1
|
Li C, Xie P, Luo M, Lv K, Cong Z. EIF4A3-Induced hsa_circ_0118578 Expression Enhances the Tumorigenesis of Papillary Thyroid Cancer. Cancer Biother Radiopharm 2025; 40:285-292. [PMID: 39689861 DOI: 10.1089/cbr.2024.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Background: Circular RNA (circRNA) plays a regulatory role in the malignancy of papillary thyroid cancer (PTC). However, the role of a novel circRNA, hsa_circ_0118578, in PTC is not yet fully understood. This report focuses on unveiling hsa_circ_0118578's effect on PTC cell malignancy and reveals its mechanism in PTC progression. Methods: Levels of hsa_circ_0118578 in PTC were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The functional roles of hsa_circ_0118578 in PTC cell malignancy were evaluated through Transwell, 5-ethynyl-2'-deoxyuridine (EdU), and wound healing assays. A xenograft model in nude mice was used to examine the effects of hsa_circ_0118578's in vivo. The interaction between eukaryotic translation initiation factor 4A3 (EIF4A3) and hsa_circ_0118578 was confirmed using RNA-binding protein immunoprecipitation, qRT-PCR, and Western blotting. Results: Hsa_circ_0118578 with high expression in PTC tissues was associated with higher tumor node metastasis stage, lymph node metastasis, as well as poor differentiation. Cell functional assays demonstrated that silencing hsa_circ_0118578 inhibited PTC cell proliferation, invasion, and migration. In the xenograft assay, tumorigenicity of PTC cells in vivo was reduced following hsa_circ_0118578 suppression. Additionally, EIF4A3, as an RNA-binding protein, was shown to interact with hsa_circ_0118578 to stabilize its expression in PTC cells. Conclusions: Upregulated hsa_circ_0118578 in PTC interacts with EIF4A3 to exert oncogenic effects by enhancing hsa_circ_0118578 stability, contributing to PTC development. These findings shed light on the oncogenic role of hsa_circ_0118578 in PTC and suggest it as a potential therapeutic target.
Collapse
Affiliation(s)
- Chan Li
- Department of Tradition Chinese Medicine, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Ping Xie
- Department of Tradition Chinese Medicine, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Meng Luo
- Department of Tradition Chinese Medicine, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Kun Lv
- Department of Tradition Chinese Medicine, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Zewei Cong
- Department of Tradition Chinese Medicine, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| |
Collapse
|
2
|
Conley J, Brown LE, McNeely JH, Pelletier J, Porco JA, Allen KN. Structural Basis for the Improved RNA Clamping of Amidino-Rocaglates to eIF4A1. ACS OMEGA 2025; 10:5795-5808. [PMID: 39989799 PMCID: PMC11840593 DOI: 10.1021/acsomega.4c09421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
Eukaryotic initiation factor 4A-1 (eIF4A1) is an ATP-dependent RNA helicase that unwinds 5'-UTR mRNA secondary structures to facilitate cap-dependent translation initiation. Rocaglates, a class of natural products typified by rocaglamide A (RocA), possess antineoplastic and anti-infectious activity mediated by their interaction with eIF4A1. Rocaglates inhibit cap-dependent translation initiation by "clamping" eIF4A1 onto polypurine RNA, which impedes ribosome scanning. A novel class of rocaglate derivatives, amidino-rocaglates (ADRs) which feature an amidine ring fused to the rocaglate core, is particularly effective at promoting eIF4A1-RNA-clamping compared to other rocaglate congeners. Herein, we present the X-ray crystal structure of an ADR in complex with eIF4A1, the nonhydrolyzable ATP ground-state mimic adenylyl-imidodiphosphate (AMPPNP), and poly r(AG)5 RNA refined to 1.69 Å resolution. The binding pose and interactions of the ADR with eIF4A1 do not differ substantially from those of RocA, prompting an investigation of the basis for enhanced target engagement. Computational modeling suggests that the rigidified ADR scaffold is inherently preorganized in an eIF4A1-RNA binding-competent conformation, thereby avoiding entropic penalties associated with RocA binding. This study illustrates how conformational rigidification of the rocaglate scaffold can be leveraged to improve potency for the development of rocaglates as potential anticancer and anti-infectious agents.
Collapse
Affiliation(s)
- James
F. Conley
- Department
of Pharmacology, Physiology & Biophysics, Boston University, Boston, Massachusetts 02215, United States
| | - Lauren E. Brown
- Department of Chemistry, Boston
University, Boston, Massachusetts 02215, United States
| | - James H. McNeely
- Department of Chemistry, Boston
University, Boston, Massachusetts 02215, United States
| | - Jerry Pelletier
- Department
of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - John A. Porco
- Department of Chemistry, Boston
University, Boston, Massachusetts 02215, United States
| | - Karen N. Allen
- Department
of Pharmacology, Physiology & Biophysics, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston
University, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Sehrawat U. Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets. Int J Mol Sci 2024; 25:10835. [PMID: 39409166 PMCID: PMC11477148 DOI: 10.3390/ijms251910835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Eukaryotic protein translation has slowly gained the scientific community's attention for its advanced and powerful therapeutic potential. However, recent technical developments in studying ribosomes and global translation have revolutionized our understanding of this complex multistep process. These developments have improved and deepened the current knowledge of mRNA translation, sparking excitement and new possibilities in this field. Translation factors are crucial for maintaining protein synthesis homeostasis. Since actively proliferating cancer cells depend on protein synthesis, dysregulated protein translation is central to tumorigenesis. Translation factors and their abnormal expressions directly affect multiple oncogenes and tumor suppressors. Recently, small molecules have been used to target translation factors, resulting in translation inhibition in a gene-specific manner, opening the door for developing translation inhibitors that can lead to novel chemotherapeutic drugs for treating multiple cancer types caused by dysregulated translation machinery. This review comprehensively summarizes the involvement of translation factors in tumor progression and oncogenesis. Also, it sheds light on the evolution of translation factors as novel drug targets for developing future therapeutic drugs for treating cancer.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
4
|
Rosenfeld P, Singh G, Paz Herrera A, Ji J, Seufzer B, Heng X, Boris-Lawrie K, Cochrane A. Putting a Kink in HIV-1 Particle Infectivity: Rocaglamide Inhibits HIV-1 Replication by Altering Gag-Genomic RNA Interaction. Viruses 2024; 16:1506. [PMID: 39339982 PMCID: PMC11437399 DOI: 10.3390/v16091506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Our examination of RNA helicases for effects on HIV-1 protein production and particle assembly identified Rocaglamide (RocA), a known modulator of eIF4A1 function, as an inhibitor of HIV-1 replication in primary CD4+ T cells and three cell systems. HIV-1 attenuation by low-nM RocA doses was associated with reduced viral particle formation without a marked decrease in Gag production. Rather, the co-localization of Gag and HIV-1 genomic RNA (gRNA) assemblies was impaired by RocA treatment in a reversible fashion. Ribonucleoprotein (RNP) immunoprecipitation studies recapitulated the loss of Gag-gRNA assemblies upon RocA treatment. Parallel biophysical studies determined that neither RocA nor eIF4A1 independently affected the ability of Gag to interact with viral RNA, but together, they distorted the structure of the HIV-1 RNP visualized by electron microscopy. Taken together, several lines of evidence indicate that RocA induces stable binding of eIF4A1 onto the viral RNA genome in a manner that interferes with the ordered assembly of Gag along Gag-gRNA assemblies required to generate infectious virions.
Collapse
Affiliation(s)
- Paul Rosenfeld
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gatikrushna Singh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Amanda Paz Herrera
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Juan Ji
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Bradley Seufzer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Alan Cochrane
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
5
|
Chen M, Dai S, Chen D, Chen H, Feng N, Zheng D. Unveiling the translational dynamics of lychee (Litchi chinesis Sonn.) in response to cold stress. BMC Genomics 2024; 25:686. [PMID: 38992605 PMCID: PMC11241792 DOI: 10.1186/s12864-024-10591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Cold stress poses a significant threat to the quality and productivity of lychee (Litchi chinensis Sonn.). While previous research has extensively explored the genomic and transcriptomic responses to cold stress in lychee, the translatome has not been thoroughly investigated. This study delves into the translatomic landscape of the 'Xiangjinfeng' cultivar under both control and low-temperature conditions using RNA sequencing and ribosome profiling. We uncovered a significant divergence between the transcriptomic and translatomic responses to cold exposure. Additionally, bioinformatics analyses underscored the crucial role of codon occupancy in lychee's cold tolerance mechanisms. Our findings reveal that the modulation of translation via codon occupancy is a vital strategy to abiotic stress. Specifically, the study identifies ribosome stalling, particularly at the E site AAU codon, as a key element of the translation machinery in lychee's response to cold stress. This work enhances our understanding of the molecular dynamics of lychee's reaction to cold stress and emphasizes the essential role of translational regulation in the plant's environmental adaptability.
Collapse
Affiliation(s)
- Mingming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Shuangfeng Dai
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Daming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Haomin Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| |
Collapse
|
6
|
Safari M, Scotto L, Basseville A, Litman T, Xue H, Petrukhin L, Zhou P, Morales DV, Damoci C, Zhu M, Hull K, Olive KP, Fojo T, Romo D, Bates SE. Combined HDAC and eIF4A inhibition: A novel epigenetic therapy for pancreatic adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.600495. [PMID: 39005268 PMCID: PMC11244854 DOI: 10.1101/2024.06.30.600495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Pancreatic ductal adenocarcinoma-(PDAC) needs innovative approaches due to its 12% 5-year survival despite current therapies. We show marked sensitivity of pancreatic cancer cells to the combination of a novel eIF4A inhibitor, des-methyl pateamine A (DMPatA), and a histone deacetylase inhibitor, romidepsin, inducing epigenetic reprogramming as an innovative therapeutic strategy. Exploring the mechanistic activity of this combination showed that with a short duration of romidepsin at low doses, robust acetylation persisted up to 48h with the combination, while histone acetylation rapidly faded with monotherapy. This represents an unexpected mechanism of action against PDAC cells that triggers transcriptional overload, metabolic stress, and augmented DNA damage. Structurally different class I HDAC inhibitors exhibit the same hyperacetylation patterns when co-administered with DMPatA, suggesting a class effect. We show efficacy of this combination regimen against tumor growth in a MIA PaCa-2 xenograft model of PDAC with persistent hyperacetylation confirmed in tumor samples. STATEMENT OF SIGNIFICANCE Pancreatic ductal adenocarcinoma, a significant clinical challenge, could benefit from the latent potential of epigenetic therapies like HDAC inhibitors-(HDIs), typically limited to hematological malignancies. Our study shows that a synergistic low dose combination of HDIs with an eIF4A-inhibitor in pancreatic cancer models results in marked pre-clinical efficacy, offering a promising new treatment strategy.
Collapse
|
7
|
Zheng Y, Peng W, Wen X, Wan Q. Protein interactome analysis of ATP1B1 in alveolar epithelial cells using Co-Immunoprecipitation mass spectrometry and parallel reaction monitoring assay. Heliyon 2024; 10:e32579. [PMID: 38912441 PMCID: PMC11193012 DOI: 10.1016/j.heliyon.2024.e32579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
AIMS Alveolar epithelial barrier integrity is essential for lung homeostasis. Na, K-ATPase β1 subunit (ATP1B1) involves alveolar edema fluid clearance and alveolar epithelial barrier stability. However, the underlying molecular mechanism of ATP1B1 in alveolar epithelial cells still needs to be understood. MAIN METHODS We utilized Co-Immunoprecipitation mass spectrometry proteomic analysis, protein-protein interaction (PPI) analysis, enrichment analysis, and parallel reaction monitoring (PRM) analysis to investigate proteins interacting with ATP1B1 in A549 cells. KEY FINDINGS A total of 159 proteins were identified as significant proteins interacting with ATP1B1 in A549 cells. Ribosomal and heat shock proteins were major constituents of the two main functional modules based on the PPI network. Enrichment analysis showed that significant proteins were involved in protein translation, posttranslational processing, and function regulation. Moreover, 10 proteins of interest were verified by PRM, and fold changes in 6 proteins were consistent with proteomics results. Finally, HSP90AB1, EIF4A1, TUBB4B, HSPA8, STAT1, and PLEC were considered candidates for binding to ATP1B1 to function in alveolar epithelial cells. SIGNIFICANCE Our study provides new insights into the role of ATP1B1 in alveolar epithelial cells and indicates that six proteins, in particular HSP90AB1, may be key proteins interacting with and regulating ATP1B1, which might be potential targets for the treatment of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weiting Peng
- 8-Year Clinical Medicine Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xupeng Wen
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiquan Wan
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Hedlund Lindberg J, Widgren A, Ivansson E, Gustavsson I, Stålberg K, Gyllensten U, Sundfeldt K, Bergquist J, Enroth S. Toward ovarian cancer screening with protein biomarkers using dried, self-sampled cervico-vaginal fluid. iScience 2024; 27:109001. [PMID: 38352226 PMCID: PMC10863317 DOI: 10.1016/j.isci.2024.109001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/24/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Early detection is key for increased survival in ovarian cancer, but no general screening program exists today due to lack of biomarkers and overall cost versus benefit over traditional clinical methods. Here, we used dried cervico-vaginal fluid (CVF) as sampling matrix coupled with mass spectrometry for detection of protein biomarkers. We find that self-collected CVF on paper cards yields robust results and is suitable for high-throughput proteomics. Artificial intelligence-based methods were used to identify an 11-protein panel that separates cases from controls. In validation data, the panel achieved a sensitivity of 0.97 (95% CI 0.91-1.00) at a specificity of 0.67 (0.40-0.87). Analyses of samples collected prior to development of symptoms indicate that the panel is informative also of future risk of disease. Dried CVF is used in cervical cancer screening, and our results opens the possibility for a screening program also for ovarian cancer, based on self-collected CVF samples.
Collapse
Affiliation(s)
- Julia Hedlund Lindberg
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Anna Widgren
- Analytical Chemistry, Department of Chemistry-Biomedical Center, Uppsala University, SE-75237 Uppsala, Sweden
| | - Emma Ivansson
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Inger Gustavsson
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Karin Stålberg
- Department of Women’s and Children’s Health, Uppsala University, SE-75185 Uppsala, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Karin Sundfeldt
- Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy at Gothenburg University, SE-41685 Gothenburg, Sweden
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-Biomedical Center, Uppsala University, SE-75237 Uppsala, Sweden
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
- Swedish Collegium for Advanced Study, Thunbergsvägen 2, SE-752 38 Uppsala, Sweden
| |
Collapse
|
9
|
Xia T, Dai X, Sang M, Zhang X, Xu F, Wu J, Shi L, Wei J, Ding Q. IGF2BP2 Drives Cell Cycle Progression in Triple-Negative Breast Cancer by Recruiting EIF4A1 to Promote the m6A-Modified CDK6 Translation Initiation Process. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305142. [PMID: 37983610 PMCID: PMC10767445 DOI: 10.1002/advs.202305142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Indexed: 11/22/2023]
Abstract
IGF2BP2 is a new identified N6-methyladenosine (m6A) reader and associated with poor prognosis in many tumors. However, its role and related mechanism in breast cancer, especially in triple-negative breast cancer (TNBC), remains unclear. In this study, it is found that IGF2BP2 is highly expressed in TNBC due to the lower methylation level in its promoter region. Functional and mechanical studies displayed that IGF2BP2 could promote TNBC proliferation and the G1/S phase transition of the cell cycle via directly regulating CDK6 in an m6A-dependent manner. Surprising, the regulation of protein levels of CDK6 by IGF2BP2 is related to the changes in translation rate during translation initiation, rather than mRNA stability. Moreover, EIF4A1 is found to be recruited by IGF2BP2 to promote the translation output of CDK6, providing new evidence for a regulatory role of IGF2BP2 between m6A methylation and translation. Downregulation of IGF2BP2 in TNBC cell could enhance the sensitivity to abemaciclib, a CDK4/6 inhibitor. To sum up, our study revealed IGF2BP2 could facilitate the translation output of CDK6 via recruiting EIF4A1 and also provided a potential therapeutic target for the diagnosis and treatment of TNBC, as well as a new strategy for broadening the drug indications for CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Tian Xia
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Xin‐Yuan Dai
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Ming‐Yi Sang
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Xu Zhang
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Feng Xu
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Jing Wu
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Liang Shi
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Ji‐Fu Wei
- Department of PharmacyJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qiang Ding
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| |
Collapse
|
10
|
Metkar M, Pepin CS, Moore MJ. Tailor made: the art of therapeutic mRNA design. Nat Rev Drug Discov 2024; 23:67-83. [PMID: 38030688 DOI: 10.1038/s41573-023-00827-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
mRNA medicine is a new and rapidly developing field in which the delivery of genetic information in the form of mRNA is used to direct therapeutic protein production in humans. This approach, which allows for the quick and efficient identification and optimization of drug candidates for both large populations and individual patients, has the potential to revolutionize the way we prevent and treat disease. A key feature of mRNA medicines is their high degree of designability, although the design choices involved are complex. Maximizing the production of therapeutic proteins from mRNA medicines requires a thorough understanding of how nucleotide sequence, nucleotide modification and RNA structure interplay to affect translational efficiency and mRNA stability. In this Review, we describe the principles that underlie the physical stability and biological activity of mRNA and emphasize their relevance to the myriad considerations that factor into therapeutic mRNA design.
Collapse
|
11
|
Nardi F, Perurena N, Schade AE, Li ZH, Ngo K, Ivanova EV, Saldanha A, Li C, Gokhale PC, Hata AN, Barbie DA, Paweletz CP, Jänne PA, Cichowski K. Cotargeting a MYC/eIF4A-survival axis improves the efficacy of KRAS inhibitors in lung cancer. J Clin Invest 2023; 133:e167651. [PMID: 37384411 PMCID: PMC10425214 DOI: 10.1172/jci167651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
Despite the success of KRAS G12C inhibitors in non-small cell lung cancer (NSCLC), more effective treatments are needed. One preclinical strategy has been to cotarget RAS and mTOR pathways; however, toxicity due to broad mTOR inhibition has limited its utility. Therefore, we sought to develop a more refined means of targeting cap-dependent translation and identifying the most therapeutically important eukaryotic initiation factor 4F complex-translated (eIF4F-translated) targets. Here, we show that an eIF4A inhibitor, which targets a component of eIF4F, dramatically enhances the effects of KRAS G12C inhibitors in NSCLCs and together these agents induce potent tumor regression in vivo. By screening a broad panel of eIF4F targets, we show that this cooperativity is driven by effects on BCL-2 family proteins. Moreover, because multiple BCL-2 family members are concomitantly suppressed, these agents are broadly efficacious in NSCLCs, irrespective of their dependency on MCL1, BCL-xL, or BCL-2, which is known to be heterogeneous. Finally, we show that MYC overexpression confers sensitivity to this combination because it creates a dependency on eIF4A for BCL-2 family protein expression. Together, these studies identify a promising therapeutic strategy for KRAS-mutant NSCLCs, demonstrate that BCL-2 proteins are the key mediators of the therapeutic response in this tumor type, and uncover a predictive biomarker of sensitivity.
Collapse
Affiliation(s)
- Francesca Nardi
- Genetics Division and
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Ludwig Center at Harvard, Boston, Massachusetts, USA
| | - Naiara Perurena
- Genetics Division and
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Ludwig Center at Harvard, Boston, Massachusetts, USA
| | - Amy E. Schade
- Genetics Division and
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Ludwig Center at Harvard, Boston, Massachusetts, USA
| | | | - Kenneth Ngo
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Elena V. Ivanova
- Department of Medical Oncology and
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Aisha Saldanha
- Department of Medical Oncology and
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Chendi Li
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA
- Depertment of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Prafulla C. Gokhale
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Experimental Therapeutics Core and
| | - Aaron N. Hata
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA
- Depertment of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - David A. Barbie
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology and
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Cloud P. Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Pasi A. Jänne
- Harvard Medical School, Boston, Massachusetts, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Karen Cichowski
- Genetics Division and
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Ludwig Center at Harvard, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Wu C, Liu D, Zhang L, Wang J, Ding Y, Sun Z, Wang W. 5'-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I. Front Med 2023; 17:476-492. [PMID: 36973570 DOI: 10.1007/s11684-022-0966-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/01/2022] [Indexed: 03/29/2023]
Abstract
tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases. However, their exact presence and function in hepatocellular carcinoma (HCC) remain unclear. Here, differentially expressed tsRNAs in HCC were profiled. A novel tsRNA, tRNAGln-TTG derived 5'-tiRNA-Gln, is significantly downregulated, and its expression level is correlated with progression in patients. In HCC cells, 5'-tiRNA-Gln overexpression impaired the proliferation, migration, and invasion in vitro and in vivo, while 5'-tiRNA-Gln knockdown yielded opposite results. 5'-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I (EIF4A1), which unwinds complex RNA secondary structures during translation initiation, causing the partial inhibition of translation. The suppressed downregulated proteins include ARAF, MEK1/2 and STAT3, causing the impaired signaling pathway related to HCC progression. Furthermore, based on the construction of a mutant 5'-tiRNA-Gln, the sequence of forming intramolecular G-quadruplex structure is crucial for 5'-tiRNA-Gln to strongly bind EIF4A1 and repress translation. Clinically, 5'-tiRNA-Gln expression level is negatively correlated with ARAF, MEK1/2, and STAT3 in HCC tissues. Collectively, these findings reveal that 5'-tiRJNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular G-quadruplex structure, and this process partially inhibits translation and HCC progression.
Collapse
Affiliation(s)
- Chengdong Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Dekai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Lufei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Jingjie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China.
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China.
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China.
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
13
|
Schmidt T, Dabrowska A, Waldron JA, Hodge K, Koulouras G, Gabrielsen M, Munro J, Tack DC, Harris G, McGhee E, Scott D, Carlin L, Huang D, Le Quesne J, Zanivan S, Wilczynska A, Bushell M. eIF4A1-dependent mRNAs employ purine-rich 5'UTR sequences to activate localised eIF4A1-unwinding through eIF4A1-multimerisation to facilitate translation. Nucleic Acids Res 2023; 51:1859-1879. [PMID: 36727461 PMCID: PMC9976904 DOI: 10.1093/nar/gkad030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Altered eIF4A1 activity promotes translation of highly structured, eIF4A1-dependent oncogene mRNAs at root of oncogenic translational programmes. It remains unclear how these mRNAs recruit and activate eIF4A1 unwinding specifically to facilitate their preferential translation. Here, we show that single-stranded RNA sequence motifs specifically activate eIF4A1 unwinding allowing local RNA structural rearrangement and translation of eIF4A1-dependent mRNAs in cells. Our data demonstrate that eIF4A1-dependent mRNAs contain AG-rich motifs within their 5'UTR which specifically activate eIF4A1 unwinding of local RNA structure to facilitate translation. This mode of eIF4A1 regulation is used by mRNAs encoding components of mTORC-signalling and cell cycle progression, and renders these mRNAs particularly sensitive to eIF4A1-inhibition. Mechanistically, we show that binding of eIF4A1 to AG-rich sequences leads to multimerization of eIF4A1 with eIF4A1 subunits performing distinct enzymatic activities. Our structural data suggest that RNA-binding of multimeric eIF4A1 induces conformational changes in the RNA resulting in an optimal positioning of eIF4A1 proximal to the RNA duplex enabling efficient unwinding. Our data proposes a model in which AG-motifs in the 5'UTR of eIF4A1-dependent mRNAs specifically activate eIF4A1, enabling assembly of the helicase-competent multimeric eIF4A1 complex, and positioning these complexes proximal to stable localised RNA structure allowing ribosomal subunit scanning.
Collapse
Affiliation(s)
- Tobias Schmidt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Adrianna Dabrowska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
- Department of Urology, University of California, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph A Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Kelly Hodge
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Grigorios Koulouras
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Mads Gabrielsen
- MVLS Structural Biology and Biophysical Characterisation Facility, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - June Munro
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - David C Tack
- Spectrum Health Office of Research and Education, Spectrum Health System, 15 Michigan Street NE, Grand Rapids, MI 49503, USA
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Ewan McGhee
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - David Scott
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
- ISIS Spallation Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, DidcotOX11 0QX, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Danny Huang
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - John Le Quesne
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Ania Wilczynska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
14
|
Kayastha F, Herrington NB, Kapadia B, Roychowdhury A, Nanaji N, Kellogg GE, Gartenhaus RB. Novel eIF4A1 inhibitors with anti-tumor activity in lymphoma. Mol Med 2022; 28:101. [PMID: 36058921 PMCID: PMC9441068 DOI: 10.1186/s10020-022-00534-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deregulated translation initiation is implicated extensively in cancer initiation and progression. It is actively pursued as a viable target that circumvents the dependency on oncogenic signaling, a significant factor in current strategies. Eukaryotic translation initiation factor (eIF) 4A plays an essential role in translation initiation by unwinding the secondary structure of messenger RNA (mRNA) upstream of the start codon, enabling active ribosomal recruitment on the downstream genes. Several natural product molecules with similar scaffolds, such as Rocaglamide A (RocA), targeting eIF4A have been reported in the last decade. However, their clinical utilization is still elusive due to several pharmacological limitations. In this study we identified new eIF4A1 inhibitors and their possible mechanisms. METHODS In this report, we conducted a pharmacophore-based virtual screen of RocA complexed with eIF4A and a polypurine RNA strand for novel eIF4A inhibitors from commercially available compounds in the MolPort Database. We performed target-based screening and optimization of active pharmacophores. We assessed the effects of novel compounds on biochemical and cell-based assays for efficacy and mechanistic evaluation. RESULTS We validated three new potent eIF4A inhibitors, RBF197, RBF 203, and RBF 208, which decreased diffuse large B-cell lymphoma (DLBCL) cell viability. Biochemical and cellular studies, molecular docking, and functional assays revealed that thosenovel compounds clamp eIF4A into mRNA in an ATP-independent manner. Moreover, we found that RBF197 and RBF208 significantly depressed eIF4A-dependent oncogene expression as well as the colony formation capacity of DLBCL. Interestingly, exposure of these compounds to non-malignant cells had only minimal impact on their growth and viability. CONCLUSIONS Identified compounds suggest a new strategy for designing novel eIF4A inhibitors.
Collapse
Affiliation(s)
- Forum Kayastha
- McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Division of Hematology, Oncology, and Palliative care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Noah B Herrington
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Bandish Kapadia
- McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Division of Hematology, Oncology, and Palliative care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Anirban Roychowdhury
- McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Division of Hematology, Oncology, and Palliative care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Nahid Nanaji
- Department of Veteran Affairs, Maryland Healthcare System, Baltimore, MD, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Ronald B Gartenhaus
- McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.
- Division of Hematology, Oncology, and Palliative care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
15
|
Wu KL, Huang YC, Wu YY, Chang CY, Chang YY, Chiang HH, Liu LX, Tsai YM, Hung JY. Characterization of the Oncogenic Potential of Eukaryotic Initiation Factor 4A1 in Lung Adenocarcinoma via Cell Cycle Regulation and Immune Microenvironment Reprogramming. BIOLOGY 2022; 11:biology11070975. [PMID: 36101357 PMCID: PMC9311917 DOI: 10.3390/biology11070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Lung adenocarcinoma (LUAD) is a common type of lung cancer. Although the diagnosis and treatment of LUAD have significantly improved in recent decades, the survival for advanced LUAD is still poor. It is necessary to identify more targets for developing potential agents against LUAD. This study explored the dysregulation of translation initiation factors, specifically eukaryotic initiation factors 4A1 (EIF4A1) and EIF4A2, in developing LUAD, as well as their underlying mechanisms. We found that the expression of EIF4A1, but not EIF4A2, was higher in tumor tissue and associated with poor clinical outcomes in LUAD patients. Elevated expression of EIF4H with poor prognosis may potentiate the oncogenic role of EIF4A1. Functional enrichment analysis revealed that upregulation of EIF4A1 was related to cell cycle regulation and DNA repair. The oncogenic effect of EIF4A1 was further elucidated by Gene Set Variation Analysis (GSVA). The GSVA score of the gene set positively correlated with EIF4A1 was higher in tumors and significantly associated with worse survival. In the meantime, gene set enrichment analysis (GSEA) also indicated that elevated EIF4A1 expression in LUAD patients was associated with a decreased infiltration score for immune cells by reducing anticancer immune cell types and recruiting immunosuppressive cells. Consistent with the results, the GSVA score of genes whose expression was negatively correlated with EIF4A1 was lower in the tumor tissue of LUAD cases with worse clinical outcomes and was strongly associated with the disequilibrium of anti-cancer immunity by recruiting anticancer immune cells. Based on the results from the present study, we hypothesize that the dysregulation of EIF4A1 might be involved in the pathophysiology of LUAD development by promoting cancer growth and changing the tumor immune microenvironment. This can be used to develop potential diagnostic biomarkers or therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Kuan-Li Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (K.-L.W.); (Y.-C.H.); (C.-Y.C.); (L.-X.L.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (Y.-Y.C.); (Y.-M.T.)
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (K.-L.W.); (Y.-C.H.); (C.-Y.C.); (L.-X.L.)
| | - Yu-Yuan Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (K.-L.W.); (Y.-C.H.); (C.-Y.C.); (L.-X.L.)
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Yun Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (Y.-Y.C.); (Y.-M.T.)
- Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Hung-Hsing Chiang
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Lian-Xiu Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (K.-L.W.); (Y.-C.H.); (C.-Y.C.); (L.-X.L.)
| | - Ying-Ming Tsai
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (Y.-Y.C.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (Y.-Y.C.); (Y.-M.T.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 5651)
| |
Collapse
|
16
|
Zhao Y, Wang Y, Chen W, Bai S, Peng W, Zheng M, Yang Y, Cheng B, Luan Z. Targeted intervention of eIF4A1 inhibits EMT and metastasis of pancreatic cancer cells via c-MYC/miR-9 signaling. Cancer Cell Int 2021; 21:670. [PMID: 34906136 PMCID: PMC8672469 DOI: 10.1186/s12935-021-02390-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background Owing to the lack of effective treatment options, early metastasis remains the major cause of pancreatic ductal adenocarcinoma (PDAC) recurrence and mortality. However, the molecular mechanism of early metastasis is largely unknown. We characterized the function of eukaryotic translation initiation factors (eIFs) in epithelial-mesenchymal-transition (EMT) and metastasis in pancreatic cancer cells to investigate whether eIFs and downstream c-MYC affect EMT and metastasis by joint interference. Methods We used The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) databases to analyze eIF4A1 expression in PDAC tissues and further validated the findings with a microarray containing 53 PDAC samples. Expression regulation and pharmacological inhibition of eIF4A1 and c-MYC were performed to determine their role in migration, invasion, and metastasis in pancreatic cancer cells in vitro and in vivo. Results Elevated eIF4A1 expression was positively correlated with lymph node infiltration, tumor size, and indicated a poor prognosis. eIF4A1 decreased E-cadherin expression through the c-MYC/miR-9 axis. Loss of eIF4A1 and c-MYC decreased the EMT and metastasis capabilities of pancreatic cancer cells, whereas upregulation of eIF4A1 attenuated the inhibition of EMT and metastasis induced by c-MYC downregulation. Treatment with the eIF4A1 inhibitor rocaglamide (RocA) or the c-MYC inhibitor Mycro3 either alone or in combination significantly decreased the expression level of EMT markers in pancreatic cancer cells in vitro. However, the efficiency and safety of RocA alone were not inferior to those of the combination treatment in vivo. Conclusion Overexpression of eIF4A1 downregulated E-cadherin expression through the c-MYC/miR-9 axis, which promoted EMT and metastasis of pancreatic cancer cells. Despite the potential feedback loop between eIF4A1 and c-MYC, RocA monotherapy is a promising treatment inhibiting eIF4A1-induced PDAC metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02390-0.
Collapse
Affiliation(s)
- Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Yun Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China.,Departement of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Mengli Zheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Yilei Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China.
| | - Zhou Luan
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China.
| |
Collapse
|
17
|
Xue C, Gu X, Li G, Bao Z, Li L. Expression and Functional Roles of Eukaryotic Initiation Factor 4A Family Proteins in Human Cancers. Front Cell Dev Biol 2021; 9:711965. [PMID: 34869305 PMCID: PMC8640450 DOI: 10.3389/fcell.2021.711965] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/05/2021] [Indexed: 01/11/2023] Open
Abstract
The dysregulation of mRNA translation is common in malignancies and may lead to tumorigenesis and progression. Eukaryotic initiation factor 4A (eIF4A) proteins are essential for translation, exhibit bidirectional RNA helicase function, and act as RNA-dependent ATPases. In this review, we explored the predicted structures of the three eIF4A isoforms (eIF4A1, eIF4A2, and eIF4A3), and discussed possible explanations for which function during different translation stages (initiation, mRNA localization, export, and mRNA splicing). These proteins also frequently served as targets of microRNAs (miRNAs) or long noncoding RNAs (lncRNAs) to mediate epithelial-mesenchymal transition (EMT), which was associated with tumor cell invasion and metastasis. To define the differential expression of eIF4A family members, we applied the Tumor Immune Estimation Resource website. We figured out that the eIF4A family genes were differently expressed in specific cancer types. We also found that the level of the eIF4A family genes were associated with abundant immune cells infiltration and tumor purity. The associations between eIF4A proteins and cancer patient clinicopathological features suggested that eIF4A proteins might serve as biomarkers for early tumor diagnosis, histological classification, and clinical grading/staging, providing new tools for precise and individualized cancer treatment.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Zerio CJ, Cunningham TA, Tulino AS, Alimusa EA, Buckley TM, Moore KT, Dodson M, Wilson NC, Ambrose AJ, Shi T, Sivinski J, Essegian DJ, Zhang DD, Schürer SC, Schatz JH, Chapman E. Discovery of an eIF4A Inhibitor with a Novel Mechanism of Action. J Med Chem 2021; 64:15727-15746. [PMID: 34676755 PMCID: PMC10103628 DOI: 10.1021/acs.jmedchem.1c01014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increased protein synthesis is a requirement for malignant growth, and as a result, translation has become a pharmaceutical target for cancer. The initiation of cap-dependent translation is enzymatically driven by the eukaryotic initiation factor (eIF)4A, an ATP-powered DEAD-box RNA-helicase that unwinds the messenger RNA secondary structure upstream of the start codon, enabling translation of downstream genes. A screen for inhibitors of eIF4A ATPase activity produced an intriguing hit that, surprisingly, was not ATP-competitive. A medicinal chemistry campaign produced the novel eIF4A inhibitor 28, which decreased BJAB Burkitt lymphoma cell viability. Biochemical and cellular studies, molecular docking, and functional assays uncovered that 28 is an RNA-competitive, ATP-uncompetitive inhibitor that engages a novel pocket in the RNA groove of eIF4A and inhibits unwinding activity by interfering with proper RNA binding and suppressing ATP hydrolysis. Inhibition of eIF4A through this unique mechanism may offer new strategies for targeting this promising intersection point of many oncogenic pathways.
Collapse
Affiliation(s)
- Christopher J Zerio
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Tyler A Cunningham
- Miller School of Medicine, Department of Molecular and Cellular Pharmacology, University of Miami, 1600 NW 10th Avenue, Miami, Florida 33136, United States
| | - Allison S Tulino
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Erin A Alimusa
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Thomas M Buckley
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Kohlson T Moore
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Matthew Dodson
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Nathan C Wilson
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Andrew J Ambrose
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Taoda Shi
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Jared Sivinski
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Derek J Essegian
- Miller School of Medicine, Department of Molecular and Cellular Pharmacology, University of Miami, 1600 NW 10th Avenue, Miami, Florida 33136, United States
| | - Donna D Zhang
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Stephan C Schürer
- Miller School of Medicine, Department of Molecular and Cellular Pharmacology, University of Miami, 1600 NW 10th Avenue, Miami, Florida 33136, United States
- Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Avenue, Miami, Florida 33136, United States
| | - Jonathan H Schatz
- Miller School of Medicine, Department of Medicine, University of Miami, 1600 NW 10th Avenue, Miami, Florida 33136, United States
- Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Avenue, Miami, Florida 33136, United States
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| |
Collapse
|
19
|
Essegian D, Cunningham TA, Zerio CJ, Chapman E, Schatz J, Schürer SC. Molecular Dynamics Simulations Identify Tractable Lead-like Phenyl-Piperazine Scaffolds as eIF4A1 ATP-competitive Inhibitors. ACS OMEGA 2021; 6:24432-24443. [PMID: 34604625 PMCID: PMC8482399 DOI: 10.1021/acsomega.1c02805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
eIF4A1 is an ATP-dependent RNA helicase whose overexpression and activity have been tightly linked to oncogenesis in a number of malignancies. An understanding of the complex kinetics and conformational changes of this translational enzyme is necessary to map out all targetable binding sites and develop novel, chemically tractable inhibitors. We herein present a comprehensive quantitative analysis of eIF4A1 conformational changes using protein-ligand docking, homology modeling, and extended molecular dynamics simulations. Through this, we report the discovery of a novel, biochemically active phenyl-piperazine pharmacophore, which is predicted to target the ATP-binding site and may serve as the starting point for medicinal chemistry optimization efforts. This is the first such report of an ATP-competitive inhibitor for eiF4A1, which is predicted to bind in the nucleotide cleft. Our novel interdisciplinary pipeline serves as a framework for future drug discovery efforts for targeting eiF4A1 and other proteins with complex kinetics.
Collapse
Affiliation(s)
- Derek
J. Essegian
- Department
of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
- Medical
Scientist Training Program, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Tyler A. Cunningham
- Department
of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
- Medical
Scientist Training Program, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Christopher J. Zerio
- Department
of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tuscon, Arizona 85721, United States
| | - Eli Chapman
- Department
of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tuscon, Arizona 85721, United States
| | - Jonathan Schatz
- Sylvester
Comprehensive Cancer Center, University
of Miami Health System, Miami, Florida 33136, United States
- Department
of Medicine, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Stephan C. Schürer
- Department
of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
- Sylvester
Comprehensive Cancer Center, University
of Miami Health System, Miami, Florida 33136, United States
- Institute
for Data Science & Computing, University
of Miami, Miami, Florida 33136, United
States
| |
Collapse
|
20
|
Caterino M, Paeschke K. Action and function of helicases on RNA G-quadruplexes. Methods 2021; 204:110-125. [PMID: 34509630 PMCID: PMC9236196 DOI: 10.1016/j.ymeth.2021.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Methodological progresses and piling evidence prove the rG4 biology in vivo. rG4s step in virtually every aspect of RNA biology. Helicases unwinding of rG4s is a fine regulatory layer to the downstream processes and general cell homeostasis. The current knowledge is however limited to a few cell lines. The regulation of helicases themselves is delineating as a important question. Non-helicase rG4-processing proteins likely play a role.
The nucleic acid structure called G-quadruplex (G4) is currently discussed to function in nucleic acid-based mechanisms that influence several cellular processes. They can modulate the cellular machinery either positively or negatively, both at the DNA and RNA level. The majority of what we know about G4 biology comes from DNA G4 (dG4) research. RNA G4s (rG4), on the other hand, are gaining interest as researchers become more aware of their role in several aspects of cellular homeostasis. In either case, the correct regulation of G4 structures within cells is essential and demands specialized proteins able to resolve them. Small changes in the formation and unfolding of G4 structures can have severe consequences for the cells that could even stimulate genome instability, apoptosis or proliferation. Helicases are the most relevant negative G4 regulators, which prevent and unfold G4 formation within cells during different pathways. Yet, and despite their importance only a handful of rG4 unwinding helicases have been identified and characterized thus far. This review addresses the current knowledge on rG4s-processing helicases with a focus on methodological approaches. An example of a non-helicase rG4s-unwinding protein is also briefly described.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
21
|
DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells 2021; 10:cells10061540. [PMID: 34207140 PMCID: PMC8234093 DOI: 10.3390/cells10061540] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regulation has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis. In this review, we discuss the essential roles and mechanisms of RNA helicases in the regulation of the cell cycle at different phases. For that, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. We also discuss the different targeting strategies against RNA helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on specific RNA helicases, and the therapeutic potential of these compounds in the treatment of various disorders.
Collapse
|
22
|
The DEAD-box protein family of RNA helicases: sentinels for a myriad of cellular functions with emerging roles in tumorigenesis. Int J Clin Oncol 2021; 26:795-825. [PMID: 33656655 DOI: 10.1007/s10147-021-01892-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
DEAD-box RNA helicases comprise a family within helicase superfamily 2 and make up the largest group of RNA helicases. They are a profoundly conserved family of RNA-binding proteins, carrying a generic Asp-Glu-Ala-Asp (D-E-A-D) motif that gives the family its name. Members of the DEAD-box family of RNA helicases are engaged in all facets of RNA metabolism from biogenesis to decay. DEAD-box proteins ordinarily function as constituents of enormous multi-protein complexes and it is believed that interactions with other components in the complexes might be answerable for the various capacities ascribed to these proteins. Therefore, their exact function is probably impacted by their interacting partners and to be profoundly context dependent. This may give a clarification to the occasionally inconsistent reports proposing that DEAD-box proteins have both pro- and anti-proliferative functions in cancer. There is emerging evidence that DEAD-box family of RNA helicases play pivotal functions in various cellular processes and in numerous cases have been embroiled in cellular proliferation and/or neoplastic transformation. In various malignancy types, DEAD-box RNA helicases have been reported to possess pro-proliferation or even oncogenic roles as well as anti-proliferative or tumor suppressor functions. Clarifying the exact function of DEAD-box helicases in cancer is probably intricate, and relies upon the cellular milieu and interacting factors. This review aims to summarize the current data on the numerous capacities that have been ascribed to DEAD-box RNA helicases. It also highlights their diverse actions upon malignant transformation in the various tumor types.
Collapse
|
23
|
Abstract
Inhibiting eukaryotic protein translation with small molecules is emerging as a powerful therapeutic strategy. The advantage of targeting cellular translational machinery is that it is required for the highly proliferative state of many neoplastic cells, replication of certain viruses, and ultimately the expression of a wide variety of protein targets. Although, this approach has been exploited to develop clinical agents, such as homoharringtonine (HHT, 1), used to treat chronic myeloid leukemia (CML), inhibiting components of the translational machinery is often associated with cytotoxic phenotypes. However, recent studies have demonstrated that certain small molecules can inhibit the translation of specific subsets of proteins, leading to lower cytotoxicity, and opening-up therapeutic opportunities for translation inhibitors to be deployed in indications beyond oncology and infectious disease. This review summarizes efforts to develop inhibitors of the eukaryotic translational machinery as therapeutic agents and highlights emerging opportunities for translation inhibitors in the future.
Collapse
Affiliation(s)
- Angela Fan
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Phillip P Sharp
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
24
|
Patel KD, Vora HH, Patel PS. Transcriptional Biomarkers in Oral Cancer: An Integrative Analysis and the Cancer Genome Atlas Validation. Asian Pac J Cancer Prev 2021; 22:371-380. [PMID: 33639650 PMCID: PMC8190349 DOI: 10.31557/apjcp.2021.22.2.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE An impervious mortality rate in oral cancer (OC) to a certain extent explains the exigencies of precise biomarkers. Therefore, the study was intended to identify OC candidate biomarkers using samples of healthy normal tissues (N=335), adjacent normal tissues (N=93) and OC tissues (N=533) from online microarray data. METHODS Differentially expressed genes (DEGs) were recognised through GeneSpring software (Fold change >4.0 and 'p' value.
Collapse
Affiliation(s)
| | | | - Prabhudas S Patel
- The Gujarat Cancer & Research Institute, Civil Hospital Campus, Asarwa, Ahmedabad-380 016, Gujarat, India.
| |
Collapse
|
25
|
Minnee E, Faller WJ. Translation initiation and its relevance in colorectal cancer. FEBS J 2021; 288:6635-6651. [PMID: 33382175 PMCID: PMC9291299 DOI: 10.1111/febs.15690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023]
Abstract
Protein synthesis is one of the most essential processes in every kingdom of life, and its dysregulation is a known driving force in cancer development. Multiple signaling pathways converge on the translation initiation machinery, and this plays a crucial role in regulating differential gene expression. In colorectal cancer, dysregulation of initiation results in translational reprogramming, which promotes the selective translation of mRNAs required for many oncogenic processes. The majority of upstream mutations found in colorectal cancer, including alterations in the WNT, MAPK, and PI3K\AKT pathways, have been demonstrated to play a significant role in translational reprogramming. Many translation initiation factors are also known to be dysregulated, resulting in translational reprogramming during tumor initiation and/or maintenance. In this review, we outline the role of translational reprogramming that occurs during colorectal cancer development and progression and highlight some of the most critical factors affecting the etiology of this disease.
Collapse
Affiliation(s)
- Emma Minnee
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - William James Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
26
|
DHX37 Impacts Prognosis of Hepatocellular Carcinoma and Lung Adenocarcinoma through Immune Infiltration. J Immunol Res 2020; 2020:8835393. [PMID: 33490290 PMCID: PMC7790560 DOI: 10.1155/2020/8835393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background RNA helicases have various essential functions in basically all aspects of RNA metabolism, not only unwinding RNA but also disturbing the interaction of RNA with proteins. Recently, RNA helicases have been considered potential targets in cancers. So far, there has been no detailed investigation of the biological functions of RNA helicase DHX37 in cancers. Objective We aim to identify the prognostic value of DHX37 associated with tumor microenvironments in cancers. Methods DHX37 expression was examined via the Oncomine database and Tumor Immune Estimation Resource (TIMER). We explored the prognostic role of DHX37 in cancers across various databases. Coexpression genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and fundamental regulators were performed via LinkedOmics. Confirming the prognostic value of DHX37 in liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD), we explored the role of DHX37 in infiltrated lymphocytes in cancers using the Gene Expression Profiling Interactive Analysis (GEPIA) and TIMER databases. Results Through GO and KEGG analyses, expression of DHX37 was also correlated with complex function-specific networks involving the ribosome and RNA metabolic signaling pathways. In LIHC and LUAD, DHX37 expression showed significant positive correlations with markers of Tregs, myeloid-derived suppressor cells (MDSCs), and T cell exhaustion, contributing to immune tolerance. Conclusion These results indicate that DHX37 can serve as a prognostic biomarker in LIHC and LUAD while having an important role in immune tolerance by activating the function of Tregs, MDSC, and T cell exhaustion.
Collapse
|
27
|
Schmidt S, Denk S, Wiegering A. Targeting Protein Synthesis in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12051298. [PMID: 32455578 PMCID: PMC7281195 DOI: 10.3390/cancers12051298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Under physiological conditions, protein synthesis controls cell growth and survival and is strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation of the translational machinery. Besides mutations in upstream signaling pathways, deregulation of global protein synthesis occurs through additional mechanisms including altered expression or activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of components involved in ribosome biogenesis and factors that control the adaptation of translation in response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies targeting these alterations have been investigated and have shown promising results in cell lines, intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have not clinically benefited from those advances so far. In this review, we outline the mechanisms that lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in developing therapeutic strategies that target these mechanisms for tumor therapy.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Sarah Denk
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Correspondence: ; Tel.: +49-931-20138714
| |
Collapse
|
28
|
Gao C, Guo X, Xue A, Ruan Y, Wang H, Gao X. High intratumoral expression of eIF4A1 promotes epithelial-to-mesenchymal transition and predicts unfavorable prognosis in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2020; 52:310-319. [PMID: 32147684 DOI: 10.1093/abbs/gmz168] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer is an important health problem, being the fifth most common cancer and the third leading cause of cancer-related death worldwide. Aberrant protein translation contributes to the oncogenesis and development of cancers, and upregulation of translation initiation factor eIF4A1 has been observed in several kinds of malignancies. However, the role of eIF4A1 in gastric cancer progression remains unclear. In this study, we found that the expression of eIF4A1, a component of translation initiation complex, was increased in gastric cancer. High expression of eIF4A1 was positively associated with poor tumor differentiation, late T stage, lymph node metastasis, advanced TNM stage, and poor prognosis in patients with gastric cancer. Overexpression of eIF4A1 promoted the migration and invasion of gastric cancer cells in vitro and enhanced tumor metastasis in nude mice model. Mechanism studies revealed that eIF4A1 induced epithelial-to-mesenchymal transition (EMT) of gastric cancer cells through driving the translation of SNAI1 mRNA. Together, these findings indicate that eIF4A1 promotes EMT and metastasis of gastric cancer and suggest that eIF4A1 is a potential target for the adjuvant therapy for gastric cancer patients.
Collapse
Affiliation(s)
- Chanchan Gao
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Xinyin Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Anwei Xue
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hongshan Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaodong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Wilczynska A, Gillen SL, Schmidt T, Meijer HA, Jukes-Jones R, Langlais C, Kopra K, Lu WT, Godfrey JD, Hawley BR, Hodge K, Zanivan S, Cain K, Le Quesne J, Bushell M. eIF4A2 drives repression of translation at initiation by Ccr4-Not through purine-rich motifs in the 5'UTR. Genome Biol 2019; 20:262. [PMID: 31791371 PMCID: PMC6886185 DOI: 10.1186/s13059-019-1857-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regulation of the mRNA life cycle is central to gene expression control and determination of cell fate. miRNAs represent a critical mRNA regulatory mechanism, but despite decades of research, their mode of action is still not fully understood. RESULTS Here, we show that eIF4A2 is a major effector of the repressive miRNA pathway functioning via the Ccr4-Not complex. We demonstrate that while DDX6 interacts with Ccr4-Not, its effects in the mechanism are not as pronounced. Through its interaction with the Ccr4-Not complex, eIF4A2 represses mRNAs at translation initiation. We show evidence that native eIF4A2 has similar RNA selectivity to chemically inhibited eIF4A1. eIF4A2 exerts its repressive effect by binding purine-rich motifs which are enriched in the 5'UTR of target mRNAs directly upstream of the AUG start codon. CONCLUSIONS Our data support a model whereby purine motifs towards the 3' end of the 5'UTR are associated with increased ribosome occupancy and possible uORF activation upon eIF4A2 binding.
Collapse
Affiliation(s)
- Ania Wilczynska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Tobias Schmidt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Hedda A Meijer
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
- Present Address: Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | - Kari Kopra
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
- Present Address: Department of Chemistry, University of Turku, Vatselankatu 2, FI-20500, Turku, Finland
| | - Wei-Ting Lu
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Jack D Godfrey
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | | | - Kelly Hodge
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kelvin Cain
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - John Le Quesne
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
30
|
Marina D, Arnaud L, Paul Noel L, Felix S, Bernard R, Natacha C. Relevance of Translation Initiation in Diffuse Glioma Biology and its Therapeutic Potential. Cells 2019; 8:E1542. [PMID: 31795417 PMCID: PMC6953081 DOI: 10.3390/cells8121542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer cells are continually exposed to environmental stressors forcing them to adapt their protein production to survive. The translational machinery can be recruited by malignant cells to synthesize proteins required to promote their survival, even in times of high physiological and pathological stress. This phenomenon has been described in several cancers including in gliomas. Abnormal regulation of translation has encouraged the development of new therapeutics targeting the protein synthesis pathway. This approach could be meaningful for glioma given the fact that the median survival following diagnosis of the highest grade of glioma remains short despite current therapy. The identification of new targets for the development of novel therapeutics is therefore needed in order to improve this devastating overall survival rate. This review discusses current literature on translation in gliomas with a focus on the initiation step covering both the cap-dependent and cap-independent modes of initiation. The different translation initiation protagonists will be described in normal conditions and then in gliomas. In addition, their gene expression in gliomas will systematically be examined using two freely available datasets. Finally, we will discuss different pathways regulating translation initiation and current drugs targeting the translational machinery and their potential for the treatment of gliomas.
Collapse
Affiliation(s)
- Digregorio Marina
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
| | - Lombard Arnaud
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
- Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium
| | - Lumapat Paul Noel
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
| | - Scholtes Felix
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
- Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium
| | - Rogister Bernard
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
- Department of Neurology, CHU of Liège, 4000 Liège, Belgium
| | - Coppieters Natacha
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
| |
Collapse
|
31
|
Meijer HA, Schmidt T, Gillen SL, Langlais C, Jukes-Jones R, de Moor CH, Cain K, Wilczynska A, Bushell M. DEAD-box helicase eIF4A2 inhibits CNOT7 deadenylation activity. Nucleic Acids Res 2019; 47:8224-8238. [PMID: 31180491 PMCID: PMC6736043 DOI: 10.1093/nar/gkz509] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/26/2019] [Accepted: 06/05/2019] [Indexed: 01/16/2023] Open
Abstract
The CCR4-NOT complex plays an important role in the translational repression and deadenylation of mRNAs. However, little is known about the specific roles of interacting factors. We demonstrate that the DEAD-box helicases eIF4A2 and DDX6 interact directly with the MA3 and MIF domains of CNOT1 and compete for binding. Furthermore, we now show that incorporation of eIF4A2 into the CCR4-NOT complex inhibits CNOT7 deadenylation activity in contrast to DDX6 which enhances CNOT7 activity. Polyadenylation tests (PAT) on endogenous mRNAs determined that eIF4A2 bound mRNAs have longer poly(A) tails than DDX6 bound mRNAs. Immunoprecipitation experiments show that eIF4A2 does not inhibit CNOT7 association with the CCR4-NOT complex but instead inhibits CNOT7 activity. We identified a CCR4-NOT interacting factor, TAB182, that modulates helicase recruitment into the CCR4-NOT complex, potentially affecting the outcome for the targeted mRNA. Together, these data show that the fate of an mRNA is dependent on the specific recruitment of either eIF4A2 or DDX6 to the CCR4-NOT complex which results in different pathways for translational repression and mRNA deadenylation.
Collapse
Affiliation(s)
- Hedda A Meijer
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Tobias Schmidt
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Sarah L Gillen
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Claudia Langlais
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Rebekah Jukes-Jones
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Cornelia H de Moor
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Kelvin Cain
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Ania Wilczynska
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| | - Martin Bushell
- Medical Research Council (MRC), Toxicology Unit, University of Cambridge, Hodgkin Building, Leicester LE1 9HN, UK
| |
Collapse
|
32
|
Waldron JA, Raza F, Le Quesne J. eIF4A alleviates the translational repression mediated by classical secondary structures more than by G-quadruplexes. Nucleic Acids Res 2019; 46:3075-3087. [PMID: 29471358 PMCID: PMC5888628 DOI: 10.1093/nar/gky108] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 01/02/2023] Open
Abstract
Increased activity of the mRNA helicase eIF4A drives cellular malignancy by reprogramming cellular translation, and eIF4A activity is the direct or indirect target of many emerging cancer therapeutics. The enriched presence of (GGC)4 motifs, which have the potential to fold into two-layered G-quadruplexes, within the 5'UTRs of eIF4A-dependent mRNAs suggests that eIF4A is required for the unwinding of these structures within these eIF4A-controlled mRNAs. However, the existence of folded G-quadruplexes within cells remains controversial, and G-quadruplex folding is in direct competition with classical Watson-Crick based secondary structures. Using a combination of reverse transcription stalling assays and 7-deazaguanine incorporation experiments we find that (GGC)4 motifs preferentially form classical secondary structures rather than G-quadruplexes in full-length mRNAs. Furthermore, using translation assays with the eIF4A inhibitor hippuristanol, both in vitro and in cells, we find that eIF4A activity alleviates translational repression of mRNAs with 5'UTR classical secondary structures significantly more than those with folded G-quadruplexes. This was particularly evident in experiments using a G-quadruplex stabilizing ligand, where shifting the structural equilibrium in favour of G-quadruplex formation diminishes eIF4A-dependency. This suggests that enrichment of (GGC)4 motifs in the 5'UTRs of eIF4A-dependent mRNAs is due to the formation of stable hairpin structures rather than G-quadruplexes.
Collapse
Affiliation(s)
| | | | - John Le Quesne
- MRC Toxicology Unit, Leicester, UK.,Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
33
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
34
|
Howard CM, Bearss N, Subramaniyan B, Tilley A, Sridharan S, Villa N, Fraser CS, Raman D. The CXCR4-LASP1-eIF4F Axis Promotes Translation of Oncogenic Proteins in Triple-Negative Breast Cancer Cells. Front Oncol 2019; 9:284. [PMID: 31106142 PMCID: PMC6499106 DOI: 10.3389/fonc.2019.00284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) remains clinically challenging as effective targeted therapies are lacking. In addition, patient mortality mainly results from the metastasized lesions. CXCR4 has been identified to be one of the major chemokine receptors involved in breast cancer metastasis. Previously, our lab had identified LIM and SH3 Protein 1 (LASP1) to be a key mediator in CXCR4-driven invasion. To further investigate the role of LASP1 in this process, a proteomic screen was employed and identified a novel protein-protein interaction between LASP1 and components of eukaryotic initiation 4F complex (eIF4F). We hypothesized that activation of the CXCR4-LASP1-eIF4F axis may contribute to the preferential translation of oncogenic mRNAs leading to breast cancer progression and metastasis. To test this hypothesis, we first confirmed that the gene expression of CXCR4, LASP1, and eIF4A are upregulated in invasive breast cancer. Moreover, we demonstrate that LASP1 associated with eIF4A in a CXCL12-dependent manner via a proximity ligation assay. We then confirmed this finding, and the association of LASP1 with eIF4B via co-immunoprecipitation assays. Furthermore, we show that LASP1 can interact with eIF4A and eIF4B through a GST-pulldown approach. Activation of CXCR4 signaling increased the translation of oncoproteins downstream of eIF4A. Interestingly, genetic silencing of LASP1 interrupted the ability of eIF4A to translate oncogenic mRNAs into oncoproteins. This impaired ability of eIF4A was confirmed by a previously established 5′UTR luciferase reporter assay. Finally, lack of LASP1 sensitizes 231S cells to pharmacological inhibition of eIF4A by Rocaglamide A as evident through BIRC5 expression. Overall, our work identified the CXCR4-LASP1 axis to be a novel mediator in oncogenic protein translation. Thus, our axis of study represents a potential target for future TNBC therapies.
Collapse
Affiliation(s)
- Cory M Howard
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Nicole Bearss
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Boopathi Subramaniyan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Augustus Tilley
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Sangita Sridharan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Nancy Villa
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| |
Collapse
|
35
|
Sridharan S, Robeson M, Bastihalli-Tukaramrao D, Howard CM, Subramaniyan B, Tilley AMC, Tiwari AK, Raman D. Targeting of the Eukaryotic Translation Initiation Factor 4A Against Breast Cancer Stemness. Front Oncol 2019; 9:1311. [PMID: 31867270 PMCID: PMC6909344 DOI: 10.3389/fonc.2019.01311] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are intrinsically chemoresistant and capable of self-renewal. Following chemotherapy, patients can develop minimal residual disease due to BCSCs which can repopulate into a relapsed tumor. Therefore, it is imperative to co-target BCSCs along with the bulk tumor cells to achieve therapeutic success and prevent recurrence. So, it is vital to identify actionable molecular targets against both BCSCs and bulk tumor cells. Previous findings from our lab and others have demonstrated that inhibition of the emerging drug target eIF4A with Rocaglamide A (RocA) was efficacious against triple-negative breast cancer cells (TNBC). RocA specifically targets the pool of eIF4A bound to the oncogenic mRNAs that requires its helicase activity for their translation. This property enables specific targeting of tumor cells. The efficacy of RocA against BCSCs is unknown. In this study, we postulated that eIF4A could be a vulnerable node in BCSCs. In order to test this, we generated a paclitaxel-resistant TNBC cell line which demonstrated an elevated level of eIF4A along with increased levels of cancer stemness markers (ALDH activity and CD44), pluripotency transcription factors (SOX2, OCT4, and NANOG) and drug transporters (ABCB1, ABCG2, and ABCC1). Furthermore, genetic ablation of eIF4A resulted in reduced expression of ALDH1A1, pluripotency transcription factors and drug transporters. This pointed out that eIF4A is likely associated with selected set of proteins that are critical to BCSCs, and hence targeting eIF4A may eliminate BCSCs. Therefore, we isolated BCSCs from two TNBC cell lines: MDA-Bone-Un and SUM-159PT. Following RocA treatment, the self-renewal ability of the BCSCs was significantly reduced as determined by the efficiency of the formation of primary and secondary mammospheres. This was accompanied by a reduction in the levels of NANOG, OCT4, and drug transporters. Exposure to RocA also induced cell death of the BCSCs as evaluated by DRAQ7 and cell viability assays. RocA treatment induced apoptosis with increased levels of cleaved caspase-3. Overall, we identified that RocA is effective in targeting BCSCs, and eIF4A is an actionable molecular target in both BCSCs and bulk tumor cells. Therefore, anti-eIF4A inhibitors could potentially be combined synergistically with existing chemo-, radio- and/or immunotherapies.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Megan Robeson
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Diwakar Bastihalli-Tukaramrao
- Department of Pharmacology & Experimental Therapeutics, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Boopathi Subramaniyan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Augustus M. C. Tilley
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Amit K. Tiwari
- Department of Pharmacology & Experimental Therapeutics, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
- *Correspondence: Dayanidhi Raman
| |
Collapse
|
36
|
Yoon S, Rossi JJ. Aptamers: Uptake mechanisms and intracellular applications. Adv Drug Deliv Rev 2018; 134:22-35. [PMID: 29981799 PMCID: PMC7126894 DOI: 10.1016/j.addr.2018.07.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/06/2018] [Accepted: 07/04/2018] [Indexed: 01/10/2023]
Abstract
The structural flexibility and small size of aptamers enable precise recognition of cellular elements for imaging and therapeutic applications. The process by which aptamers are taken into cells depends on their targets but is typically clathrin-mediated endocytosis or macropinocytosis. After internalization, most aptamers are transported to endosomes, lysosomes, endoplasmic reticulum, Golgi apparatus, and occasionally mitochondria and autophagosomes. Intracellular aptamers, or “intramers,” have versatile functions ranging from intracellular RNA imaging, gene regulation, and therapeutics to allosteric modulation, which we discuss in this review. Immune responses to therapeutic aptamers and the effects of G-quadruplex structure on aptamer function are also discussed.
Collapse
|
37
|
Chen L, Miao Y, Liu M, Zeng Y, Gao Z, Peng D, Hu B, Li X, Zheng Y, Xue Y, Zuo Z, Xie Y, Ren J. Pan-Cancer Analysis Reveals the Functional Importance of Protein Lysine Modification in Cancer Development. Front Genet 2018; 9:254. [PMID: 30065750 PMCID: PMC6056651 DOI: 10.3389/fgene.2018.00254] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Large-scale tumor genome sequencing projects have revealed a complex landscape of genomic mutations in multiple cancer types. A major goal of these projects is to characterize somatic mutations and discover cancer drivers, thereby providing important clues to uncover diagnostic or therapeutic targets for clinical treatment. However, distinguishing only a few somatic mutations from the majority of passenger mutations is still a major challenge facing the biological community. Fortunately, combining other functional features with mutations to predict cancer driver genes is an effective approach to solve the above problem. Protein lysine modifications are an important functional feature that regulates the development of cancer. Therefore, in this work, we have systematically analyzed somatic mutations on seven protein lysine modifications and identified several important drivers that are responsible for tumorigenesis. From published literature, we first collected more than 100,000 lysine modification sites for analysis. Another 1 million non-synonymous single nucleotide variants (SNVs) were then downloaded from TCGA and mapped to our collected lysine modification sites. To identify driver proteins that significantly altered lysine modifications, we further developed a hierarchical Bayesian model and applied the Markov Chain Monte Carlo (MCMC) method for testing. Strikingly, the coding sequences of 473 proteins were found to carry a higher mutation rate in lysine modification sites compared to other background regions. Hypergeometric tests also revealed that these gene products were enriched in known cancer drivers. Functional analysis suggested that mutations within the lysine modification regions possessed higher evolutionary conservation and deleteriousness. Furthermore, pathway enrichment showed that mutations on lysine modification sites mainly affected cancer related processes, such as cell cycle and RNA transport. Moreover, clinical studies also suggested that the driver proteins were significantly associated with patient survival, implying an opportunity to use lysine modifications as molecular markers in cancer diagnosis or treatment. By searching within protein-protein interaction networks using a random walk with restart (RWR) algorithm, we further identified a series of potential treatment agents and therapeutic targets for cancer related to lysine modifications. Collectively, this study reveals the functional importance of lysine modifications in cancer development and may benefit the discovery of novel mechanisms for cancer treatment.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanyan Miao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mengni Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanru Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zijun Gao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Peng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bosu Hu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xu Li
- Spine Center, Department of Orthopaedics, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, China
| | - Yueyuan Zheng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Xue
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Connelly JA, Mody RJ, Wu YM, Robinson DR, Lonigro RJ, Vats P, Rabban E, Anderson B, Walkovich K. Identification of novel MECOM gene fusion and personalized therapeutic targets through integrative clinical sequencing in secondary acute myeloid leukemia in a patient with severe congenital neutropenia: a case report and literature review. Cold Spring Harb Mol Case Stud 2018; 4:a002204. [PMID: 29572239 PMCID: PMC5880254 DOI: 10.1101/mcs.a002204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/17/2018] [Indexed: 12/25/2022] Open
Abstract
Severe congenital neutropenia (SCN) is a rare hematologic disorder characterized by defective myelopoiesis and a high incidence of malignant transformation to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). SCN patients who develop MDS/AML have excessive toxicities to traditional chemotherapy, and safer therapies are needed to improve overall survival in this population. In this report, we outline the use of a prospective integrative clinical sequencing trial (PEDS-MIONCOSEQ) in a patient with SCN and AML to help identify oncogenic targets for less toxic agents. Integrative sequencing identified two somatic cis-mutations in the colony stimulating factor 3 receptor (CSF3R) gene, a p.T640N mutation in the transmembrane region and a p.Q768* truncation mutation in the cytoplasmic domain. A somatic mutation p.H105Y, in the runt homology domain (RHD) of runt-related transcription factor 1 (RUNX1), was also identified. In addition, sequencing discovered a unique in-frame EIF4A2-MECOM (MDS1 and ectopic viral integration site 1 complex) chromosomal translocation with high MECOM expression. His mutations in CSF3R served as potential targets for tyrosine kinase inhibition and therefore provided an avenue to avoid more harmful therapy. This study highlights the utility of integrative clinical sequencing in SCN patients who develop leukemia and outlines a strategy on how to approach these patients in a future clinical sequencing trial to improve historically poor outcomes. A thorough review of leukemia in SCN and the role of CSF3R mutations in oncologic therapy are provided to support a new strategy on how to approach MDS/AML in SCN.
Collapse
MESH Headings
- Adolescent
- Alleles
- Biomarkers
- Biopsy
- Bone Marrow/pathology
- Congenital Bone Marrow Failure Syndromes
- Gene Expression Profiling
- Genotype
- Humans
- In Situ Hybridization, Fluorescence
- Karyotype
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/therapy
- MDS1 and EVI1 Complex Locus Protein/genetics
- Male
- Neoplasms, Second Primary/diagnosis
- Neoplasms, Second Primary/etiology
- Neoplasms, Second Primary/therapy
- Neutropenia/complications
- Neutropenia/congenital
- Neutropenia/therapy
- Oncogene Proteins, Fusion/genetics
- Transcriptome
- Exome Sequencing
Collapse
Affiliation(s)
- James A Connelly
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6310, USA
| | - Rajen J Mody
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Robert J Lonigro
- Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Erica Rabban
- Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Bailey Anderson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Kelly Walkovich
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
39
|
Popławski P, Wiśniewski JR, Rijntjes E, Richards K, Rybicka B, Köhrle J, Piekiełko-Witkowska A. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system. PLoS One 2017; 12:e0190179. [PMID: 29272308 PMCID: PMC5741248 DOI: 10.1371/journal.pone.0190179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3’,5’-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3’-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The ‘downregulated’ group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression and changes in local availability of thyroid hormones might favor a shift from a differentiated to a more proliferation-prone state of cancer tissues and cell lines.
Collapse
Affiliation(s)
- Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Keith Richards
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
40
|
Identification of host DEAD-box RNA helicases that regulate cellular tropism of oncolytic Myxoma virus in human cancer cells. Sci Rep 2017; 7:15710. [PMID: 29146961 PMCID: PMC5691082 DOI: 10.1038/s41598-017-15941-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022] Open
Abstract
Myxoma virus (MYXV), a Leporipoxvirus, is being developed as an oncolytic virotherapeutic for the treatment of a variety of human cancers. MYXV tropism for human cancer cells is largely mediated by intracellular signaling networks that regulate viral replication or innate antiviral response pathways. Thus, MYXV is fully or partially permissive for the majority of human cancer cells that harbor defects in antiviral signaling, but a minority are nonpermissive because the virus infection aborts before its completion. To identify host factors relevant for MYXV tropism in human cancer cells, we performed a small interfering RNA (siRNA) library screen targeting the 58 human DEAD-box RNA helicases in two permissive human cancer cells (HeLa and A549), one semi-permissive (786-0), and one nonpermissive cell line (PANC-1). Five host RNA helicases (DDX3X, DDX5, DHX9, DHX37, DDX52) were inhibitory for optimal replication and thus classified as anti-viral, while three other cellular RNA helicases (DHX29, DHX35, RIG-I) were identified as pro-viral or pro-cellular because knockdown consistently reduced MYXV replication and/or required metabolic functions of permissive cancer cells. These findings suggest that replication of MYXV, and likely all poxviruses, is dramatically regulated positively and negatively by multiple host DEAD-box RNA helicases.
Collapse
|
41
|
Vikhreva PN, Kalinichenko SV, Korobko IV. Programmed cell death 4 mechanism of action: The model to be updated? Cell Cycle 2017; 16:1761-1764. [PMID: 28853972 DOI: 10.1080/15384101.2017.1371881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death 4 (Pdcd4) is frequently suppressed in tumors of various origins and its suppression correlates with tumor progression. Pdcd4 inhibits cap-dependent translation from mRNAs with highly structured 5'-regions through interaction with the eukaryotic translation initiation factor 4A (eIF4A) helicase and a target transcript. Decrease in Pdcd4 protein is believed to provide a relief of otherwise suppressed eIF4A-dependent translation of proteins facilitating tumor progression. However, it remains unknown if lowered Pdcd4 levels in cells suffices to cause a relief in translation inhibition through appearance of the Pdcd4-free translation-competent eIF4A protein, or more complex and selective mechanisms are involved. Here we showed that eIF4A1, the eIF4A isoform involved in translation, significantly over-represents Pdcd4 both in cancerous and normal cells. This observation excludes the possibility that cytoplasmic Pdcd4 can efficiently exert its translation suppression function owing to excess of eIF4A, with Pdcd4-free eIF4A being in excess over Pdcd4-bound translation-incompetent eIF4A, thus leaving translation from Pdcd4 mRNA targets unaffected. This contradiction is resumed in the proposed model, which supposes initial complexing between Pdcd4 and its target mRNAs in the nucleus, with subsequent transport of translation-incompetent, Pdcd4-bound target mRNAs into the cytoplasm. Noteworthy, loss of nuclear Pdcd4 in cancer cells was reported to correlate with tumor progression, which supports the proposed model of Pdcd4 functioning.
Collapse
Affiliation(s)
- Polina N Vikhreva
- a Laboratory of Molecular Oncogenetics , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Svetlana V Kalinichenko
- a Laboratory of Molecular Oncogenetics , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Igor V Korobko
- a Laboratory of Molecular Oncogenetics , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
42
|
Cai W, Xiong Chen Z, Rane G, Satendra Singh S, Choo Z, Wang C, Yuan Y, Zea Tan T, Arfuso F, Yap CT, Pongor LS, Yang H, Lee MB, Cher Goh B, Sethi G, Benoukraf T, Tergaonkar V, Prem Kumar A. Wanted DEAD/H or Alive: Helicases Winding Up in Cancers. J Natl Cancer Inst 2017; 109:2957323. [PMID: 28122908 DOI: 10.1093/jnci/djw278] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/08/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the most studied areas of human biology over the past century. Despite having attracted much attention, hype, and investments, the search to find a cure for cancer remains an uphill battle. Recent discoveries that challenged the central dogma of molecular biology not only further increase the complexity but also demonstrate how various types of noncoding RNAs such as microRNA and long noncoding RNA, as well as their related processes such as RNA editing, are important in regulating gene expression. Parallel to this aspect, an increasing number of reports have focused on a family of proteins known as DEAD/H-box helicases involved in RNA metabolism, regulation of long and short noncoding RNAs, and novel roles as "editing helicases" and their association with cancers. This review summarizes recent findings on the roles of RNA helicases in various cancers, which are broadly classified into adult solid tumors, childhood solid tumors, leukemia, and cancer stem cells. The potential small molecule inhibitors of helicases and their therapeutic value are also discussed. In addition, analyzing next-generation sequencing data obtained from public portals and reviewing existing literature, we provide new insights on the potential of DEAD/H-box helicases to act as pharmacological drug targets in cancers.
Collapse
Affiliation(s)
- Wanpei Cai
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Zhi Xiong Chen
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Grishma Rane
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Shikha Satendra Singh
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Zhang'e Choo
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Chao Wang
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Yi Yuan
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Tuan Zea Tan
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Frank Arfuso
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Celestial T Yap
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Lorinc S Pongor
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Henry Yang
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Martin B Lee
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Boon Cher Goh
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Gautam Sethi
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Touati Benoukraf
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Vinay Tergaonkar
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Alan Prem Kumar
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| |
Collapse
|
43
|
Rouleau S, Jodoin R, Garant JM, Perreault JP. RNA G-Quadruplexes as Key Motifs of the Transcriptome. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 170:1-20. [PMID: 28382477 DOI: 10.1007/10_2017_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G-Quadruplexes are non-canonical secondary structures that can be adopted under physiological conditions by guanine-rich DNA and RNA molecules. They have been reported to occur, and to perform multiple biological functions, in the genomes and transcriptomes of many species, including humans. This chapter focuses specifically on RNA G-quadruplexes and reviews the most recent discoveries in the field, as well as addresses the upcoming challenges researchers studying these structures face.
Collapse
Affiliation(s)
- Samuel Rouleau
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8
| | - Rachel Jodoin
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8
| | - Jean-Michel Garant
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8.
| |
Collapse
|