1
|
Royet C, Diot S, Onofre M, Lecki L, Pastore M, Reynes C, Lorcy F, Lacheretzszablewski V, Serre I, Morris MC. Multiplexed Profiling of CDK Kinase Activities in Tumor Biopsies with Fluorescent Peptide Biosensors. ACS Sens 2024; 9:2964-2978. [PMID: 38863434 DOI: 10.1021/acssensors.4c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Detection of disease biomarkers constitutes a major challenge for the development of personalized and predictive diagnostics as well as companion assays. Protein kinases (PKs) involved in the coordination of cell cycle progression and proliferation that are hyperactivated in human cancers constitute attractive pharmacological targets and relevant biomarkers. Although it is relatively straightforward to assess the relative abundance of PKs in a biological sample, there is not always a direct correlation with enzymatic activity, which is regulated by several posttranslational mechanisms. Studies of relative abundance therefore convey limited information, and the lack of selective, sensitive, and standardized tools together with the inherent complexity of biological samples makes it difficult to quantify PK activities in physio-pathological tissues. To address this challenge, we have developed a toolbox of fluorescent biosensors that report on CDK activities in a sensitive, selective, dose-dependent, and quantitative fashion, which we have implemented to profile CDK activity signatures in cancer cell lines and biopsies from human tumors. In this study, we report on a standardized and calibrated biosensing approach to quantify CDK1,2,4, and 6 activities simultaneously through a combination of four different biosensors in a panel of 40 lung adenocarcinoma and 40 follicular lymphoma samples. CDK activity profiling highlighted two major patterns which were further correlated with age, sex of patients, tumor size, grade, and genetic and immunohistochemical features of the biopsies. Multiplex CDKACT biosensing technology provides new and complementary information relative to current genetic and immunohistochemical characterization of tumor biopsies, which will be useful for diagnostic purposes, potentially guiding therapeutic decision. These fluorescent peptide biosensors offer promise for personalized diagnostics based on kinase activity profiling.
Collapse
Affiliation(s)
- Chloé Royet
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Sébastien Diot
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Mélanie Onofre
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Lennard Lecki
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Manuela Pastore
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Christelle Reynes
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Frederique Lorcy
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | | | - Isabelle Serre
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | - May C Morris
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
2
|
Vijayakumar S, DiGuiseppi JA, Dabestani PJ, Ryan WG, Quevedo RV, Li Y, Diers J, Tu S, Fleegel J, Nguyen C, Rhoda LM, Imami AS, Hamoud ARA, Lovas S, McCullumsmith RE, Zallocchi M, Zuo J. In silico transcriptome screens identify epidermal growth factor receptor inhibitors as therapeutics for noise-induced hearing loss. SCIENCE ADVANCES 2024; 10:eadk2299. [PMID: 38896614 PMCID: PMC11186505 DOI: 10.1126/sciadv.adk2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Noise-induced hearing loss (NIHL) is a common sensorineural hearing impairment that lacks U.S. Food and Drug Administration-approved drugs. To fill the gap in effective screening models, we used an in silico transcriptome-based drug screening approach, identifying 22 biological pathways and 64 potential small molecule treatments for NIHL. Two of these, afatinib and zorifertinib [epidermal growth factor receptor (EGFR) inhibitors], showed efficacy in zebrafish and mouse models. Further tests with EGFR knockout mice and EGF-morpholino zebrafish confirmed their protective role against NIHL. Molecular studies in mice highlighted EGFR's crucial involvement in NIHL and the protective effect of zorifertinib. When given orally, zorifertinib was found in the perilymph with favorable pharmacokinetics. In addition, zorifertinib combined with AZD5438 (a cyclin-dependent kinase 2 inhibitor) synergistically prevented NIHL in zebrafish. Our results underscore the potential for in silico transcriptome-based drug screening in diseases lacking efficient models and suggest EGFR inhibitors as potential treatments for NIHL, meriting clinical trials.
Collapse
Affiliation(s)
- Sarath Vijayakumar
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Joseph A. DiGuiseppi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Parinaz Jila Dabestani
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - William G. Ryan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
| | - Rene Vielman Quevedo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Yuju Li
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jack Diers
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Shu Tu
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jonathan Fleegel
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Cassidy Nguyen
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Lauren M. Rhoda
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Ali Sajid Imami
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
| | | | - Sándor Lovas
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Marisa Zallocchi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Ting Therapeutics, University of California San Diego, 9310 Athena Circle, San Diego, CA 92037, USA
| |
Collapse
|
3
|
Vijayakumar S, DiGuiseppi JA, Dabestani J, Ryan WG, Vielman Quevedo R, Li Y, Diers J, Tu S, Fleegel J, Nguyen C, Rhoda LM, Imami AS, Hamoud AAR, Lovas S, McCullumsmith R, Zallocchi M, Zuo J. In Silico Transcriptome-based Screens Identify Epidermal Growth Factor Receptor Inhibitors as Therapeutics for Noise-induced Hearing Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544128. [PMID: 37333346 PMCID: PMC10274759 DOI: 10.1101/2023.06.07.544128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Noise-Induced Hearing Loss (NIHL) represents a widespread disease for which no therapeutics have been approved by the Food and Drug Administration (FDA). Addressing the conspicuous void of efficacious in vitro or animal models for high throughput pharmacological screening, we utilized an in silico transcriptome-oriented drug screening strategy, unveiling 22 biological pathways and 64 promising small molecule candidates for NIHL protection. Afatinib and zorifertinib, both inhibitors of the Epidermal Growth Factor Receptor (EGFR), were validated for their protective efficacy against NIHL in experimental zebrafish and murine models. This protective effect was further confirmed with EGFR conditional knockout mice and EGF knockdown zebrafish, both demonstrating protection against NIHL. Molecular analysis using Western blot and kinome signaling arrays on adult mouse cochlear lysates unveiled the intricate involvement of several signaling pathways, with particular emphasis on EGFR and its downstream pathways being modulated by noise exposure and Zorifertinib treatment. Administered orally, Zorifertinib was successfully detected in the perilymph fluid of the inner ear in mice with favorable pharmacokinetic attributes. Zorifertinib, in conjunction with AZD5438 - a potent inhibitor of cyclin dependent kinase 2 - produced synergistic protection against NIHL in the zebrafish model. Collectively, our findings underscore the potential application of in silico transcriptome-based drug screening for diseases bereft of efficient screening models and posit EGFR inhibitors as promising therapeutic agents warranting clinical exploration for combatting NIHL. Highlights In silico transcriptome-based drug screens identify pathways and drugs against NIHL.EGFR signaling is activated by noise but reduced by zorifertinib in mouse cochleae.Afatinib, zorifertinib and EGFR knockout protect against NIHL in mice and zebrafish.Orally delivered zorifertinib has inner ear PK and synergizes with a CDK2 inhibitor.
Collapse
|
4
|
DePasquale EAK, Alganem K, Bentea E, Nawreen N, McGuire JL, Tomar T, Naji F, Hilhorst R, Meller J, McCullumsmith RE. KRSA: An R package and R Shiny web application for an end-to-end upstream kinase analysis of kinome array data. PLoS One 2021; 16:e0260440. [PMID: 34919543 PMCID: PMC8682895 DOI: 10.1371/journal.pone.0260440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022] Open
Abstract
Phosphorylation by serine-threonine and tyrosine kinases is critical for determining protein function. Array-based platforms for measuring reporter peptide signal levels allow for differential phosphorylation analysis between conditions for distinct active kinases. Peptide array technologies like the PamStation12 from PamGene allow for generating high-throughput, multi-dimensional, and complex functional proteomics data. As the adoption rate of such technologies increases, there is an imperative need for software tools that streamline the process of analyzing such data. We present Kinome Random Sampling Analyzer (KRSA), an R package and R Shiny web-application for analyzing kinome array data to help users better understand the patterns of functional proteomics in complex biological systems. KRSA is an All-In-One tool that reads, formats, fits models, analyzes, and visualizes PamStation12 kinome data. While the underlying algorithm has been experimentally validated in previous publications, we demonstrate KRSA workflow on dorsolateral prefrontal cortex (DLPFC) in male (n = 3) and female (n = 3) subjects to identify differential phosphorylation signatures and upstream kinase activity. Kinase activity differences between males and females were compared to a previously published kinome dataset (11 female and 7 male subjects) which showed similar global phosphorylation signals patterns.
Collapse
Affiliation(s)
- Erica A. K. DePasquale
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Boston, Massachusetts, United States of America
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- * E-mail:
| | - Eduard Bentea
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nawshaba Nawreen
- Department of Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jennifer L. McGuire
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Tushar Tomar
- PamGene International B.V., s’-Hertogenbosch, The Netherlands
| | - Faris Naji
- Tercen Data Analytics Ltd, Co Waterford, Ireland
| | - Riet Hilhorst
- PamGene International B.V., s’-Hertogenbosch, The Netherlands
| | - Jaroslaw Meller
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Electrical Engineering and Computing Systems, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- Neurosciences institute, ProMedica, Toledo, Ohio, United States of America
| |
Collapse
|
5
|
Denomy C, Lazarou C, Hogan D, Facciuolo A, Scruten E, Kusalik A, Napper S. PIIKA 2.5: Enhanced quality control of peptide microarrays for kinome analysis. PLoS One 2021; 16:e0257232. [PMID: 34506584 PMCID: PMC8432839 DOI: 10.1371/journal.pone.0257232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022] Open
Abstract
Peptide microarrays consisting of defined phosphorylation target sites are an effective approach for high throughput analysis of cellular kinase (kinome) activity. Kinome peptide arrays are highly customizable and do not require species-specific reagents to measure kinase activity, making them amenable for kinome analysis in any species. Our group developed software, Platform for Integrated, Intelligent Kinome Analysis (PIIKA), to enable more effective extraction of meaningful biological information from kinome peptide array data. A subsequent version, PIIKA2, unveiled new statistical tools and data visualization options. Here we introduce PIIKA 2.5 to provide two essential quality control metrics and a new background correction technique to increase the accuracy and consistency of kinome results. The first metric alerts users to improper spot size and informs them of the need to perform manual resizing to enhance the quality of the raw intensity data. The second metric uses inter-array comparisons to identify outlier arrays that sometimes emerge as a consequence of technical issues. In addition, a new background correction method, background scaling, can sharply reduce spatial biases within a single array in comparison to background subtraction alone. Collectively, the modifications of PIIKA 2.5 enable identification and correction of technical issues inherent to the technology and better facilitate the extraction of meaningful biological information. We show that these metrics demonstrably enhance kinome analysis by identifying low quality data and reducing batch effects, and ultimately improve clustering of treatment groups and enhance reproducibility. The web-based and stand-alone versions of PIIKA 2.5 are freely accessible at via http://saphire.usask.ca.
Collapse
Affiliation(s)
- Connor Denomy
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| | - Conor Lazarou
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| | - Antonio Facciuolo
- Vaccine and Infectious Disease Organization (VIDO), Saskatoon, Canada
| | - Erin Scruten
- Vaccine and Infectious Disease Organization (VIDO), Saskatoon, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
- * E-mail: (AK); (SN)
| | - Scott Napper
- Vaccine and Infectious Disease Organization (VIDO), Saskatoon, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Canada
- * E-mail: (AK); (SN)
| |
Collapse
|
6
|
Metal dependent protein phosphatase PPM family in cardiac health and diseases. Cell Signal 2021; 85:110061. [PMID: 34091011 PMCID: PMC9107372 DOI: 10.1016/j.cellsig.2021.110061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022]
Abstract
Protein phosphorylation and dephosphorylation is central to signal transduction in nearly every aspect of cellular function, including cardiovascular regulation and diseases. While protein kinases are often regarded as the molecular drivers in cellular signaling with high specificity and tight regulation, dephosphorylation mediated by protein phosphatases is also gaining increasing appreciation as an important part of the signal transduction network essential for the robustness, specificity and homeostasis of cell signaling. Metal dependent protein phosphatases (PPM, also known as protein phosphatases type 2C, PP2C) belong to a highly conserved family of protein phosphatases with unique biochemical and molecular features. Accumulating evidence also indicates important and specific functions of individual PPM isoform in signaling and cellular processes, including proliferation, senescence, apoptosis and metabolism. At the physiological level, abnormal PPM expression and activity have been implicated in major human diseases, including cancer, neurological and cardiovascular disorders. Finally, inhibitors for some of the PPM members have been developed as a potential therapeutic strategy for human diseases. In this review, we will focus on the background information about the biochemical and molecular features of major PPM family members, with emphasis on their demonstrated or potential roles in cardiac pathophysiology. The current challenge and potential directions for future investigations will also be highlighted.
Collapse
|
7
|
Declerck K, Novo CP, Grielens L, Van Camp G, Suter A, Vanden Berghe W. Echinacea purpurea (L.) Moench treatment of monocytes promotes tonic interferon signaling, increased innate immunity gene expression and DNA repeat hypermethylated silencing of endogenous retroviral sequences. BMC Complement Med Ther 2021; 21:141. [PMID: 33980308 PMCID: PMC8114977 DOI: 10.1186/s12906-021-03310-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Herbal remedies of Echinacea purpurea tinctures are widely used today to reduce common cold respiratory tract infections. Methods Transcriptome, epigenome and kinome profiling allowed a systems biology level characterisation of genomewide immunomodulatory effects of a standardized Echinacea purpurea (L.) Moench extract in THP1 monocytes. Results Gene expression and DNA methylation analysis revealed that Echinaforce® treatment triggers antiviral innate immunity pathways, involving tonic IFN signaling, activation of pattern recognition receptors, chemotaxis and immunometabolism. Furthermore, phosphopeptide based kinome activity profiling and pharmacological inhibitor experiments with filgotinib confirm a key role for Janus Kinase (JAK)-1 dependent gene expression changes in innate immune signaling. Finally, Echinaforce® treatment induces DNA hypermethylation at intergenic CpG, long/short interspersed nuclear DNA repeat elements (LINE, SINE) or long termininal DNA repeats (LTR). This changes transcription of flanking endogenous retroviral sequences (HERVs), involved in an evolutionary conserved (epi) genomic protective response against viral infections. Conclusions Altogether, our results suggest that Echinaforce® phytochemicals strengthen antiviral innate immunity through tonic IFN regulation of pattern recognition and chemokine gene expression and DNA repeat hypermethylated silencing of HERVs in monocytes. These results suggest that immunomodulation by Echinaforce® treatment holds promise to reduce symptoms and duration of infection episodes of common cold corona viruses (CoV), Severe Acute Respiratory Syndrome (SARS)-CoV, and new occurring strains such as SARS-CoV-2, with strongly impaired interferon (IFN) response and weak innate antiviral defense. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03310-5.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Claudina Perez Novo
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Lisa Grielens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, Department of Biomedical Sciences, University of Antwerp (UA) and University Hospital Antwerp (UZA), Antwerp, Belgium
| | | | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium.
| |
Collapse
|
8
|
Bekkar A, Nasrallah A, Guex N, Fajas L, Xenarios I, Lopez-Mejia IC. PamgeneAnalyzeR: open and reproducible pipeline for kinase profiling. Bioinformatics 2021; 36:5117-5119. [PMID: 31922550 PMCID: PMC7755406 DOI: 10.1093/bioinformatics/btz858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/09/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022] Open
Abstract
Protein phosphorylation––catalyzed by protein kinases–is the most common post-translational modification. It increases the functional diversity of the proteome and influences various aspects of normal physiology and can be altered in disease states. High throughput profiling of kinases is becoming an essential experimental approach to investigate their activity and this can be achieved using technologies such as PamChip® arrays provided by PamGene for kinase activity measurement. Here, we present ‘pamgeneAnalyzeR’, an R package developed as an alternative to the manual steps necessary to extract the data from PamChip® peptide microarrays images in a reproducible and robust manner. The extracted data can be directly used for downstream analysis. Availability and implementation PamgeneAnalyzeR is implemented in R and can be obtained from https://github.com/amelbek/pamgeneAnalyzeR.
Collapse
Affiliation(s)
- Amel Bekkar
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Anita Nasrallah
- Center for Integrative Genomics, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Nicolas Guex
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Ioannis Xenarios
- Center for Integrative Genomics, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Isabel C Lopez-Mejia
- Center for Integrative Genomics, University of Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
9
|
Photoswitchable Azo- and Diazocine-Functionalized Derivatives of the VEGFR-2 Inhibitor Axitinib. Int J Mol Sci 2020; 21:ijms21238961. [PMID: 33255816 PMCID: PMC7734574 DOI: 10.3390/ijms21238961] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022] Open
Abstract
In this study, we aimed at the application of the concept of photopharmacology to the approved vascular endothelial growth factor receptor (VEGFR)-2 kinase inhibitor axitinib. In a previous study, we found out that the photoisomerization of axitinib’s stilbene-like double bond is unidirectional in aqueous solution due to a competing irreversible [2+2]-cycloaddition. Therefore, we next set out to azologize axitinib by means of incorporating azobenzenes as well as diazocine moieties as photoresponsive elements. Conceptually, diazocines (bridged azobenzenes) show favorable photoswitching properties compared to standard azobenzenes because the thermodynamically stable Z-isomer usually is bioinactive, and back isomerization from the bioactive E-isomer occurs thermally. Here, we report on the development of different sulfur–diazocines and carbon–diazocines attached to the axitinib pharmacophore that allow switching the VEGFR-2 activity reversibly. For the best sulfur–diazocine, we could verify in a VEGFR-2 kinase assay that the Z-isomer is biologically inactive (IC50 >> 10,000 nM), while significant VEGFR-2 inhibition can be observed after irradiation with blue light (405 nm), resulting in an IC50 value of 214 nM. In summary, we could successfully develop reversibly photoswitchable kinase inhibitors that exhibit more than 40-fold differences in biological activities upon irradiation. Moreover, we demonstrate the potential advantage of diazocine photoswitches over standard azobenzenes.
Collapse
|
10
|
Ferreira MR, Milani R, Rangel EC, Peppelenbosch M, Zambuzzi W. OsteoBLAST: Computational Routine of Global Molecular Analysis Applied to Biomaterials Development. Front Bioeng Biotechnol 2020; 8:565901. [PMID: 33117780 PMCID: PMC7578266 DOI: 10.3389/fbioe.2020.565901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
For bone purposes, surface modifications are a common trend in biomaterials research aiming to reduce the time necessary for osteointegration, culminating in faster recovery of patients. In this scenario, analysis of intracellular signaling pathways have emerged as an important and reliable strategy to predict biological responses from in vitro approaches. We have combined global analysis of intracellular protein phosphorylation, systems biology and bioinformatics into an early biomaterial analysis routine called OsteoBLAST. We employed the routine as follows: the PamChip tyrosine kinase assay was applied to mesenchymal stem cells grown on three distinct titanium surfaces: machined, dual acid-etched and nanoHA. Then, OsteoBLAST was able to identify the most reliable spots to further obtain the differential kinome profile and finally to allow a comparison among the different surfaces. Thereafter, NetworKIN, STRING, and Cytoscape were used to build and analyze a supramolecular protein-protein interaction network, and DAVID tools identified biological signatures in the differential kinome for each surface.
Collapse
Affiliation(s)
- Marcel Rodrigues Ferreira
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Renato Milani
- Bioquímica e Biologia Tecidual, Biology Institute, Universidade de Campinas (UNICAMP), São Paulo, Brazil
| | - Elidiane C Rangel
- Institute of Science and Technology, São Paulo State University (UNESP), São Paulo, Brazil
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willian Zambuzzi
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
11
|
Borgmann-Winter KE, Wang K, Bandyopadhyay S, Torshizi AD, Blair IA, Hahn CG. The proteome and its dynamics: A missing piece for integrative multi-omics in schizophrenia. Schizophr Res 2020; 217:148-161. [PMID: 31416743 PMCID: PMC7500806 DOI: 10.1016/j.schres.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023]
Abstract
The complex and heterogeneous pathophysiology of schizophrenia can be deconstructed by integration of large-scale datasets encompassing genes through behavioral phenotypes. Genome-wide datasets are now available for genetic, epigenetic and transcriptomic variations in schizophrenia, which are then analyzed by newly devised systems biology algorithms. A missing piece, however, is the inclusion of information on the proteome and its dynamics in schizophrenia. Proteomics has lagged behind omics of the genome, transcriptome and epigenome since analytic platforms were relatively less robust for proteins. There has been remarkable progress, however, in the instrumentation of liquid chromatography (LC) and mass spectrometry (MS) (LCMS), experimental paradigms and bioinformatics of the proteome. Here, we present a summary of methodological innovations of recent years in MS based proteomics and the power of new generation proteomics, review proteomics studies that have been conducted in schizophrenia to date, and propose how such data can be analyzed and integrated with other omics results. The function of a protein is determined by multiple molecular properties, i.e., subcellular localization, posttranslational modification (PTMs) and protein-protein interactions (PPIs). Incorporation of these properties poses additional challenges in proteomics and their integration with other omics; yet is a critical next step to close the loop of multi-omics integration. In sum, the recent advent of high-throughput proteome characterization technologies and novel mathematical approaches enable us to incorporate functional properties of the proteome to offer a comprehensive multi-omics based understanding of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Karin E Borgmann-Winter
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America; Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Sabyasachi Bandyopadhyay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America
| | - Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America.
| |
Collapse
|
12
|
Urbano PCM, He X, van Heeswijk B, Filho OPS, Tijssen H, Smeets RL, Joosten I, Koenen HJPM. TNFα-Signaling Modulates the Kinase Activity of Human Effector Treg and Regulates IL-17A Expression. Front Immunol 2020; 10:3047. [PMID: 32038615 PMCID: PMC6986271 DOI: 10.3389/fimmu.2019.03047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Maintenance of regulatory T cells CD4+CD25highFOXP3+ (Treg) stability is vital for proper Treg function and controlling the immune equilibrium. Treg cells are heterogeneous and can reveal plasticity, exemplified by their potential to express IL-17A. TNFα-TNFR2 signaling controls IL-17A expression in conventional T cells via the anti-inflammatory ubiquitin-editing and kinase activity regulating enzyme TNFAIP3/A20 (tumor necrosis factor-alpha-induced protein 3). To obtain a molecular understanding of TNFα signaling on IL-17 expression in the human effector (effTreg, CD25highCD45RA−) Treg subset, we here studied the kinome activity regulation by TNFα signaling. Using FACS-sorted naïve (naïveTreg, CD25highCD45RA+) and effTreg subsets, we demonstrated a reciprocal relationship between TNFα and IL-17A expression; effTreg (TNFαlow/IL-17Ahigh) and naïveTreg (TNFαhigh/IL-17Alow). In effTreg, TNFα-TNFR2 signaling prevented IL-17A expression, whereas inhibition of TNFα signaling by clinically applied anti-TNF antibodies led to increased IL-17A expression. Inhibition of TNFα signaling led to reduced TNFAIP3 expression, which, by using siRNA inhibition of TNFAIP3, appeared causally linked to increased IL-17A expression in effTreg. Kinome activity screening of CD3/CD28-activated effTreg revealed that anti-TNF-mediated neutralization led to increased kinase activity. STRING association analysis revealed that the TNF suppression effTreg kinase activity network was strongly associated with kinases involved in TCR, JAK, MAPK, and PKC pathway signaling. Small-molecule-based inhibition of TCR and JAK pathways prevented the IL-17 expression in effTreg. Together, these findings stress the importance of TNF-TNFR2 in regulating the kinase architecture of antigen-activated effTreg and controlling IL-17 expression of the human Treg. These findings might be relevant for optimizing anti-TNF-based therapy and may aid in preventing Treg plasticity in case of Treg-based cell therapy.
Collapse
Affiliation(s)
- Paulo C M Urbano
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xuehui He
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bennie van Heeswijk
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Omar P S Filho
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Henk Tijssen
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ruben L Smeets
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irma Joosten
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J P M Koenen
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
13
|
McQuilling JP, Burnette M, Kimmerling KA, Kammer M, Mowry KC. A mechanistic evaluation of the angiogenic properties of a dehydrated amnion chorion membrane in vitro and in vivo. Wound Repair Regen 2019; 27:609-621. [PMID: 31425636 PMCID: PMC6900065 DOI: 10.1111/wrr.12757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/10/2019] [Indexed: 12/20/2022]
Abstract
Angiogenesis is essential for the successful repair of tissues; however, in many chronic conditions, angiogenesis is inhibited. Placental tissues have been shown to illicit an angiogenic response both in vitro and in vivo, and the angiogenic properties of these tissues likely contribute to observed clinical outcomes. Although there is some work describing the angiogenic effects of these tissues, comparatively little has been done to determine the possible mechanisms responsible for this effect. The purpose of this study was to conduct a thorough evaluation of a commercially available dehydrated amnion chorion membrane to better understand how these tissues may promote angiogenesis. The proteomic content of this tissue was evaluated using a high throughput proteomic microarray, and then the effects of these grafts were evaluated in vivo using subcutaneous gelfoam sponge implants containing conditioned media (CM) from the graft. Human microvascular endothelial cells were then used to determine how released factors effect migration, proliferation, gene expression, and protein production in vitro. Finally, to elucidate potential signaling‐pathways through which tissue‐derived factors act to induce pro‐angiogenetic phenotypes in endothelial cells in vitro, we performed a global analysis of both serine/threonine and tyrosine kinase activity. Kinomic and proteomic data were then combined to generate protein–protein interaction networks that enabled the identification of multiple growth factors and cytokines with both pro‐ and anti‐angiogenetic properties. In vivo, the addition of CM resulted in increased CD31 and αSMA staining and increases in pro‐angiogenic gene expression. In vitro, CM resulted in significant increases in endothelial proliferation, migration, and the expression of granulocyte‐macrophage colony‐stimulating factor, hepatocyte growth factor, and transforming growth factor beta‐3. Integrated kinomic analysis implicated ERK1/2 signaling as the primary pathway activated following culture of endothelial cells with dehydrated amnion/chorion membrane (dACM) CM. In conclusion, dACM grafts triggered pro‐angiogenic responses both in vitro and in vivo that are likely at least partially mediated by ERK1/2 signaling.
Collapse
Affiliation(s)
- John P McQuilling
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - Miranda Burnette
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - Kelly A Kimmerling
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - MaryRose Kammer
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - Katie C Mowry
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| |
Collapse
|
14
|
Romano D. Relevance of neuroendocrine tumours models assessed by kinomic profiling. ANNALES D'ENDOCRINOLOGIE 2019; 80:144-148. [PMID: 31054767 DOI: 10.1016/j.ando.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although there is evidence of a significant rise of neuroendocrine tumours (NETs) incidence, current treatments are largely insufficient due to somewhat poor knowledge of these tumours. Despite many efforts achieved to expose driver oncogene mutations in NETs, the genetic landscape of NETs is characterized by relatively few mutations and chromosomal aberrations per tumour compared with other tumour types. In addition, NETs display few actionable mutations providing compelling rationale for targeted therapies. Recent works aiming at characterizing currently used NETs in vitro models at the genomic level raised concerns on their reliability as bona fide tools to study NETs biology. However, the lack of actionable mutation in NETs implies that sole use of genomic is not sufficient to describe these models and establish appropriate therapeutic strategies. Several kinases and kinase-involving signalling pathways have been demonstrated as abnormally regulated in NETs. Yet, kinases have only been investigated regardless of their involvement in large intracellular signalling networks. In order to assess the validity of in vitro NETs models to study NETs biology, "next-generation" high throughput functional technologies based on "kinome-wide activity" will demonstrate the similarities between signalling pathways in NETs models and patients' samples. These approaches will significantly assist in identifying actionable alterations in NETs signalling pathways and guide patient stratification into early-phase clinical trials based on kinase inhibition targeted therapies.
Collapse
Affiliation(s)
- David Romano
- Marseille Medical Genetics, MMG, U1251 Inserm, Aix-Marseille université, Marseille, France.
| |
Collapse
|
15
|
Faria AVDS, Akyala AI, Parikh K, Brüggemann LW, Spek CA, Cao W, Bruno MJ, Bijlsma MF, Fuhler GM, Peppelenbosch MP. Smoothened-dependent and -independent pathways in mammalian noncanonical Hedgehog signaling. J Biol Chem 2019; 294:9787-9798. [PMID: 30992365 DOI: 10.1074/jbc.ra119.007956] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/10/2019] [Indexed: 12/16/2022] Open
Abstract
Hedgehog proteins are pivotal morphogens acting through a canonical pathway involving first activation of ligand binding to Patched followed by alleviation of Smoothened receptor inhibition, leading to activation of Gli transcription factors. Noncanonical Hedgehog signaling remains poorly characterized but is thought to be mainly dependent on Smoothened. However, Smoothened inhibitors have yielded only partial success in combating Hedgehog signal transduction-dependent cancer, suggesting that noncanonical Smoothened-independent pathways also are clinically relevant. Moreover, several Smoothened-dependent effects (e.g. neurite projection) do not require transcriptional activation, further suggesting biological importance of noncanonical Smoothened-dependent pathways. We comprehensively characterized the cellular kinome in Hedgehog-challenged murine WT and Smoothened-/- fibroblasts as well as Smoothened agonist-stimulated cells. A peptide assay-based kinome analysis (in which cell lysates are used to phosphorylate specific kinase substrates), along with endocytosis, Lucifer Yellow-based, and immunoblotting assays, identified an elaborate signaling network of both Smoothened-dependent and -independent pathways that mediates actin reorganization through Src-like kinases, activates various proinflammatory signaling cascades, and concomitantly stimulates Wnt and Notch signaling while suppressing bone morphogenetic protein (BMP) signaling. The contribution of noncanonical Smoothened-independent signaling to the overall effects of Hedgehog on cellular physiology appears to be much larger than previously envisioned and may explain the transcriptionally independent effects of Hedgehog signaling on cytoskeleton. The observation that Patched-dependent, Smoothened-independent, noncanonical Hedgehog signaling increases Wnt/Notch signaling provides a possible explanation for the failure of Smoothened antagonists in combating Hedgehog-dependent but Smoothened inhibitor-resistant cancer. Our findings suggest that inhibiting Hedgehog-Patched interaction could result in more effective therapies as compared with conventional Smoothened-directed therapies.
Collapse
Affiliation(s)
- Alessandra V de S Faria
- From the Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands.,the Department of Biochemistry and Tissue Biology, Biology Institute, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Adamu Ishaku Akyala
- From the Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands.,the Department of Microbiology, Faculty of Natural and Applied Sciences, Nasarawa State University, Keffi, Nasarawa State, Nigeria
| | - Kaushal Parikh
- the Department of Cell Biology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands, and
| | - Lois W Brüggemann
- the Center for Experimental and Molecular Medicine, Academic Medical Center, Room H2-257, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - C Arnold Spek
- the Center for Experimental and Molecular Medicine, Academic Medical Center, Room H2-257, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Wanlu Cao
- From the Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands
| | - Marco J Bruno
- From the Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands
| | - Maarten F Bijlsma
- the Center for Experimental and Molecular Medicine, Academic Medical Center, Room H2-257, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Gwenny M Fuhler
- From the Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- From the Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands, .,the Department of Cell Biology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands, and
| |
Collapse
|
16
|
Baroncelli M, Fuhler GM, van de Peppel J, Zambuzzi WF, van Leeuwen JP, van der Eerden BCJ, Peppelenbosch MP. Human mesenchymal stromal cells in adhesion to cell-derived extracellular matrix and titanium: Comparative kinome profile analysis. J Cell Physiol 2019; 234:2984-2996. [PMID: 30058720 PMCID: PMC6585805 DOI: 10.1002/jcp.27116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/02/2018] [Indexed: 12/28/2022]
Abstract
The extracellular matrix (ECM) physically supports cells and influences stem cell behaviour, modulating kinase-mediated signalling cascades. Cell-derived ECMs have emerged in bone regeneration as they reproduce physiological tissue-architecture and ameliorate mesenchymal stromal cell (MSC) properties. Titanium scaffolds show good mechanical properties, facilitate cell adhesion, and have been routinely used for bone tissue engineering (BTE). We analyzed the kinomic signature of human MSCs in adhesion to an osteopromotive osteoblast-derived ECM, and compared it to MSCs on titanium. PamChip kinase-array analysis revealed 63 phosphorylated peptides on ECM and 59 on titanium, with MSCs on ECM exhibiting significantly higher kinase activity than on titanium. MSCs on the two substrates showed overlapping kinome profiles, with activation of similar signalling pathways (FAK, ERK, and PI3K signalling). Inhibition of PI3K signalling in cells significantly reduced adhesion to ECM and increased the number of nonadherent cells on both substrates. In summary, this study comprehensively characterized the kinase activity in MSCs on cell-derived ECM and titanium, highlighting the role of PI3K signalling in kinomic changes regulating osteoblast viability and adhesion. Kinome profile analysis represents a powerful tool to select pathways to better understand cell behaviour. Osteoblast-derived ECM could be further investigated as titanium scaffold-coating to improve BTE.
Collapse
Affiliation(s)
- Marta Baroncelli
- Department of Internal Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Willian F. Zambuzzi
- Laboratorio de Bioensaios e Dinâmica Celular, Departamento de Quimica e BioquimicaInstituto de Biociências, Universidade Estadual Paulista‐UNESPSão PauloBrazil
| | - Johannes P. van Leeuwen
- Department of Internal Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Bram C. J. van der Eerden
- Department of Internal Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
17
|
Pinto SM, Subbannayya Y, Prasad TSK. Functional Proteomic Analysis to Characterize Signaling Crosstalk. Methods Mol Biol 2019; 1871:197-224. [PMID: 30276742 DOI: 10.1007/978-1-4939-8814-3_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The biological activities of a cell are determined by its response to external stimuli. The signals are transduced from either intracellular or extracellular milieu through networks of multi-protein complexes and post-translational modifications of proteins (PTMs). Most PTMs including phosphorylation, acetylation, ubiquitination, and SUMOylation, among others, modulate activities of proteins and regulate biological processes such as proliferation, differentiation, as well as host pathogen interaction. Conventionally, reverse genetics analysis and single molecule-based studies were employed to identify and characterize the function of PTMs and enzyme-substrate networks regulated by them. With the advent of high-throughput technologies, it is now possible to identify and quantify thousands of PTM sites in a single experiment. Here, we discuss recent advances in enrichment strategies of various PTMs. We also describe a method for the identification and relative quantitation of proteins using a tandem mass tag labeling approach combined with serial enrichment of phosphorylation, acetylation and succinylation using antibody enrichment strategy.
Collapse
Affiliation(s)
- Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.
| |
Collapse
|
18
|
Dussaq AM, Kennell T, Eustace NJ, Anderson JC, Almeida JS, Willey CD. Kinomics toolbox-A web platform for analysis and viewing of kinomic peptide array data. PLoS One 2018; 13:e0202139. [PMID: 30130366 PMCID: PMC6103510 DOI: 10.1371/journal.pone.0202139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Kinomics is an emerging field of science that involves the study of global kinase activity. As kinases are essential players in virtually all cellular activities, kinomic testing can directly examine protein function, distinguishing kinomics from more remote, upstream components of the central dogma, such as genomics and transcriptomics. While there exist several different approaches for kinomic research, peptide microarrays are the most widely used and involve kinase activity assessment through measurement of phosphorylation of peptide substrates on the array. Unfortunately, bioinformatic tools for analyzing kinomic data are quite limited necessitating the development of accessible open access software in order to facilitate standardization and dissemination of kinomic data for scientific use. Here, we examine and present tools for data analysis for the popular PamChip® (PamGene International) kinomic peptide microarray. As a result, we propose (1) a procedural optimization of kinetic curve data capture, (2) new methods for background normalization, (3) guidelines for the detection of outliers during parameterization, and (4) a standardized data model to store array data at various analytical points. In order to utilize the new data model, we developed a series of tools to implement the new methods and to visualize the various data models. In the interest of accessibility, we developed this new toolbox as a series of JavaScript procedures that can be utilized as either server side resources (easily packaged as web services) or as client side scripts (web applications running in the browser). The aggregation of these tools within a Kinomics Toolbox provides an extensible web based analytic platform that researchers can engage directly and web programmers can extend. As a proof of concept, we developed three analytical tools, a technical reproducibility visualizer, an ANOVA based detector of differentially phosphorylated peptides, and a heatmap display with hierarchical clustering.
Collapse
Affiliation(s)
- Alex M. Dussaq
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timothy Kennell
- Informatics Institute, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nicholas J. Eustace
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joshua C. Anderson
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jonas S. Almeida
- Department of Biomedical Informatics, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Christopher D. Willey
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
19
|
Adam K, Hunter T. Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. J Transl Med 2018; 98:233-247. [PMID: 29058706 PMCID: PMC5815933 DOI: 10.1038/labinvest.2017.118] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation is the most common type of post-translational modification in eukaryotes. The phosphoproteome is defined as the complete set of experimentally detectable phosphorylation sites present in a cell's proteome under various conditions. However, we are still far from identifying all the phosphorylation sites in a cell mainly due to the lack of information about phosphorylation events involving residues other than Ser, Thr and Tyr. Four types of phosphate-protein linkage exist and these generate nine different phosphoresidues-pSer, pThr, pTyr, pHis, pLys, pArg, pAsp, pGlu and pCys. Most of the effort in studying protein phosphorylation has been focused on Ser, Thr and Tyr phosphorylation. The recent development of 1- and 3-pHis monoclonal antibodies promises to increase our understanding of His phosphorylation and the kinases and phosphatases involved. Several His kinases are well defined in prokaryotes, especially those involved in two-component system (TCS) signaling. However, in higher eukaryotes, NM23, a protein originally characterized as a nucleoside diphosphate kinase, is the only characterized protein-histidine kinase. This ubiquitous and conserved His kinase autophosphorylates its active site His, and transfers this phosphate either onto a nucleoside diphosphate or onto a protein His residue. Studies of NM23 protein targets using newly developed anti-pHis antibodies will surely help illuminate the elusive His phosphorylation-based signaling pathways. This review discusses the role that the NM23/NME/NDPK phosphotransferase has, how the addition of the pHis phosphoproteome will expand the phosphoproteome and make His phosphorylation part of the global phosphorylation world. It also summarizes why our understanding of phosphorylation is still largely restricted to the acid stable phosphoproteome, and highlights the study of NM23 histidine kinase as an entrée into the world of histidine phosphorylation.
Collapse
Affiliation(s)
- Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
20
|
Wilson LJ, Linley A, Hammond DE, Hood FE, Coulson JM, MacEwan DJ, Ross SJ, Slupsky JR, Smith PD, Eyers PA, Prior IA. New Perspectives, Opportunities, and Challenges in Exploring the Human Protein Kinome. Cancer Res 2017; 78:15-29. [DOI: 10.1158/0008-5472.can-17-2291] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/22/2017] [Accepted: 10/31/2017] [Indexed: 11/16/2022]
|