1
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Borges-Araújo L, Monteiro ME, Mil-Homens D, Bernardes N, Sarmento MJ, Coutinho A, Prieto M, Fernandes F. Impact of Ca 2+-Induced PI(4,5)P 2 Clusters on PH-YFP Organization and Protein-Protein Interactions. Biomolecules 2022; 12:912. [PMID: 35883468 PMCID: PMC9312469 DOI: 10.3390/biom12070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Despite its low abundance, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a key modulator of membrane-associated signaling events in eukaryotic cells. Temporal and spatial regulation of PI(4,5)P2 concentration can achieve localized increases in the levels of this lipid, which are crucial for the activation or recruitment of peripheral proteins to the plasma membrane. The recent observation of the dramatic impact of physiological divalent cation concentrations on PI(4,5)P2 clustering, suggests that protein anchoring to the plasma membrane through PI(4,5)P2 is likely not defined solely by a simple (monomeric PI(4,5)P2)/(protein bound PI(4,5)P2) equilibrium, but instead depends on complex protein interactions with PI(4,5)P2 clusters. The insertion of PI(4,5)P2-binding proteins within these clusters can putatively modulate protein-protein interactions in the membrane, but the relevance of such effects is largely unknown. In this work, we characterized the impact of Ca2+ on the organization and protein-protein interactions of PI(4,5)P2-binding proteins. We show that, in giant unilamellar vesicles presenting PI(4,5)P2, the membrane diffusion properties of pleckstrin homology (PH) domains tagged with a yellow fluorescent protein (YFP) are affected by the presence of Ca2+, suggesting direct interactions between the protein and PI(4,5)P2 clusters. Importantly, PH-YFP is found to dimerize in the membrane in the absence of Ca2+. This oligomerization is inhibited in the presence of physiological concentrations of the divalent cation. These results confirm that cation-dependent PI(4,5)P2 clustering promotes interactions between PI(4,5)P2-binding proteins and has the potential to dramatically influence the organization and downstream interactions of PI(4,5)P2-binding proteins in the plasma membrane.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (D.M.-H.); (N.B.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Marina E. Monteiro
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (M.E.M.); (M.J.S.)
| | - Dalila Mil-Homens
- IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (D.M.-H.); (N.B.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Nuno Bernardes
- IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (D.M.-H.); (N.B.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Maria J. Sarmento
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (M.E.M.); (M.J.S.)
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Avenida Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ana Coutinho
- IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (D.M.-H.); (N.B.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Manuel Prieto
- IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (D.M.-H.); (N.B.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Fábio Fernandes
- IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (D.M.-H.); (N.B.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| |
Collapse
|
3
|
Borges-Araújo L, Domingues MM, Fedorov A, Santos NC, Melo MN, Fernandes F. Acyl-chain saturation regulates the order of phosphatidylinositol 4,5-bisphosphate nanodomains. Commun Chem 2021; 4:164. [PMID: 36697613 PMCID: PMC9814227 DOI: 10.1038/s42004-021-00603-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/10/2021] [Indexed: 01/28/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) plays a critical role in the regulation of various plasma membrane processes and signaling pathways in eukaryotes. A significant amount of cellular resources are spent on maintaining the dominant 1-stearoyl-2-arachidonyl PI(4,5)P2 acyl-chain composition, while less abundant and more saturated species become more prevalent in response to specific stimuli, stress or aging. Here, we report the impact of acyl-chain structure on the biophysical properties of cation-induced PI(4,5)P2 nanodomains. PI(4,5)P2 species with increasing levels of acyl-chain saturation cluster in progressively more ordered nanodomains, culminating in the formation of gel-like nanodomains for fully saturated species. The formation of these gel-like domains was largely abrogated in the presence of 1-stearoyl-2-arachidonyl PI(4,5)P2. This is, to the best of our knowledge, the first report of the impact of PI(4,5)P2 acyl-chain composition on cation-dependent nanodomain ordering, and provides important clues to the motives behind the enrichment of PI(4,5)P2 with polyunsaturated acyl-chains. We also show how Ca2+-induced PI(4,5)P2 nanodomains are able to generate local negative curvature, a phenomenon likely to play a role in membrane remodeling events.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Alexander Fedorov
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Fábio Fernandes
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| |
Collapse
|
4
|
Babbi G, Savojardo C, Martelli PL, Casadio R. Huntingtin: A Protein with a Peculiar Solvent Accessible Surface. Int J Mol Sci 2021; 22:ijms22062878. [PMID: 33809039 PMCID: PMC8001614 DOI: 10.3390/ijms22062878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
Taking advantage of the last cryogenic electron microscopy structure of human huntingtin, we explored with computational methods its physicochemical properties, focusing on the solvent accessible surface of the protein and highlighting a quite interesting mix of hydrophobic and hydrophilic patterns, with the prevalence of the latter ones. We then evaluated the probability of exposed residues to be in contact with other proteins, discovering that they tend to cluster in specific regions of the protein. We then found that the remaining portions of the protein surface can contain calcium-binding sites that we propose here as putative mediators for the protein to interact with membranes. Our findings are justified in relation to the present knowledge of huntingtin functional annotation.
Collapse
Affiliation(s)
- Giulia Babbi
- Biocomputing Group, University of Bologna, Via San Giacomo 9/2, 40126 Bologna, Italy; (G.B.); (C.S.); (R.C.)
| | - Castrense Savojardo
- Biocomputing Group, University of Bologna, Via San Giacomo 9/2, 40126 Bologna, Italy; (G.B.); (C.S.); (R.C.)
| | - Pier Luigi Martelli
- Biocomputing Group, University of Bologna, Via San Giacomo 9/2, 40126 Bologna, Italy; (G.B.); (C.S.); (R.C.)
- Correspondence: ; Tel.: +39-051-2094005
| | - Rita Casadio
- Biocomputing Group, University of Bologna, Via San Giacomo 9/2, 40126 Bologna, Italy; (G.B.); (C.S.); (R.C.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
5
|
Sjøgaard-Frich LM, Prestel A, Pedersen ES, Severin M, Kristensen KK, Olsen JG, Kragelund BB, Pedersen SF. Dynamic Na +/H + exchanger 1 (NHE1) - calmodulin complexes of varying stoichiometry and structure regulate Ca 2+-dependent NHE1 activation. eLife 2021; 10:60889. [PMID: 33655882 PMCID: PMC8009664 DOI: 10.7554/elife.60889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/01/2021] [Indexed: 11/25/2022] Open
Abstract
Calmodulin (CaM) engages in Ca2+-dependent interactions with numerous proteins, including a still incompletely understood physical and functional interaction with the human Na+/H+-exchanger NHE1. Using nuclear magnetic resonance (NMR) spectroscopy, isothermal titration calorimetry, and fibroblasts stably expressing wildtype and mutant NHE1, we discovered multiple accessible states of this functionally important complex existing in different NHE1:CaM stoichiometries and structures. We determined the NMR solution structure of a ternary complex in which CaM links two NHE1 cytosolic tails. In vitro, stoichiometries and affinities could be tuned by variations in NHE1:CaM ratio and calcium ([Ca2+]) and by phosphorylation of S648 in the first CaM-binding α-helix. In cells, Ca2+-CaM-induced NHE1 activity was reduced by mimicking S648 phosphorylation and by mutation of the first CaM-binding α-helix, whereas it was unaffected by inhibition of Akt, one of several kinases phosphorylating S648. Our results demonstrate a diversity of NHE1:CaM interaction modes and suggest that CaM may contribute to NHE1 dimerization and thereby augment NHE1 regulation. We propose that a similar structural diversity is of relevance to many other CaM complexes.
Collapse
Affiliation(s)
- Lise M Sjøgaard-Frich
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Emilie S Pedersen
- Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Johan G Olsen
- Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Sahoo A, Matysiak S. Microscopic Picture of Calcium-Assisted Lipid Demixing and Membrane Remodeling Using Multiscale Simulations. J Phys Chem B 2020; 124:7327-7335. [PMID: 32786720 DOI: 10.1021/acs.jpcb.0c03067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The specificity of anionic phospholipids-calcium ion interaction and lipid demixing has been established as a key regulatory mechanism in several cellular signaling processes. The mechanism and implications of this calcium-assisted demixing have not been elucidated from a microscopic point of view. Here, we present an overview of atomic interactions between calcium and phospholipids that can drive nonideal mixing of lipid molecules in a model lipid bilayer composed of zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) and anionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS)) lipids with computer simulations at multiple resolutions. Lipid nanodomain formation and growth were driven by calcium-enabled lipid bridging of the charged phosphatidylserine (PS) headgroups, which were favored against inter-POPS dipole interactions. Consistent with several experimental studies of calcium-associated membrane sculpting, our analyses also suggest modifications in local membrane curvature and cross-leaflet couplings as a response to such induced lateral heterogeneity. In addition, reverse mapping to a complementary atomistic description revealed structural insights in the presence of anionic nanodomains, at timescales not accessed by previous computational studies. This work bridges information across multiple scales to reveal a mechanistic picture of calcium ion's impact on membrane biophysics.
Collapse
Affiliation(s)
- Abhilash Sahoo
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
7
|
Borges-Araújo L, Fernandes F. Structure and Lateral Organization of Phosphatidylinositol 4,5-bisphosphate. Molecules 2020; 25:molecules25173885. [PMID: 32858905 PMCID: PMC7503891 DOI: 10.3390/molecules25173885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor but ubiquitous component of the inner leaflet of the plasma membrane of eukaryotic cells. However, due to its particular complex biophysical properties, it stands out from its neighboring lipids as one of the most important regulators of membrane-associated signaling events. Despite its very low steady-state concentration, PI(4,5)P2 is able to engage in a multitude of simultaneous cellular functions that are temporally and spatially regulated through the presence of localized transient pools of PI(4,5)P2 in the membrane. These pools are crucial for the recruitment, activation, and organization of signaling proteins and consequent regulation of downstream signaling. The present review showcases some of the most important PI(4,5)P2 molecular and biophysical properties as well as their impact on its membrane dynamics, lateral organization, and interactions with other biochemical partners.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Correspondence:
| | - Fabio Fernandes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
8
|
Melcrová A, Pokorna S, Vošahlíková M, Sýkora J, Svoboda P, Hof M, Cwiklik L, Jurkiewicz P. Concurrent Compression of Phospholipid Membranes by Calcium and Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11358-11368. [PMID: 31393734 DOI: 10.1021/acs.langmuir.9b00477] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regulation of cell metabolism, membrane fusion, association of proteins with cellular membranes, and cellular signaling altogether would not be possible without Ca2+ ions. The distribution of calcium within the cell is uneven with the negatively charged inner leaflet of the plasma membrane being one of the primary targets of its accumulation. Therefore, we decided to map the influence of Ca2+ on the properties of lipid bilayers closely resembling natural lipid membranes. We combined fluorescence spectroscopy (analysis of time-resolved emission spectra of Laurdan probe and derived parameters: integrated relaxation time related to local lipid mobility, and total emission shift reflecting membrane polarity and hydration) with molecular dynamics simulations to determine the effect of the increasing CaCl2 concentration on model lipid membranes containing POPC, POPS, and cholesterol. On top of that, the impact of calcium on the plasma membranes isolated from HEK293 cells was investigated using the steady-state fluorescence of Laurdan. We found that calcium increases rigidity of all the model lipid membranes used, elevates their thickness, increases lipid packing and ordering, and impedes the local lipid mobility. All these effects were to a great extent similar to those elicited by cholesterol. However, the changes of the membrane properties induced by calcium and cholesterol seem largely independent from each other. At sufficiently high concentrations of calcium or cholesterol, the steric effects hindered a further alteration of membrane organization, i.e., the compressibility limit of membrane structures was reached. We found no indication for mutual interaction between Ca2+ and cholesterol, nor competition of Ca2+ ions and hydroxyl groups of cholesterol for binding to phospholipids. Fluorescence measurements indicated that Ca2+ adsorption decreases mobility within the carbonyl region of model bilayers more efficiently than monovalent ions do (Ca2+ ≫ Li+ > Na+ > K+ > Cs+). The effects of calcium ions were to a great extent mitigated in the plasma membranes isolated from HEK293 cells when compared to the model lipid membranes. Noticeably, the plasma membranes showed remarkably higher resistance toward rigidification induced by calcium ions even when compared with the model membranes containing cholesterol.
Collapse
Affiliation(s)
- Adéla Melcrová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , 182 23 Prague 8 , Czech Republic
| | - Sarka Pokorna
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , 182 23 Prague 8 , Czech Republic
| | - Miroslava Vošahlíková
- Institute of Physiology of the Czech Academy of Sciences , Vídeňská 1083 , 14220 Prague 4 , Czech Republic
| | - Jan Sýkora
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , 182 23 Prague 8 , Czech Republic
| | - Petr Svoboda
- Institute of Physiology of the Czech Academy of Sciences , Vídeňská 1083 , 14220 Prague 4 , Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , 182 23 Prague 8 , Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , 182 23 Prague 8 , Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , 166 10 Prague 6 , Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , 182 23 Prague 8 , Czech Republic
| |
Collapse
|
9
|
Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R, Cwiklik L, Hof M. Membrane Lipid Nanodomains. Chem Rev 2018; 118:11259-11297. [PMID: 30362705 DOI: 10.1021/acs.chemrev.8b00322] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.
Collapse
Affiliation(s)
- Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Maria João Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| |
Collapse
|
10
|
Sarmento MJ, Coutinho A, Fedorov A, Prieto M, Fernandes F. Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P 2 and PI(4,5)P 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12463-12477. [PMID: 28961003 DOI: 10.1021/acs.langmuir.7b00666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although the evidence for the presence of functionally important nanosized phosphorylated phosphoinositide (PIP)-rich domains within cellular membranes has accumulated, very limited information is available regarding the structural determinants for compartmentalization of these phospholipids. Here, we used a combination of fluorescence spectroscopy and microscopy techniques to characterize differences in divalent cation-induced clustering of PI(4,5)P2 and PI(3,5)P2. Through these methodologies we were able to detect differences in divalent cation-induced clustering efficiency and cluster size. Ca2+-induced PI(4,5)P2 clusters are shown to be significantly larger than the ones observed for PI(3,5)P2. Clustering of PI(4,5)P2 is also detected at physiological concentrations of Mg2+, suggesting that in cellular membranes, these molecules are constitutively driven to clustering by the high intracellular concentration of divalent cations. Importantly, it is shown that lipid membrane order is a key factor in the regulation of clustering for both PIP isoforms, with a major impact on cluster sizes. Clustered PI(4,5)P2 and PI(3,5)P2 are observed to present considerably higher affinity for more ordered lipid phases than the monomeric species or than PI(4)P, possibly reflecting a more general tendency of clustered lipids for insertion into ordered domains. These results support a model for the description of the lateral organization of PIPs in cellular membranes, where both divalent cation interaction and membrane order are key modulators defining the lateral organization of these lipids.
Collapse
Affiliation(s)
- Maria J Sarmento
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- J. Heyrovský Inst. Physical Chemistry of the A.S.C.R. v.v.i. , 182 23 Prague, Czech Republic
| | - Ana Coutinho
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- Departamento de Química e Bioquímica, FCUL, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Aleksander Fedorov
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Fábio Fernandes
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
11
|
Ma L, Cai Y, Li Y, Jiao J, Wu Z, O'Shaughnessy B, De Camilli P, Karatekin E, Zhang Y. Single-molecule force spectroscopy of protein-membrane interactions. eLife 2017; 6:30493. [PMID: 29083305 PMCID: PMC5690283 DOI: 10.7554/elife.30493] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/29/2017] [Indexed: 12/17/2022] Open
Abstract
Many biological processes rely on protein–membrane interactions in the presence of mechanical forces, yet high resolution methods to quantify such interactions are lacking. Here, we describe a single-molecule force spectroscopy approach to quantify membrane binding of C2 domains in Synaptotagmin-1 (Syt1) and Extended Synaptotagmin-2 (E-Syt2). Syts and E-Syts bind the plasma membrane via multiple C2 domains, bridging the plasma membrane with synaptic vesicles or endoplasmic reticulum to regulate membrane fusion or lipid exchange, respectively. In our approach, single proteins attached to membranes supported on silica beads are pulled by optical tweezers, allowing membrane binding and unbinding transitions to be measured with unprecedented spatiotemporal resolution. C2 domains from either protein resisted unbinding forces of 2–7 pN and had binding energies of 4–14 kBT per C2 domain. Regulation by bilayer composition or Ca2+ recapitulated known properties of both proteins. The method can be widely applied to study protein–membrane interactions.
Collapse
Affiliation(s)
- Lu Ma
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yiying Cai
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States
| | - Yanghui Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Junyi Jiao
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States
| | - Zhenyong Wu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Laboratoire de Neurophotonique, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS) UMR 8250, Université Paris Descartes, Paris, France
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
12
|
Simunovic M, Lee KYC, Bassereau P. Celebrating Soft Matter's 10th anniversary: screening of the calcium-induced spontaneous curvature of lipid membranes. SOFT MATTER 2015; 11:5030-5036. [PMID: 26016587 DOI: 10.1039/c5sm00104h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lipid membranes are key regulators of cellular function. An important step in membrane-related phenomena is the reshaping of the lipid bilayer, often induced by binding of macromolecules. Numerous experimental and simulation efforts have revealed that calcium, a ubiquitous cellular messenger, has a strong impact on the phase behavior, structural properties, and the stability of membranes. Yet, it is still unknown the way calcium and lipid interactions affect their macroscopic mechanical properties. In this work, we studied the interaction of calcium ions with membrane tethers pulled from giant unilamellar vesicles, to quantify the mechanical effect on the membrane. We found that calcium imposes a positive spontaneous curvature on negatively charged membranes, contrary to predictions we made based on the proposed atomic structure. Surprisingly, this effect vanishes in the presence of physiologically relevant concentrations of sodium chloride. Our work implies that calcium may be a trigger for membrane reshaping only at high concentrations, in a process that is robustly screened by sodium ions.
Collapse
Affiliation(s)
- Mijo Simunovic
- Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168, Université Pierre et Marie Curie, F-75248 Paris, France.
| | | | | |
Collapse
|
13
|
Fernandes F, Coutinho A, Prieto M, Loura LMS. Electrostatically driven lipid-protein interaction: Answers from FRET. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1837-48. [PMID: 25769805 DOI: 10.1016/j.bbamem.2015.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 12/13/2022]
Abstract
Electrostatics govern the association of a large number of proteins with cellular membranes. In some cases, these proteins present specialized lipid-binding modules or membrane targeting domains while in other cases association is achieved through nonspecific interaction of unstructured clusters of basic residues with negatively charged lipids. Given its spatial resolution in the nanometer range, Förster resonance energy transfer (FRET) is a powerful tool to give insight into protein-lipid interactions and provide molecular level information which is difficult to retrieve with other spectroscopic techniques. In this review we present and discuss the basic formalisms of both hetero- and homo-FRET pertinent to the most commonly encountered problems in lipid-protein interaction studies and highlight some examples of implementations of different FRET methodologies to characterize lipid/protein systems in which electrostatic interactions play a crucial role. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Fábio Fernandes
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Coutinho
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Dep. Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Luís M S Loura
- Faculdade de Farmácia, Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|