1
|
Dong W, Liu S, Li S, Wang Z. Cell reprogramming therapy for Parkinson's disease. Neural Regen Res 2024; 19:2444-2455. [PMID: 38526281 PMCID: PMC11090434 DOI: 10.4103/1673-5374.390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 10/08/2023] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson's disease. The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson's disease, which could substantially alleviate the symptoms of Parkinson's disease in clinical practice. However, ethical issues and tumor formation were limitations of its clinical application. Induced pluripotent stem cells can be acquired without sacrificing human embryos, which eliminates the huge ethical barriers of human stem cell therapy. Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons, without the need for intermediate proliferation states, thus avoiding issues of immune rejection and tumor formation. Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson's disease. However, there are also ethical concerns and the risk of tumor formation that need to be addressed. This review highlights the current application status of cell reprogramming in the treatment of Parkinson's disease, focusing on the use of induced pluripotent stem cells in cell replacement therapy, including preclinical animal models and progress in clinical research. The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson's disease, as well as the controversy surrounding in vivo reprogramming. These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Luo F, Luo S, Qian W, Zhang L, Chen C, Xu M, Wang G, Wang Z, Wang J, Wang W. Developmental deficits and early signs of neurodegeneration revealed by PD patient derived dopamine neurons. Stem Cell Res 2020; 49:102027. [PMID: 33059129 DOI: 10.1016/j.scr.2020.102027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/07/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease affecting millions of elder people due to the degeneration of dopamine neurons in the striatum and substantia nigra. The clinical manifestations of PD include tremor, rigidity, bradykinesia and postural instability. Studying PD is challenging due to two obstacles: 1) disease models such as primary neurons or animal models usually couldn't recapitulate the disease phenotype, and 2) accessibility of human autopsied brain samples is very limited if not impossible. Induced pluripotent stem cells (iPSCs)-derived neuronal cells from patients emerge as an ideal in vitro model for disease modeling and drug development. Here we describe a cell density-dependent method for preparing functional hiPSC-derived dopamine neurons (iDAs) with ~90% purity (TH-positive cells). iDAs derived from PD patient exhibit the disease-related phenotypes, for example, slowed morphogenesis, reduced dopamine release, impaired mitochondrial function, and α-synuclein accumulation as early as 35 days after induction. Furthermore, we found that the effects of cell density are different between iDA development stages, whereas high cell density increases stress for early neural progenitor cells (NPCs), but are neural-protective for mature iDAs, high density also favors morphogenesis. Hence, using stage and density-dependent strategies we can obtain high quality iDAs, which are critical for disease modeling, drug development and cell replacement therapy.
Collapse
Affiliation(s)
- Fang Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Sushan Luo
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenjing Qian
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Meimei Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guangling Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhongfeng Wang
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Jian Wang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
3
|
Ueno SI, Hatano T, Okuzumi A, Saiki S, Oji Y, Mori A, Koinuma T, Fujimaki M, Takeshige-Amano H, Kondo A, Yoshikawa N, Nojiri T, Kurano M, Yasukawa K, Yatomi Y, Ikeda H, Hattori N. Nonmercaptalbumin as an oxidative stress marker in Parkinson's and PARK2 disease. Ann Clin Transl Neurol 2020; 7:307-317. [PMID: 32059082 PMCID: PMC7086006 DOI: 10.1002/acn3.50990] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate the oxidized albumin ratio, which is the redox ratio of human nonmercaptalbumin (HNA) to serum albumin (%HNA), as a biomarker in idiopathic Parkinson’s disease (iPD) and related neurodegenerative disorders. Methods This prospective study enrolled 216 iPD patients, 15 patients with autosomal recessive familial PD due to parkin mutations (PARK2), 30 multiple system atrophy (MSA) patients, 32 progressive nuclear palsy (PSP) patients, and 143 healthy controls. HNA was analyzed using modified high‐performance liquid chromatography and was evaluated alongside other parameters. Results iPD and PARK2 patients had a higher %HNA than controls (iPD vs. controls: odds ratio (OR) 1.325, P < 0.001; PARK2 vs. controls: OR 1.712, P < 0.001). Even iPD patients at an early Hoehn & Yahr stage (I and II) showed a higher %HNA than controls. iPD patients had a higher %HNA than MSA and PSP patients (iPD vs. MSA: OR 1.249, P < 0.001, iPD vs. PSP: OR 1.288, P < 0.05). When discriminating iPD patients from controls, %HNA corrected by age achieved an AUC of 0.750; when discriminating iPD patients from MSA and PSP patients, an AUC of 0.747 was achieved. Furthermore, uric acid, an antioxidant compound, was decreased in iPD patients, similar to the change in %HNA. Interpretation %HNA was significantly increased in iPD and PARK2 patients compared with controls, regardless of disease course and severity. Oxidative stress might be increased from the early stages of iPD and PARK2 and play an important role in their pathomechanisms.
Collapse
Affiliation(s)
- Shin-Ichi Ueno
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Ayami Okuzumi
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yutaka Oji
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Akio Mori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Takahiro Koinuma
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Motoki Fujimaki
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | | | - Akihide Kondo
- Department of Neurosurgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Naoyuki Yoshikawa
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Takahiro Nojiri
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Keiko Yasukawa
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
4
|
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 2020; 21:103-115. [DOI: 10.1038/s41583-019-0257-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
5
|
Bordoni M, Rey F, Fantini V, Pansarasa O, Di Giulio AM, Carelli S, Cereda C. From Neuronal Differentiation of iPSCs to 3D Neuro-Organoids: Modelling and Therapy of Neurodegenerative Diseases. Int J Mol Sci 2018; 19:E3972. [PMID: 30544711 PMCID: PMC6321164 DOI: 10.3390/ijms19123972] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022] Open
Abstract
In the last decade, the advances made into the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) led to great improvements towards their use as models of diseases. In particular, in the field of neurodegenerative diseases, iPSCs technology allowed to culture in vitro all types of patient-specific neural cells, facilitating not only the investigation of diseases' etiopathology, but also the testing of new drugs and cell therapies, leading to the innovative concept of personalized medicine. Moreover, iPSCs can be differentiated and organized into 3D organoids, providing a tool which mimics the complexity of the brain's architecture. Furthermore, recent developments in 3D bioprinting allowed the study of physiological cell-to-cell interactions, given by a combination of several biomaterials, scaffolds, and cells. This technology combines bio-plotter and biomaterials in which several types of cells, such as iPSCs or differentiated neurons, can be encapsulated in order to develop an innovative cellular model. IPSCs and 3D cell cultures technologies represent the first step towards the obtainment of a more reliable model, such as organoids, to facilitate neurodegenerative diseases' investigation. The combination of iPSCs, 3D organoids and bioprinting will also allow the development of new therapeutic approaches. Indeed, on the one hand they will lead to the development of safer and patient-specific drugs testing but, also, they could be developed as cell-therapy for curing neurodegenerative diseases with a regenerative medicine approach.
Collapse
Affiliation(s)
- Matteo Bordoni
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, 27100 Pavia, Italy.
| | - Federica Rey
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142 Milan, Italy.
| | - Valentina Fantini
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy.
- Laboratory of Neurobiology and Neurogenetic, Golgi-Cenci Foundation, 20081 Abbiategrasso, Italy.
| | - Orietta Pansarasa
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, 27100 Pavia, Italy.
| | - Anna Maria Di Giulio
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142 Milan, Italy.
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of MilanVia Giovanni Battista Grassi, 74, 20157 Milan, Italy.
| | - Stephana Carelli
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142 Milan, Italy.
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of MilanVia Giovanni Battista Grassi, 74, 20157 Milan, Italy.
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, 27100 Pavia, Italy.
- Laboratory of Neurobiology and Neurogenetic, Golgi-Cenci Foundation, 20081 Abbiategrasso, Italy.
| |
Collapse
|
6
|
Culture of iPSCs Derived Pancreatic β-Like Cells In Vitro Using Decellularized Pancreatic Scaffolds: A Preliminary Trial. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4276928. [PMID: 28480220 PMCID: PMC5396430 DOI: 10.1155/2017/4276928] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/30/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is a disease which has affected 415 million patients in 2015. In an effort to replace the significant demands on transplantation and morbidity associated with transplantation, the production of β-like cells differentiated from induced pluripotent stem cells (iPSCs) was evaluated. This approach is associated with promising decellularized scaffolds with natural extracellular matrix (ECM) and ideal cubic environment that will promote cell growth in vivo. Our efforts focused on combining decellularized rat pancreatic scaffolds with mouse GFP+-iPSCs-derived pancreatic β-like cells, to evaluate whether decellularized scaffolds could facilitate the growth and function of β-like cells. β-like cells were differentiated from GFP+-iPSCs and evaluated via cultivating in the dynamic circulation perfusion device. Our results demonstrated that decellularized pancreatic scaffolds display favorable biochemical properties. Furthermore, not only could the scaffolds support the survival of β-like cells, but they also accelerated the expression of the insulin as compared to plate-based cell culture. In conclusion, these results suggest that decellularized pancreatic scaffolds could provide a suitable platform for cellular activities of β-like cells including survival and insulin secretion. This study provides preliminary support for regenerating insulin-secreting organs from the decellularized scaffolds combined with iPSCs derived β-like cells as a potential clinical application.
Collapse
|
7
|
Faye PA, Vedrenne N, De la Cruz-Morcillo MA, Barrot CC, Richard L, Bourthoumieu S, Sturtz F, Funalot B, Lia AS, Battu S. New Method for Sorting Endothelial and Neural Progenitors from Human Induced Pluripotent Stem Cells by Sedimentation Field Flow Fractionation. Anal Chem 2016; 88:6696-702. [PMID: 27263863 DOI: 10.1021/acs.analchem.6b00704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human induced pluripotent stem cells (hiPSc) are a very useful solution to create and observe the behavior of specific and usually inaccessible cells, such as human motor neurons. Obtained from a patient biopsy by reprograming dermal fibroblasts (DF), hiPSc present the same properties as embryonic stem cells and can generate any cell type after several weeks of differentiation. Today, there are numerus protocols which aim to control hiPSC differentiation. The principal challenge is to obtain a sufficiently enriched specific cell population to study disease pathophysiology and to provide a good model for further investigation and drug screening. The differentiation process is very costly and time-consuming, because many specific factors and different culture media must be used. In this study, we used Sedimentation Field Flow Fractionation (SdFFF) to prepare enriched populations derived from hiPSc after only 10 days of culture in a classical medium. Based on phenotypic and proteomic characterization, "hyperlayer" elution resulted in a fraction expressing markers of endothelial progenitors while another fraction expressed markers of neural progenitors. The isolation of subpopulations representing various differentiation lineages is of major interest for the production of specialized, cell-enriched fractions and in the preparation of increasingly complex models for the development of new therapeutic tools.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Benoît Funalot
- Département de Génétique, CHU Henri-Mondor , F-94000 Créteil, France.,Inserm U955-E10, Université Paris-Est-Créteil, F-94000 Créteil, France
| | | | | |
Collapse
|