protein levels through modulation of microRNA miR-449a levels. Our data further demonstrate that downregulation of PI3K-C2β inhibits breast cancer cell invasion in vitro and breast cancer metastasis in vivo. Consistent with this, PI3K-C2β is highly expressed in lymph-nodes metastases compared to matching primary tumors. These data demonstrate that PI3K-C2β plays a pivotal role in breast cancer progression and in metastasis development. Our data indicate that PI3K-C2β may represent a key molecular switch that regulates a rate-limiting step in breast tumor progression and therefore it may be targeted to limit breast cancer spread.
Collapse
Affiliation(s)
- Anissa Chikh
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Riccardo Ferro
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Jonathan J Abbott
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Roberto Piñeiro
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Richard Buus
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Manuela Iezzi
- Aging Research Centre (Ce.S.I.), Foundation University "G. d'Annunzio", Chieti, Italy
| | - Francesca Ricci
- Laboratory of Molecular Pharmacology IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Daniele Bergamaschi
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Paola Ostano
- Cancer Genomics Laboratory, Fondazione Edo and Elvo Tempia, Biella, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo and Elvo Tempia, Biella, Italy
| | - Rossano Lattanzio
- Aging Research Centre (Ce.S.I.), Foundation University "G. d'Annunzio", Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Mauro Piantelli
- Aging Research Centre (Ce.S.I.), Foundation University "G. d'Annunzio", Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Tania Maffucci
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK
| | - Marco Falasca
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK.,Metabolic Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Falasca M, Hamilton JR, Selvadurai M, Sundaram K, Adamska A, Thompson PE. Class II Phosphoinositide 3-Kinases as Novel Drug Targets. J Med Chem 2016; 60:47-65. [DOI: 10.1021/acs.jmedchem.6b00963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Marco Falasca
- Metabolic
Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Justin R. Hamilton
- Australian
Centre for Blood Diseases and Department of Clinical Haematology, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Maria Selvadurai
- Australian
Centre for Blood Diseases and Department of Clinical Haematology, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Krithika Sundaram
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aleksandra Adamska
- Metabolic
Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Philip E. Thompson
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
14
|
Novel roles for class II Phosphoinositide 3-Kinase C2β in signalling pathways involved in prostate cancer cell invasion. Sci Rep 2016; 6:23277. [PMID: 26983806 PMCID: PMC4794650 DOI: 10.1038/srep23277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/03/2016] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions such as proliferation, growth, survival and migration. The eight PI3K isoforms are grouped into three classes and the three enzymes belonging to the class II subfamily (PI3K-C2α, β and γ) are the least investigated amongst all PI3Ks. Interest on these isoforms has been recently fuelled by the identification of specific physiological roles for class II PI3Ks and by accumulating evidence indicating their involvement in human diseases. While it is now established that these isoforms can regulate distinct cellular functions compared to other PI3Ks, there is still a limited understanding of the signalling pathways that can be specifically regulated by class II PI3Ks. Here we show that PI3K-C2β regulates mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2) activation in prostate cancer (PCa) cells. We further demonstrate that MEK/ERK and PI3K-C2β are required for PCa cell invasion but not proliferation. In addition we show that PI3K-C2β but not MEK/ERK regulates PCa cell migration as well as expression of the transcription factor Slug. These data identify novel signalling pathways specifically regulated by PI3K-C2β and they further identify this enzyme as a key regulator of PCa cell migration and invasion.
Collapse
|
15
|
Petitjean C, Setiabakti NM, Mountford JK, Arthur JF, Ellis S, Hamilton JR. Combined deficiency of PI3KC2α and PI3KC2β reveals a nonredundant role for PI3KC2α in regulating mouse platelet structure and thrombus stability. Platelets 2016; 27:402-9. [PMID: 26943229 DOI: 10.3109/09537104.2016.1145202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The physiological functions and cellular signaling of Class II phosphoinositide 3-kinases (PI3Ks) remain largely unknown. Platelets express two Class II PI3Ks: PI3KC2α and PI3KC2β. PI3KC2α deficiency was recently reported to cause disruption of the internal membrane reserve structure of platelets (open canalicular system, OCS) that results in dysregulated platelet adhesion and impaired arterial thrombosis in vivo. Notably, these effects on platelets occurred despite normal agonist-induced 3-phosphorylated phosphoinositide (3-PPI) production and cellular activation in PI3KC2α-deficient platelets. However, the potential compensatory actions of PI3KC2β in platelets have not yet been investigated. Here, we report the first mice deficient in both PI3KC2α and PI3KC2β (no Class II PI3Ks in platelets) and reveal a nonredundant role for PI3KC2α in mouse platelet structure and function. Specifically, we show that the disrupted OCS and impaired thrombus stability observed in PI3KC2α-deficient platelets does not occur in PI3KC2β-deficient platelets and is not exaggerated in platelets taken from mice deficient in both enzymes. Furthermore, detailed examination of 3-PPI production in platelets from this series of mice revealed no changes in either unactivated or activated platelets, including those with a complete lack of Class II PI3Ks. These findings indicate a nonredundant role for PI3KC2α in regulating platelet structure and function, and suggest that Class II PI3Ks do not significantly contribute to the acute agonist-induced production of 3-PPIs in these cells.
Collapse
Affiliation(s)
- Claire Petitjean
- a Australian Centre for Blood Diseases , Monash University , Melbourne , VIC , Australia
| | - Natasha M Setiabakti
- a Australian Centre for Blood Diseases , Monash University , Melbourne , VIC , Australia
| | - Jessica K Mountford
- a Australian Centre for Blood Diseases , Monash University , Melbourne , VIC , Australia.,c School of Animal Biology , The University of Western Australia , Perth , Australia
| | - Jane F Arthur
- a Australian Centre for Blood Diseases , Monash University , Melbourne , VIC , Australia
| | - Sarah Ellis
- b Sir Peter MacCallum Department of Oncology , Peter MacCallum Cancer Centre & The University of Melbourne , Melbourne , Australia
| | - Justin R Hamilton
- a Australian Centre for Blood Diseases , Monash University , Melbourne , VIC , Australia
| |
Collapse
|
16
|
Valet C, Severin S, Chicanne G, Laurent PA, Gaits-Iacovoni F, Gratacap MP, Payrastre B. The role of class I, II and III PI 3-kinases in platelet production and activation and their implication in thrombosis. Adv Biol Regul 2015; 61:33-41. [PMID: 26714793 DOI: 10.1016/j.jbior.2015.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023]
Abstract
Blood platelets play a pivotal role in haemostasis and are strongly involved in arterial thrombosis, a leading cause of death worldwide. Besides their critical role in pathophysiology, platelets represent a valuable model to investigate, both in vitro and in vivo, the biological roles of different branches of the phosphoinositide metabolism, which is highly active in platelets. While the phospholipase C (PLC) pathway has a crucial role in platelet activation, it is now well established that at least one class I phosphoinositide 3-kinase (PI3K) is also mandatory for proper platelet functions. Except class II PI3Kγ, all other isoforms of PI3Ks (class I α, β, γ, δ; class II α, β and class III) are expressed in platelets. Class I PI3Ks have been extensively studied in different models over the past few decades and several isoforms are promising drug targets to treat cancer and immune diseases. In platelet activation, it has been shown that while class I PI3Kδ plays a minor role, class I PI3Kβ has an important function particularly in thrombus growth and stability under high shear stress conditions found in stenotic arteries. This class I PI3K is a potentially interesting target for antithrombotic strategies. The role of class I PI3Kα remains ill defined in platelets. Herein, we will discuss our recent data showing the potential impact of inhibitors of this kinase on thrombus formation. The role of class II PI3Kα and β as well as class III PI3K (Vps34) in platelet production and function is just emerging. Based on our data and those very recently published in the literature, we will discuss the impact of these three PI3K isoforms in platelet production and functions and in thrombosis.
Collapse
Affiliation(s)
- Colin Valet
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France
| | - Sonia Severin
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France
| | - Gaëtan Chicanne
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France
| | | | | | | | - Bernard Payrastre
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France; CHU de Toulouse, Laboratoire d'Hématologie, 31059, Toulouse Cedex 03, France.
| |
Collapse
|
17
|
Evolutionary history of phosphatidylinositol- 3-kinases: ancestral origin in eukaryotes and complex duplication patterns. BMC Evol Biol 2015; 15:226. [PMID: 26482564 PMCID: PMC4617754 DOI: 10.1186/s12862-015-0498-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Phosphatidylinositol-3-kinases (PI3Ks) are a family of eukaryotic enzymes modifying phosphoinositides in phosphatidylinositols-3-phosphate. Located upstream of the AKT/mTOR signalling pathway, PI3Ks activate secondary messengers of extracellular signals. They are involved in many critical cellular processes such as cell survival, angiogenesis and autophagy. PI3K family is divided into three classes, including 14 human homologs. While class II enzymes are composed of a single catalytic subunit, class I and III also contain regulatory subunits. Here we present an in-depth phylogenetic analysis of all PI3K proteins. RESULTS We confirmed that PI3K catalytic subunits form a monophyletic group, whereas regulatory subunits form three distinct groups. The phylogeny of the catalytic subunits indicates that they underwent two major duplications during their evolutionary history: the most ancient arose in the Last Eukaryotic Common Ancestor (LECA) and led to the emergence of class III and class I/II, while the second - that led to the separation between class I and II - occurred later, in the ancestor of Unikonta (i.e., the clade grouping Amoebozoa, Fungi, and Metazoa). These two major events were followed by many lineage specific duplications in particular in vertebrates, but also in various protist lineages. Major loss events were also detected in Vidiriplantae and Fungi. For the regulatory subunits, we identified homologs of class III in all eukaryotic groups indicating that, for this class, both the catalytic and the regulatory subunits were presents in LECA. In contrast, homologs of the regulatory class I have a more recent origin. CONCLUSIONS The phylogenetic analysis of the PI3K shed a new light on the evolutionary history of these enzymes. We found that LECA already contained a PI3K class III composed of a catalytic and a regulatory subunit. Absence of class II regulatory subunits and the recent origin of class I regulatory subunits is puzzling given that the class I/II catalytic subunit was present in LECA and has been conserved in most present-day eukaryotic lineages. We also found surprising major loss and duplication events in various eukaryotic lineages. Given the functional specificity of PI3K proteins, this suggests dynamic adaptation during the diversification of eukaryotes.
Collapse
|
18
|
Rudge SA, Wakelam MJO. Phosphatidylinositolphosphate phosphatase activities and cancer. J Lipid Res 2015; 57:176-92. [PMID: 26302980 DOI: 10.1194/jlr.r059154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
Signaling through the phosphoinositide 3-kinase pathways mediates the actions of a plethora of hormones, growth factors, cytokines, and neurotransmitters upon their target cells following receptor occupation. Overactivation of these pathways has been implicated in a number of pathologies, in particular a range of malignancies. The tight regulation of signaling pathways necessitates the involvement of both stimulatory and terminating enzymes; inappropriate activation of a pathway can thus result from activation or inhibition of the two signaling arms. The focus of this review is to discuss, in detail, the activities of the identified families of phosphoinositide phosphatase expressed in humans, and how they regulate the levels of phosphoinositides implicated in promoting malignancy.
Collapse
Affiliation(s)
- Simon A Rudge
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Michael J O Wakelam
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
19
|
PI3K inhibitors in inflammation, autoimmunity and cancer. Curr Opin Pharmacol 2015; 23:82-91. [PMID: 26093105 PMCID: PMC4518027 DOI: 10.1016/j.coph.2015.05.017] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/29/2015] [Indexed: 12/20/2022]
Abstract
The healthy immune system protects against infection and malignant transformation without causing significant damage to host tissues. Immune dysregulation results in diverse pathologies including autoimmune disease, chronic inflammatory disorders, allergies as well as immune deficiencies and cancer. Phosphoinositide 3-kinase (PI3K) signalling has been shown to be a key pathway in the regulation of the immune response and continues to be the focus of intense research. In recent years we have gained detailed understanding of PI3K signalling, and saw the development of potent and highly selective small molecule inhibitors, of which several are currently in clinical trials for the treatment of immune-related disorders and cancer. The role of PI3K signalling in the immune response has been the subject of detailed reviews; here we focus on relevant recent progress in pre-clinical and clinical development of PI3K inhibitors.
Collapse
|