1
|
Staerz SD, Anamoah C, Tepe JJ. 20S proteasome enhancers prevent cytotoxic tubulin polymerization-promoting protein induced α-synuclein aggregation. iScience 2024; 27:110166. [PMID: 38974969 PMCID: PMC11225362 DOI: 10.1016/j.isci.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Synucleinopathies are a class of neurodegenerative diseases defined by the presence of α-synuclein inclusions. The location and composition of these α-synuclein inclusions directly correlate to the disease pattern. The inclusions in Multiple System Atrophy are located predominantly in oligodendrocytes and are rich in a second protein, p25α. P25α plays a key role in neuronal myelination by oligodendrocytes. In healthy oligodendrocytes, there is little to no α-synuclein present. If aberrant α-synuclein is present, p25α leaves the myelin sheaths and quickly co-aggregates with α-synuclein, resulting in the disruption of the cellular process and ultimately cell death. Herein, we report that p25α is susceptible for 20S proteasome-mediated degradation and that p25α induces α-synuclein aggregation, resulting in proteasome impairment and cell death. In addition, we identified small molecules 20S proteasome enhancers that prevent p25α induced α-synuclein fibrilization, restore proteasome impairment, and enhance cell viability.
Collapse
Affiliation(s)
- Sophia D. Staerz
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Charles Anamoah
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Jetze J. Tepe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
2
|
Shi X, Jiang X, Chen C, Zhang Y, Sun X. The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: Implications for therapy. Pharmacol Res 2022; 184:106452. [PMID: 36116706 DOI: 10.1016/j.phrs.2022.106452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Microtubules, a highly dynamic cytoskeleton, participate in many cellular activities including mechanical support, organelles interactions, and intracellular trafficking. Microtubule organization can be regulated by modification of tubulin subunits, microtubule-associated proteins (MAPs) or agents modulating microtubule assembly. Increasing studies demonstrate that microtubule disorganization correlates with various cardiocerebrovascular diseases including heart failure and ischemic stroke. Microtubules also mediate intracellular transport as well as intercellular transfer of mitochondria, a power house in cells which produce ATP for various physiological activities such as cardiac mechanical function. It is known to all that both microtubules and mitochondria participate in the progression of cancer and Parkinson's disease. However, the interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases remain unclear. In this paper, we will focus on the roles of microtubules in cardiocerebrovascular diseases, and discuss the interplay of mitochondria and microtubules in disease development and treatment. Elucidation of these issues might provide significant diagnostic value as well as potential targets for cardiocerebrovascular diseases.
Collapse
Affiliation(s)
- Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| | - Xuan Jiang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Congwei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yu Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
3
|
Xie J, Chen S, Bopassa JC, Banerjee S. Drosophila tubulin polymerization promoting protein mutants reveal pathological correlates relevant to human Parkinson's disease. Sci Rep 2021; 11:13614. [PMID: 34193896 PMCID: PMC8245532 DOI: 10.1038/s41598-021-92738-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with no known cure. PD is characterized by locomotion deficits, nigrostriatal dopaminergic neuronal loss, mitochondrial dysfunctions and formation of α-Synuclein aggregates. A well-conserved and less understood family of Tubulin Polymerization Promoting Proteins (TPPP) is also implicated in PD and related disorders, where TPPP exists in pathological aggregates in neurons in patient brains. However, there are no in vivo studies on mammalian TPPP to understand the genetics and neuropathology linking TPPP aggregation or neurotoxicity to PD. Recently, we discovered the only Drosophila homolog of human TPPP named Ringmaker (Ringer). Here, we report that adult ringer mutants display progressive locomotor disabilities, reduced lifespan and neurodegeneration. Importantly, our findings reveal that Ringer is associated with mitochondria and ringer mutants have mitochondrial structural damage and dysfunctions. Adult ringer mutants also display progressive loss of dopaminergic neurons. Together, these phenotypes of ringer mutants recapitulate some of the salient features of human PD patients, thus allowing us to utilize ringer mutants as a fly model relevant to PD, and further explore its genetic and molecular underpinnings to gain insights into the role of human TPPP in PD.
Collapse
Affiliation(s)
- Jing Xie
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Shuting Chen
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Swati Banerjee
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
4
|
Stojic L, Lun ATL, Mascalchi P, Ernst C, Redmond AM, Mangei J, Barr AR, Bousgouni V, Bakal C, Marioni JC, Odom DT, Gergely F. A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nat Commun 2020; 11:1851. [PMID: 32296040 PMCID: PMC7160116 DOI: 10.1038/s41467-020-14978-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/09/2020] [Indexed: 01/21/2023] Open
Abstract
Genome stability relies on proper coordination of mitosis and cytokinesis, where dynamic microtubules capture and faithfully segregate chromosomes into daughter cells. With a high-content RNAi imaging screen targeting more than 2,000 human lncRNAs, we identify numerous lncRNAs involved in key steps of cell division such as chromosome segregation, mitotic duration and cytokinesis. Here, we provide evidence that the chromatin-associated lncRNA, linc00899, leads to robust mitotic delay upon its depletion in multiple cell types. We perform transcriptome analysis of linc00899-depleted cells and identify the neuronal microtubule-binding protein, TPPP/p25, as a target of linc00899. We further show that linc00899 binds TPPP/p25 and suppresses its transcription. In cells depleted of linc00899, upregulation of TPPP/p25 alters microtubule dynamics and delays mitosis. Overall, our comprehensive screen uncovers several lncRNAs involved in genome stability and reveals a lncRNA that controls microtubule behaviour with functional implications beyond cell division.
Collapse
Affiliation(s)
- Lovorka Stojic
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Aaron T L Lun
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Genentech, Inc., South San Francisco, CA, USA
| | - Patrice Mascalchi
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- DRVision Technologies, Bordeaux, France
| | - Christina Ernst
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Aisling M Redmond
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Jasmin Mangei
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Molecular Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alexis R Barr
- Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
- MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Vicky Bousgouni
- Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Chris Bakal
- Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Division of Regulatory Genomics and Cancer Evolution, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
5
|
Oláh J, Lehotzky A, Szunyogh S, Szénási T, Orosz F, Ovádi J. Microtubule-Associated Proteins with Regulatory Functions by Day and Pathological Potency at Night. Cells 2020; 9:E357. [PMID: 32033023 PMCID: PMC7072251 DOI: 10.3390/cells9020357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
The sensing, integrating, and coordinating features of the eukaryotic cells are achieved by the complex ultrastructural arrays and multifarious functions of the cytoskeleton, including the microtubule network. Microtubules play crucial roles achieved by their decoration with proteins/enzymes as well as by posttranslational modifications. This review focuses on the Tubulin Polymerization Promoting Protein (TPPP/p25), a new microtubule associated protein, on its "regulatory functions by day and pathological functions at night". Physiologically, the moonlighting TPPP/p25 modulates the dynamics and stability of the microtubule network by bundling microtubules and enhancing the tubulin acetylation due to the inhibition of tubulin deacetylases. The optimal endogenous TPPP/p25 level is crucial for its physiological functions, to the differentiation of oligodendrocytes, which are the major constituents of the myelin sheath. Pathologically, TPPP/p25 forms toxic oligomers/aggregates with α-synuclein in neurons and oligodendrocytes in Parkinson's disease and Multiple System Atrophy, respectively; and their complex is a potential therapeutic drug target. TPPP/p25-derived microtubule hyperacetylation counteracts uncontrolled cell division. All these issues reveal the anti-mitotic and α-synuclein aggregation-promoting potency of TPPP/p25, consistent with the finding that Parkinson's disease patients have reduced risk for certain cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary; (J.O.); (A.L.); (S.S.); (T.S.); (F.O.)
| |
Collapse
|
6
|
Corrêa T, Feltes BC, Riegel M. Integrated analysis of the critical region 5p15.3-p15.2 associated with cri-du-chat syndrome. Genet Mol Biol 2019; 42:186-196. [PMID: 30985858 PMCID: PMC6687350 DOI: 10.1590/1678-4685-gmb-2018-0173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/29/2018] [Indexed: 11/21/2022] Open
Abstract
Cri-du-chat syndrome (CdCs) is one of the most common contiguous gene syndromes, with an incidence of 1:15,000 to 1:50,000 live births. To better understand the etiology of CdCs at the molecular level, we investigated theprotein-protein interaction (PPI) network within the critical chromosomal region 5p15.3-p15.2 associated with CdCs using systemsbiology. Data were extracted from cytogenomic findings from patients with CdCs. Based on clinical findings, molecular characterization of chromosomal rearrangements, and systems biology data, we explored possible genotype-phenotype correlations involving biological processes connected with CdCs candidate genes. We identified biological processes involving genes previously found to be associated with CdCs, such as TERT, SLC6A3, and CTDNND2, as well as novel candidate proteins with potential contributions to CdCs phenotypes, including CCT5, TPPP, MED10, ADCY2, MTRR, CEP72, NDUFS6, and MRPL36. Although further functional analyses of these proteins are required, we identified candidate proteins for the development of new multi-target genetic editing tools to study CdCs. Further research may confirm those that are directly involved in the development of CdCs phenotypes and improve our understanding of CdCs-associated molecular mechanisms.
Collapse
Affiliation(s)
- Thiago Corrêa
- Post-Graduate Program in Genetics and Molecular Biology,
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruno César Feltes
- Institute of Informatics, Universidade Federal do Rio Grande
do Sul, Porto Alegre, RS, Brazil
| | - Mariluce Riegel
- Post-Graduate Program in Genetics and Molecular Biology,
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Lu G, Zhang M, Wang J, Zhang K, Wu S, Zhao X. Epigenetic regulation of myelination in health and disease. Eur J Neurosci 2019; 49:1371-1387. [DOI: 10.1111/ejn.14337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Guozhen Lu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Jian Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Kaixiang Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Xianghui Zhao
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| |
Collapse
|
8
|
Sun LL, Duan MJ, Ma JC, Xu L, Mao M, Biddyut D, Wang Q, Yang C, Zhang S, Xu Y, Yang L, Tian Y, Liu Y, Xia SN, Li KX, Jin Z, Xiong Q, Ai J. Myocardial infarction-induced hippocampal microtubule damage by cardiac originating microRNA-1 in mice. J Mol Cell Cardiol 2018; 120:12-27. [DOI: 10.1016/j.yjmcc.2018.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/29/2018] [Accepted: 05/12/2018] [Indexed: 12/14/2022]
|
9
|
Tammana D, Tammana TVS. Chlamydomonas FAP265 is a tubulin polymerization promoting protein, essential for flagellar reassembly and hatching of daughter cells from the sporangium. PLoS One 2017; 12:e0185108. [PMID: 28931065 PMCID: PMC5607191 DOI: 10.1371/journal.pone.0185108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Tubulin polymerization promoting proteins (TPPPs) belong to a family of neomorphic moon lighting proteins, involved in various physiological and pathological conditions. In physiological conditions, TPPPs play an important role in microtubule dynamics regulating mitotic spindle assembly and in turn cell proliferation. In pathological situations, TPPPs interact with α-synuclein and β-amyloid and promote their aggregation leading to Parkinson’s disease and multiple system atrophy. Orthologs of TPPP family proteins were identified in ciliary proteomes from various organisms including Chlamydomonas but their role in ciliogenesis was not known. Here we showed that Flagellar Associated Protein, FAP265, a Chlamydomonas homologue of TPPP family proteins, localizes in the cytosol, at the basal bodies and in the flagella of vegetative Chlamydomonas cells. During cell division, the protein was found as a distinct spot in the nucleus and at the cleavage furrow which forms between the daughter cells. Further null mutants of Chlamydomonas FAP265 protein, fap265, showed severe defects in hatching from the mother sporangium. Daughter cells of fap265 were significantly larger in size compared with wild type cells. Moreover, the daughter cells present within the mother sporangium failed to form flagella before hatching. They reassembled their flagella only after hatching from the sporangium suggesting that FAP265 plays an important role in flagellar reassembly after cell division.
Collapse
Affiliation(s)
- Damayanti Tammana
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, Karnataka, India
| | | |
Collapse
|
10
|
Szénási T, Oláh J, Szabó A, Szunyogh S, Láng A, Perczel A, Lehotzky A, Uversky VN, Ovádi J. Challenging drug target for Parkinson's disease: Pathological complex of the chameleon TPPP/p25 and alpha-synuclein proteins. Biochim Biophys Acta Mol Basis Dis 2016; 1863:310-323. [PMID: 27671864 DOI: 10.1016/j.bbadis.2016.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/02/2016] [Accepted: 09/20/2016] [Indexed: 12/27/2022]
Abstract
The hallmarks of Parkinson's disease and other synucleinopathies, Tubulin Polymerization Promoting Protein (TPPP/p25) and α-synuclein (SYN) have two key features: they are disordered and co-enriched/co-localized in brain inclusions. These Neomorphic Moonlighting Proteins display both physiological and pathological functions due to their interactions with distinct partners. To achieve the selective targeting of the pathological TPPP/p25-SYN but not the physiological TPPP/p25-tubulin complex, their interfaces were identified as a specific innovative strategy for the development of anti-Parkinson drugs. Therefore, the interactions of TPPP/p25 with tubulin and SYN were characterized which suggested the involvements of the 178-187 aa and 147-156 aa segments in the complexation of TPPP/p25 with tubulin and SYN, respectively. However, various truncated and deletion mutants reduced but did not abolish the interactions except one mutant; in addition synthetized fragments corresponding to the potential binding segments of TPPP/p25 failed to interact with SYN. In fact, the studies of the multiple interactions at molecular and cellular levels revealed the high conformational plasticity, chameleon feature, of TPPP/p25 that ensures exceptional functional resilience; the lack of previously identified binding segments could be replaced by other segments. The experimental results are underlined by distinct bioinformatics tools. All these data revealed that although targeting chameleon proteins is a challenging task, nevertheless, the validation of a drug target can be achieved by identifying the interface of complexes of the partner proteins existing at the given pathological conditions.
Collapse
Affiliation(s)
- Tibor Szénási
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Judit Oláh
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Adél Szabó
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Sándor Szunyogh
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - András Láng
- MTA-ELTE, Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary.
| | - András Perczel
- MTA-ELTE, Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary; Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary.
| | - Attila Lehotzky
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 33612 Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Judit Ovádi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| |
Collapse
|
11
|
Mino RE, Rogers SL, Risinger AL, Rohena C, Banerjee S, Bhat MA. Drosophila Ringmaker regulates microtubule stabilization and axonal extension during embryonic development. J Cell Sci 2016; 129:3282-94. [PMID: 27422099 DOI: 10.1242/jcs.187294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/13/2016] [Indexed: 11/20/2022] Open
Abstract
Axonal growth and targeting are fundamental to the organization of the nervous system, and require active engagement of the cytoskeleton. Polymerization and stabilization of axonal microtubules is central to axonal growth and maturation of neuronal connectivity. Studies have suggested that members of the tubulin polymerization promoting protein (TPPP, also known as P25α) family are involved in cellular process extension. However, no in vivo knockout data exists regarding its role in axonal growth during development. Here, we report the characterization of Ringmaker (Ringer; CG45057), the only Drosophila homolog of long p25α proteins. Immunohistochemical analyses indicate that Ringer expression is dynamically regulated in the embryonic central nervous system (CNS). ringer-null mutants show cell misplacement, and errors in axonal extension and targeting. Ultrastructural examination of ringer mutants revealed defective microtubule morphology and organization. Primary neuronal cultures of ringer mutants exhibit defective axonal extension, and Ringer expression in cells induced microtubule stabilization and bundling into rings. In vitro assays showed that Ringer directly affects tubulin, and promotes microtubule bundling and polymerization. Together, our studies uncover an essential function of Ringer in axonal extension and targeting through proper microtubule organization.
Collapse
Affiliation(s)
- Rosa E Mino
- Department of Physiology, University of Texas School of Medicine, Health Science Center, San Antonio, TX 78229, USA
| | - Stephen L Rogers
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - April L Risinger
- Department of Pharmacology, University of Texas School of Medicine, Health Science Center, San Antonio, TX 78229, USA
| | - Cristina Rohena
- Department of Pharmacology, University of Texas School of Medicine, Health Science Center, San Antonio, TX 78229, USA Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Swati Banerjee
- Department of Physiology, University of Texas School of Medicine, Health Science Center, San Antonio, TX 78229, USA
| | - Manzoor A Bhat
- Department of Physiology, University of Texas School of Medicine, Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|