1
|
Qiu Y, Yu W, Zhang X, Zhang M, Ni Y, Lai S, Wu Q. Upregulation of OGT-mediated EZH2 O-GlcNAcylation Promotes Human Umbilical Vein Endothelial Cell Proliferation, Invasion, Migration, and Tube Formation in Gestational Diabetes Mellitus. Cell Biochem Biophys 2025:10.1007/s12013-024-01655-5. [PMID: 39751742 DOI: 10.1007/s12013-024-01655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
O-linked N-acetylglucosamine transferase (OGT)-catalyzed O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) is closely associated with diabetes progression. This study aims to investigate the mechanism of OGT in regulating endothelial dysfunction in gestational diabetes mellitus (GDM). Expressions of OGT, O-linked N-acetylglucosamine (O-GlcNAc), enhancer of zeste homolog 2 (EZH2), and HEK27me3 in human umbilical vein endothelial cells (HUVECs) and GDM-derived HUVECs (GDM-HUVECs) were assessed by western blot. RT-qPCR and western blot assays were used to test the OGT overexpression and EZH2 silencing levels. CCK-8, EdU, wound healing, and transwell invasion assays were used to analyze the cell proliferative, migratory, and invasive abilities. Tube formation assay was performed to evaluate angiogenesis ability of cells. Western blot assay was performed to estimate vascular endothelial growth factor (VEGF) and p-VEGFR2 levels in cells. The binding of O-GlcNAc and EZH2 after OGT overexpression was measured by Co-IP assay. The results showed that OGT, O-GlcNAc, EZH2, and HEK27me3 expressions were declined in GDM-HUVECs. OGT overexpression induced the proliferation, migration, and invasion of GDM-HUVECs, and also elevated angiogenesis and the expressions of VEGF and p-VEGFR2 in cells. O-GlcNAc, EZH2, and HEK27me3 expressions were upregulated after OGT overexpression. OGT upregulation induced the binding between O-GlcNAc and EZH2. EZH2 silencing attenuated the promotion of OGT overexpression on the proliferative, invasive, migratory, and angiogenic capacities of GDM-HUVECs. To be concluded, OGT overexpression stabilized EZH2 expression by promoting O-GlcNAcylation modification of EZH2, and further enhanced proliferation, migration, and invasion as well as angiogenesis of GDM-HUVECs. While these effects were decayed after EZH2 absenting. Overall, the modulation of OGT on endothelial dysfunction in GDM provides a novel perspective for the clinical treatment of GDM.
Collapse
Affiliation(s)
- Yu Qiu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China.
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China.
| | - Weiwei Yu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Mingjing Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Yan Ni
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Shaoyang Lai
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Quanfeng Wu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| |
Collapse
|
2
|
Zhao FY, Chen X, Wang JM, Yuan Y, Li C, Sun J, Wang HQ. O-GlcNAcylation of TRIM29 and OGT translation forms a feedback loop to promote adaptive response of PDAC cells to glucose deficiency. Cell Oncol (Dordr) 2024; 47:1025-1041. [PMID: 38345749 DOI: 10.1007/s13402-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Glucose not only provides energy for tumor cells, but also provides various biomolecules that are essential for their survival, proliferation and invasion. Therefore, it is of great clinical significance to understand the mechanism of how tumor cells adapt to metabolic stress and maintain their survival. The aim of this research was to study the critical role of OGT and TRIM29 O-GlcNAc modification driven adaptability of PDAC cells to low glucose stress, which might have important medical implications for PDAC therapy. METHODS Western blotting, mass spectrometry and WGA-immunoprecipitation were used to examined the levels of OGT and O-GlcNAc glycosylated proteins in BxPC3 and SW1990 cells in normal culture and under glucose deprivation conditions. Crystal violet assay, flow cytometry, RIP, RT-qPCR, protein stability assay, biotin pull down were used to investigate the mechanism of OGT and TRIM29-mediated adaptive response to glucose deficiency in PDAC cells. RESULTS The current study found that under the condition of low glucose culture, the levels of OGT and O-GlcNAc glycosylation in PDAC cells were significantly higher than those in normal culture. Moreover, the high expression of OGT has a protective effect on PDAC cells under low glucose stress. This study confirmed that there was no significant change in mRNA level and protein degradation of OGT under low glucose stress, which was mainly reflected in the increase of protein synthesis. In addition, O-GlcNAc modification at T120 site plays a critical role in the metabolic adaptive responses mediated by TRIM29. CONCLUSIONS Taken together, our study indicated that O-GlcNAcylation of TRIM29 at T120 site and OGT translation forms a loop feedback to facilitate survival of PDAC under glucose deficiency.
Collapse
Affiliation(s)
- Fu-Ying Zhao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Xue Chen
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, The 1st Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Ye Yuan
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Jia Sun
- Department of Biochemistry and Molecular Biology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Hua-Qin Wang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
3
|
He A, Guo Y, Xu Z, Yan J, Xie L, Li Y, Lv D, Luo M. Hypoglycaemia aggravates impaired endothelial-dependent vasodilation in diabetes by suppressing endothelial nitric oxide synthase activity and stimulating inducible nitric oxide synthase expression. Microvasc Res 2023; 146:104468. [PMID: 36513147 DOI: 10.1016/j.mvr.2022.104468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diabetes exacerbates vascular injury by triggering endothelial dysfunction. Endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) both play major roles in endothelial dysfunction. However, effects of hypoglycaemia, the main complication of the insulin therapy to the glycemic control in diabetes, on eNOS activity and iNOS expression, and underlying mechanisms in diabetes remain unknown. Hence, we aimed to determine the effects of hypoglycaemia on eNOS activity and iNOS expression in different arterial beds of diabetic rats. METHODS Sprague-Dawley rats were subjected to Streptozotocin (STZ) combined with high fat diet (HFD) to induce diabetes and then received insulin injection to attain acute and recurrent hypoglycaemia. Immunoblotting was used to analyse the phosphorylation and O-glycosylation status of eNOS and iNOS level from thoracic aorta and mesenteric artery tissue. Indicators of oxidative stress from plasm were determined, and endothelial-dependent vasodilation was detected via wire myograph system. RESULTS Hypoglycaemia was associated with a marked increase in eNOS O-GlcNAcylation and decrease in Serine (Ser)-1177 phosphorylation from thoracic aortas and mesenteric arteries. Moreover, hypoglycaemia resulted in elevated phosphorylation of eNOS at Threonine (Thr)-495 site in mesenteric arteries. Besides, changes in these post-translational modifications were associated with increased O-GlcNAc transferase (OGT), decreased phosphorylation of Akt at Ser-473, and increased protein kinase C α subunit (PKCα). iNOS expression was induced in hypoglycaemia. Furthermore, endothelial-dependent vasodilation was impaired under insulin-induced hypoglycaemia, and further in recurrent hypoglycaemia. CONCLUSIONS Conclusively, these findings strongly indicate that hypoglycaemia-dependent vascular dysfunction in diabetes is mediated through altered eNOS activity and iNOS expression. Therefore, this implies that therapeutic modulation of eNOS activity and iNOS expression in diabetics under intensive glucose control may prevent and treat adverse cardiovascular events.
Collapse
Affiliation(s)
- An He
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongzheng Guo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhixin Xu
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianghong Yan
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Lingyun Xie
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanjing Li
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dingyi Lv
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Minghao Luo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Balsollier C, Tomašič T, Yasini D, Bijkerk S, Anderluh M, Pieters RJ. Design of OSMI-4 Analogs Using Scaffold Hopping: Investigating the Importance of the Uridine Mimic in the Binding of OGT Inhibitors. ChemMedChem 2023; 18:e202300001. [PMID: 36752318 DOI: 10.1002/cmdc.202300001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2023]
Abstract
β-N-Acetylglucosamine transferase (OGT) inhibition is considered an important topic in medicinal chemistry. The involvement of O-GlcNAcylation in several important biological pathways is pointing to OGT as a potential therapeutic target. The field of OGT inhibitors drastically changed after the discovery of the 7-quinolone-4-carboxamide scaffold and its optimization to the first nanomolar OGT inhibitor: OSMI-4. While OSMI-4 is still the most potent inhibitor reported to date, its physicochemical properties are limiting its use as a potential drug candidate as well as a biological tool. In this study, we have introduced a simple modification (elongation) of the peptide part of OSMI-4 that limits the unwanted cyclisation during OSMI-4 synthesis while retaining OGT inhibitory potency. Secondly, we have kept this modified peptide unchanged while incorporating new sulfonamide UDP mimics to try to improve binding of newly designed OGT inhibitors in the UDP-binding site. With the use of computational methods, a small library of OSMI-4 derivatives was designed, prepared and evaluated that provided information about the OGT binding pocket and its specificity toward quinolone-4-carboxamides.
Collapse
Affiliation(s)
- Cyril Balsollier
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Daniel Yasini
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Simon Bijkerk
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
5
|
Hasan MK, El Qaidi S, McDonald P, Roy A, Hardwidge PR. Repurposing Avasimibe to Inhibit Bacterial Glycosyltransferases. Pathogens 2022; 11:pathogens11030370. [PMID: 35335693 PMCID: PMC8953086 DOI: 10.3390/pathogens11030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 01/05/2023] Open
Abstract
We are interested in identifying and characterizing small molecule inhibitors of bacterial virulence factors for their potential use as anti-virulence inhibitors. We identified from high-throughput screening assays a potential activity for avasimibe, a previously characterized acyl-coenzyme A: cholesterol acyltransferase inhibitor, in inhibiting the NleB and SseK arginine glycosyltransferases from Escherichia coli and Salmonella enterica, respectively. Avasimibe inhibited the activity of the Citrobacter rodentium NleB, E. coli NleB1, and S. enterica SseK1 enzymes, without affecting the activity of the human serine/threonine N-acetylglucosamine (O-GlcNAc) transferase. Avasimibe was not toxic to mammalian cells at up to 200 µM and was neither bacteriostatic nor bactericidal at concentrations of up to 125 µM. Doses of 10 µM avasimibe were sufficient to reduce S. enterica abundance in RAW264.7 macrophage-like cells, and intraperitoneal injection of avasimibe significantly reduced C. rodentium survival in mice, regardless of whether the avasimibe was administered pre- or post-infection. We propose that avasimibe or related derivates created using synthetic chemistry may have utility in preventing or treating bacterial infections by inhibiting arginine glycosyltransferases that are important to virulence.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (M.K.H.); (S.E.Q.)
| | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (M.K.H.); (S.E.Q.)
| | - Peter McDonald
- Infectious Diseases Assay Development/HTS Laboratory, University of Kansas, Lawrence, KS 66047, USA; (P.M.); (A.R.)
| | - Anuradha Roy
- Infectious Diseases Assay Development/HTS Laboratory, University of Kansas, Lawrence, KS 66047, USA; (P.M.); (A.R.)
| | - Philip R. Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (M.K.H.); (S.E.Q.)
- Correspondence:
| |
Collapse
|
6
|
Butler W, Huang J. Glycosylation Changes in Prostate Cancer Progression. Front Oncol 2021; 11:809170. [PMID: 35004332 PMCID: PMC8739790 DOI: 10.3389/fonc.2021.809170] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate Cancer (PCa) is the most commonly diagnosed malignancy and second leading cause of cancer-related mortality in men. With the use of next generation sequencing and proteomic platforms, new biomarkers are constantly being developed to both improve diagnostic sensitivity and specificity and help stratify patients into different risk groups for optimal management. In recent years, it has become well accepted that altered glycosylation is a hallmark of cancer progression and that the glycan structures resulting from these mechanisms show tremendous promise as both diagnostic and prognostic biomarkers. In PCa, a wide range of structural alterations to glycans have been reported such as variations in sialylation and fucosylation, changes in branching, altered levels of Lewis and sialyl Lewis antigens, as well as the emergence of high mannose "cryptic" structures, which may be immunogenic and therapeutically relevant. Furthermore, aberrant expression of galectins, glycolipids, and proteoglycans have also been reported and associated with PCa cell survival and metastasis. In this review, we discuss the findings from various studies that have explored altered N- and O-linked glycosylation in PCa tissue and body fluids. We further discuss changes in O-GlcNAcylation as well as altered expression of galectins and glycoconjugates and their effects on PCa progression. Finally, we emphasize the clinical utility and potential impact of exploiting glycans as both biomarkers and therapeutic targets to improve our ability to diagnose clinically relevant tumors as well as expand treatment options for patients with advanced disease.
Collapse
Affiliation(s)
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
7
|
Zhao J, Dong L, Huo T, Cheng J, Li X, Huangfu X, Sun S, Wang H, Li L. O-GlcNAc Transferase (OGT) Protects Cerebral Neurons from Death During Ischemia/Reperfusion (I/R) Injury by Modulating Drp1 in Mice. Neuromolecular Med 2021; 24:299-310. [PMID: 34705256 DOI: 10.1007/s12017-021-08688-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 09/13/2021] [Indexed: 01/01/2023]
Abstract
Previous studies have demonstrated that increased O-linked N-acetylglucosamine (O-GlcNAc) level could promote cell survival following environmental stresses. This study aimed to explore the role of O-GlcNAc transferase (OGT) during cerebral ischemia/reperfusion (I/R) injury. The mouse model with cerebral I/R injury was induced by middle cerebral artery occlusion/reperfusion (MCAO/R). The expression of ogt in brain tissues was detected by qRT-PCR, Western blot, and immunohistochemistry (IHC) staining assay. Neurological deficit was evaluated using a modified scoring system. The infarct volume was assessed by TTC staining assay. Neuronal apoptosis in brain tissues was evaluated by TUNEL staining assay. The level of cleaved caspase-3 in brain tissues was detected by Western blot and IHC staining assay. The expression of critical proteins involved in mitochondrial fission, including OPA1, Mfn1, and Mfn2, as well as Mff and Drp1 was detected by Western blot and IHC, respectively. The expression of ogt during cerebral I/R injury was significantly upregulated. Ogt knockdown significantly increased neurological score and infarct volume in I/R-induced mice. Meanwhile, ogt knockdown significantly enhanced neuronal apoptosis and cleaved caspase-3 level in brain tissues of I/R-induced mice. In addition, ogt knockdown markedly decreased serine 637 phosphorylation level of mitochondrial fission protein dynamin-related protein 1 (Drp1) and promoted Drp1 translocation from the cytosol to the mitochondria. Moreover, the specific Drp1 inhibitor mdivi-1 effectively attenuated ogt knockdown-induced brain injury of I/R-stimulated mice in vivo. Our study revealed that OGT protects against cerebral I/R injury by inhibiting the function of Drp1 in mice, suggesting that ogt may be a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Jingru Zhao
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Lipeng Dong
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Tiantian Huo
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Jinming Cheng
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Xiaojuan Li
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Xiaojuan Huangfu
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Sujuan Sun
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China
| | - Litao Li
- Department of Neurology, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, P. R. China.
| |
Collapse
|
8
|
Capota E, Wu H, Kohler JJ. Photocrosslinking O-GlcNAcylated Proteins to Neighboring Biomolecules. Curr Protoc 2021; 1:e201. [PMID: 34288588 DOI: 10.1002/cpz1.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This protocol enables identification of the interaction partners of O-GlcNAcylated proteins. The method involves the introduction of the diazirine photocrosslinker onto the O-GlcNAc modification within living cells. The photocrosslinker is activated by UV light to yield covalent crosslinking between O-GlcNAcylated proteins and neighboring molecules. The binding partners can be further characterized by immunoblot or proteomics mass spectrometry methods. The benefits of using the photocrosslinker include the capacity to trap low-affinity binding interactions and the ability to selectively target the interaction partners of the O-GlcNAcylated form of the protein of interest. © 2021 Wiley Periodicals LLC. Basic Protocol 1: In-cell production and crosslinking of O-GlcNDAzylated proteins Basic Protocol 2: Immunoblot analysis to assess O-GlcNDAz crosslinking Support Protocol: Detection of UDP-GlcNDAz from cell lysates.
Collapse
Affiliation(s)
- Emanuela Capota
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| | - Han Wu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| | - Jennifer J Kohler
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
9
|
Mauri T, Menu-Bouaouiche L, Bardor M, Lefebvre T, Lensink MF, Brysbaert G. O-GlcNAcylation Prediction: An Unattained Objective. Adv Appl Bioinform Chem 2021; 14:87-102. [PMID: 34135600 PMCID: PMC8197665 DOI: 10.2147/aabc.s294867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/28/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND O-GlcNAcylation is an essential post-translational modification (PTM) in mammalian cells. It consists in the addition of a N-acetylglucosamine (GlcNAc) residue onto serines or threonines by an O-GlcNAc transferase (OGT). Inhibition of OGT is lethal, and misregulation of this PTM can lead to diverse pathologies including diabetes, Alzheimer's disease and cancers. Knowing the location of O-GlcNAcylation sites and the ability to accurately predict them is therefore of prime importance to a better understanding of this process and its related pathologies. PURPOSE Here, we present an evaluation of the current predictors of O-GlcNAcylation sites based on a newly built dataset and an investigation to improve predictions. METHODS Several datasets of experimentally proven O-GlcNAcylated sites were combined, and the resulting meta-dataset was used to evaluate three prediction tools. We further defined a set of new features following the analysis of the primary to tertiary structures of experimentally proven O-GlcNAcylated sites in order to improve predictions by the use of different types of machine learning techniques. RESULTS Our results show the failure of currently available algorithms to predict O-GlcNAcylated sites with a precision exceeding 9%. Our efforts to improve the precision with new features using machine learning techniques do succeed for equal proportions of O-GlcNAcylated and non-O-GlcNAcylated sites but fail like the other tools for real-life proportions where ~1.4% of S/T are O-GlcNAcylated. CONCLUSION Present-day algorithms for O-GlcNAcylation prediction narrowly outperform random prediction. The inclusion of additional features, in combination with machine learning algorithms, does not enhance these predictions, emphasizing a pressing need for further development. We hypothesize that the improvement of prediction algorithms requires characterization of OGT's partners.
Collapse
Affiliation(s)
- Theo Mauri
- Univ. Lille, CNRS; UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, F-59000, France
| | | | - Muriel Bardor
- Normandy University, UNIROUEN, Laboratoire Glyco-MEV EA4358, Rouen, 76000, France
| | - Tony Lefebvre
- Univ. Lille, CNRS; UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, F-59000, France
| | - Marc F Lensink
- Univ. Lille, CNRS; UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, F-59000, France
| | - Guillaume Brysbaert
- Univ. Lille, CNRS; UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, F-59000, France
| |
Collapse
|
10
|
Hypertonic stress modulates eNOS function through O-GlcNAc modification at Thr-866. Sci Rep 2021; 11:11272. [PMID: 34050207 PMCID: PMC8163736 DOI: 10.1038/s41598-021-90321-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 01/21/2023] Open
Abstract
O-GlcNAcylation, an energy-sensitive posttranslational modification, can regulate the activity of endothelial nitric oxide synthase (eNOS). Previous studies found that Thr866 is the key site for low-glucose-mediated regulation of eNOS O-GlcNAc. However, it is not known whether this activity functions through the Thr866 site concomitant with other physical and chemical factors. Therefore, we first explored the effects of physical and chemical factors on eNOS O-GlcNAc and its Thr866 site. In this study, hypertonic stress, hyperthermia and hydrogen peroxide all increased the expression levels of eNOS O-GlcNAc, whereas hypoxia and high levels of alcohol had no effect. on the expression levels of eNOS O-GlcNAc; by contrast, low pH led to a decrease in eNOS O-GlcNAc levels. Notably, eNOS O-GlcNAc protein levels were unchanged after Thr866 site mutation only under hypertonic conditions, suggesting that hypertonic stress may act through the Thr866 site. Upon exploring the mechanism of hypertonic stress on eNOS O-GlcNAc activity and function, we found that hypertonic stress can upregulate the expression of O-linked N-acetylglucosamine (GlcNAc) transferase (OGT), which is dependent on AMPK. When AMPK was knocked out, the upregulation of OGT expression and increased O-GlcNAc modifications induced by hypertonic stress were reversed.
Collapse
|
11
|
Zhu P, Gu S, Huang H, Zhong C, Liu Z, Zhang X, Wang W, Xie S, Wu K, Lu T, Zhou Y. Upregulation of glucosamine-phosphate N-acetyltransferase 1 is a promising diagnostic and predictive indicator for poor survival in patients with lung adenocarcinoma. Oncol Lett 2021; 21:488. [PMID: 33968204 PMCID: PMC8100941 DOI: 10.3892/ol.2021.12750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Lung adenocarcinoma, a type of non-small cell lung cancer, is the leading cause of cancer death worldwide. Great efforts have been made to identify the underlying mechanism of adenocarcinoma, especially in relation to oncogenes. The present study by integrating computational analysis with western blotting, aimed to understand the role of the upregulation of glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1) in carcinogenesis. In the present study, publicly available gene expression profiles and clinical data were downloaded from The Cancer Genome Atlas to determine the role of GNPNAT1 in lung adenocarcinoma (LUAD). In addition, the association between LUAD susceptibility and GNPNAT1 upregulation were analyzed using Wilcoxon signed-rank test and logistic regression analysis. In LUAD, GNPNAT1 upregulation was significantly associated with disease stage [odds ratio (OR)=2.92, stage III vs. stage I], vital status (dead vs. alive, OR=1.89), cancer status (tumor status vs. tumor-free status, OR=1.85) and N classification (yes vs. no, OR=1.75). Cox regression analysis and the Kaplan-Meier method were utilized to evaluate the association between GNPNAT1 expression and overall survival (OS) time in patients with LUAD. The results demonstrated that patients with increased GNPNAT1 expression levels exhibited a reduced survival rate compared with those with decreased expression levels (P=8.9×10−5). In addition, Cox regression analysis revealed that GNPNAT1 upregulation was significantly associated with poor OS time [hazard ratio (HR): 1.07; 95% confidence interval (CI): 1.04–1.10; P<0.001]. The gene set enrichment analysis revealed that ‘cell cycle’, ‘oocyte meiosis’, ‘pyrimidine mediated metabolism’, ‘ubiquitin mediated proteolysis’, ‘one carbon pool by folate’, ‘mismatch repair progesterone-mediated oocyte maturation’ and ‘basal transcription factors purine metabolism’ were differentially enriched in the GNPNAT1 high-expression samples compared with GNPNAT1 low-expression samples. The aforementioned pathways are involved in the pathogenesis of LUAD. The findings of the present study suggested that GNPNAT1 upregulation may be considered as a promising diagnostic and prognostic biomarker in patients with LUAD. In addition, the aforementioned pathways may be pivotal pathways perturbed by the abnormal expression of GNPNAT1 in LUAD. The findings of the present study demonstrated the therapeutic value of the regulation of GNPNAT1 in lung adenocarcinoma.
Collapse
Affiliation(s)
- Pengyuan Zhu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Shaorui Gu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Haitao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhenchuan Liu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Xin Zhang
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Wenli Wang
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Shiliang Xie
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Kaiqin Wu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Tiancheng Lu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yongxin Zhou
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
12
|
Liu Y, Yao RZ, Lian S, Liu P, Hu YJ, Shi HZ, Lv HM, Yang YY, Xu B, Li SZ. O-GlcNAcylation: the "stress and nutrition receptor" in cell stress response. Cell Stress Chaperones 2021; 26:297-309. [PMID: 33159661 PMCID: PMC7925768 DOI: 10.1007/s12192-020-01177-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is an atypical, reversible, and dynamic glycosylation that plays a critical role in maintaining the normal physiological functions of cells by regulating various biological processes such as signal transduction, proteasome activity, apoptosis, autophagy, transcription, and translation. It can also respond to environmental changes and physiological signals to play the role of "stress receptor" and "nutrition sensor" in a variety of stress responses and biological processes. Even, a homeostatic disorder of O-GlcNAcylation may cause many diseases. Therefore, O-GlcNAcylation and its regulatory role in stress response are reviewed in this paper.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Rui-Zhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, People's Republic of China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Ya-Jie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Zhao Shi
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Ming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yu-Ying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|
13
|
Fang N, Li P. O-linked N-acetylglucosaminyltransferase OGT inhibits diabetic nephropathy by stabilizing histone methyltransferases EZH2 via the HES1/PTEN axis. Life Sci 2021; 274:119226. [PMID: 33609540 DOI: 10.1016/j.lfs.2021.119226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 02/07/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND O-linked N-acetylglucosaminyltransferase (OGT) is involved in diabetes-related diseases including diabetic nephropathy (DN), and responsible for O-GlcNAcylation. Moreover, O-GlcNAcylation and OGT could be induced by high glucose. Thus, we sought to explore the molecular mechanism of OGT in DN. METHODS Loss- and gain-functions were conducted to determine the roles of OGT, enhancer of zeste homolog 2 (EZH2), hairy and enhancer of split 1 (HES1) and phosphatase and tensin homolog (PTEN) in the viability, cell cycle and fibrosis of mesangial cells (MCs), followed by the assessment using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, and Western blot assay (fibrosis-related proteins). The interaction between OGT and EZH2 and the effect on EZH2 glycosylation were verified by chromatin immunoprecipitation (ChIP) and glutathione S-transferase (GST) pull-down assays. EZH2 stability was checked by treatment with cycloheximide. RESULTS Expression of OGT was repressed in the DN mice and high glucose-treated MCs. Elevated OGT suppressed viability of high glucose-treated MCs, blocked proliferation characterized by repressed cyclin D1, but enhanced p21 levels, and inhibited fibrosis evidenced by reduced levels of fibronectin (FN) and collagen-4 (col-4). OGT interacted with EZH2 and promoted its glycosylation thus stabilizing the EZH2. EZH2 overexpression enhanced the enrichment of EZH2 and histone H3 Lys27 trimethylation (H3K27me3) in the HES1 promoter. HES1 was upregulated and PTEN was downregulated in DN mice. Transduction of lentivirus vector containing overexpression (oe)-OGT alleviated renal injury in DN mice. CONCLUSIONS Collectively, OGT stabilizes histone methyltransferases EZH2 to regulate HES1/PTEN thus inhibiting DN.
Collapse
Affiliation(s)
- Na Fang
- Department of Nephrology, The Fifth People's Hospital of Jinan, Jinan 250022, PR China.
| | - Ping Li
- Special Inspection Section, The Fifth People's Hospital of Jinan, Jinan 250022, PR China
| |
Collapse
|
14
|
Overview of the Assays to Probe O-Linked β- N-Acetylglucosamine Transferase Binding and Activity. Molecules 2021; 26:molecules26041037. [PMID: 33669256 PMCID: PMC7920051 DOI: 10.3390/molecules26041037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022] Open
Abstract
O-GlcNAcylation is a posttranslational modification that occurs at serine and threonine residues of protein substrates by the addition of O-linked β-d-N-acetylglucosamine (GlcNAc) moiety. Two enzymes are involved in this modification: O-GlcNac transferase (OGT), which attaches the GlcNAc residue to the protein substrate, and O-GlcNAcase (OGA), which removes it. This biological balance is important for many biological processes, such as protein expression, cell apoptosis, and regulation of enzyme activity. The extent of this modification has sparked interest in the medical community to explore OGA and OGT as therapeutic targets, particularly in degenerative diseases. While some OGA inhibitors are already in phase 1 clinical trials for the treatment of Alzheimer's disease, OGT inhibitors still have a long way to go. Due to complex expression and instability, the discovery of potent OGT inhibitors is challenging. Over the years, the field has grappled with this problem, and scientists have developed a number of techniques and assays. In this review, we aim to highlight assays and techniques for OGT inhibitor discovery, evaluate their strength for the field, and give us direction for future bioassay methods.
Collapse
|
15
|
L-carnitine exerts a nutrigenomic effect via direct modulation of nuclear receptor signaling in adipocytes, hepatocytes and SKMC, demonstrating its nutritional impact. Nutr Res 2020; 85:84-98. [PMID: 33453499 DOI: 10.1016/j.nutres.2020.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
L-carnitine is an indispensable metabolite facilitating the transport of fatty acids into the mitochondrial matrix and has been previously postulated to exert a nutrigenomic effect. However, the underlying molecular mechanisms remain mostly unclear. We hypothesized that L-carnitine interacts with nuclear receptors involved in metabolic regulation, thereby modulating downstream targets of cellular metabolism. Therefore, we investigated the effect of L-carnitine supplementation on protein activity, mRNA expression, and binding affinities of nuclear receptors as well as mRNA expression of downstream targets in skeletal muscle cells, hepatocytes, and differentiated adipocytes. L-carnitine supplementation to hepatocytes increased the protein activity of multiple nuclear receptors (RAR, RXR, VDR, PPAR, HNF4, ER, LXR). Diverging effects on the mRNA expression of PPAR-α, PPAR-δ, PPAR-γ, RAR-β, LXR-α, and RXR-α were observed in adipocytes, hepatocytes, and skeletal muscle cells. mRNA levels of PPAR-α, a key regulator of lipolysis and β-oxidation, were significantly upregulated, emphasizing a role of L-carnitine as a promoter of lipid catabolism. L-carnitine administration to hepatocytes modulated the transcription of key nuclear receptor target genes, including ALDH1A1, a promoter of adipogenesis, and OGT, a contributor to insulin resistance. Electrophoretic mobility shift assays proved L-carnitine to increase binding affinities of nuclear receptors to their promoter target sequences, suggesting a molecular mechanism for the observed transcriptional modulation. Overall, these findings indicate that L-carnitine modulates the activity and expression of nuclear receptors, thereby promoting lipolytic gene expression and decreasing transcription of target genes linked to adipogenesis and insulin resistance.
Collapse
|
16
|
He A, Hu S, Pi Q, Guo Y, Long Y, Luo S, Xia Y. Regulation of O-GlcNAcylation on endothelial nitric oxide synthase by glucose deprivation and identification of its O-GlcNAcylation sites. Sci Rep 2020; 10:19364. [PMID: 33168911 PMCID: PMC7652922 DOI: 10.1038/s41598-020-76340-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
As an energy-sensitive post-translational modification, O-GlcNAcylation plays a major role in endothelial nitric oxide synthase (eNOS) activity regulation. However, effects of glucose deprivation on eNOS O-GlcNAcylation and the presence of novel O-GlcNAcylation sites of eNOS under glucose deprivation remain unknown. Hence, we aim to determine the effects of glucose deprivation on O-GlcNAcylation and novel O-GlcNAcylation sites of eNOS. Bovine aortic endothelial cells (BAECs) and Sprague-Dawley rats were induced by glucose deprivation and their eNOS O-GlcNAcylation was subjected to immunoblotting. eNOS and transfected eNOS were purified by pull-down assay and immunoprecipitation respectively. Novel O-GlcNAcylation sites of eNOS were predicted by HPLC-MS and MS/MS Ion and determined by immunoblotting. eNOS activity was detected by Elisa and isotope labeling method. In BAECs and rat thoracic aorta, low glucose-associated activation of eNOS was accompanied by elevated O-GlcNAcylation, which did not affect O-linked serine phosphorylation at 1179/1177 residues. Changes in this post-translational modification were associated with increased O-GlcNAc transferase (OGT) expression and were reversed by AMPK knockdown. Immunoblot analysis of cells expressing His-tagged wild-type human eNOS and human eNOS carrying a mutation at the Ser1177 phosphorylation site confirmed an increase in O-GlcNAcylation by glucose deprivation. A marked increase in O-GlcNAcylation indicated that eNOS contained novel O-GlcNAcylation sites that were activated by glucose deprivation. Immunoblot analysis of cells expressing His-tagged human eNOS carrying a mutation at Ser738 and Ser867 confirmed an increase in O-GlcNAcylation by glucose deprivation. Conversely, in His-tagged human eNOS carrying a mutation at Thr866, O-GlcNAcylation was unaffected by glucose deprivation. Differences in culture conditions were identified using two-way analysis of variance (ANOVA), one-way ANOVA, and unpaired Student's t-test. Glucose deprivation increases O-GlcNAcylation and activity of eNOS, potentially by the AMPK-OGT pathway, suggesting that Thr866 is a novel O-GlcNAcylation site involved in glucose-deprivation mediated eNOS activation.
Collapse
Affiliation(s)
- An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shupeng Hu
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiangzhong Pi
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yang Long
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yong Xia
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
17
|
OGT knockdown counteracts high phosphate-induced vascular calcification in chronic kidney disease through autophagy activation by downregulating YAP. Life Sci 2020; 261:118121. [PMID: 32693242 DOI: 10.1016/j.lfs.2020.118121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
AIMS Pathological vascular calcification (VC), a major risk factor for cardiovascular mortality, is a highly prevalent finding in patients with chronic kidney disease (CKD). We previously analyzed several pathways protecting against high phosphate-induced VC through induction of autophagy. Here, we explored how O-GlcNAc transferase (OGT) affected high phosphate-induced VC of CKD though mediation of autophagy. MAIN METHODS In the rats with CKD induced by 5/6 nephrectomy, the VC process was accelerated by a high phosphate diet. The calcification of vascular smooth muscle cells (VSMCs) was induced by high phosphate treatment. We then experimentally tested the effect of OGT on high phosphate-induced VC by conducting loss-of-function experiments. Co-immunoprecipitation and GST pull-down assays were performed to evaluate interaction between OGT and Yes-associated protein (YAP). In mechanistic studies of this pathway, we measured autophagy protein expression and autophagosome formation, as well as calcium deposition and calcium content in VSMCs and in vivo in response to altered expression of OGT and/or YAP. KEY FINDINGS OGT was up-regulated in high phosphate-induced VC models in vitro and in vivo. High phosphate-induced calcification in the rat aorta and VSMCs were suppressed by OGT silencing. OGT promoted the glycosylation of YAP to enhance its stability. Importantly, over-expressing YAP reduced autophagy and OGT expedited high phosphate-induced VC by inhibiting autophagy through upregulation of YAP. SIGNIFICANCE OGT silencing downregulated YAP to induce autophagy activation, thus suppressing high phosphate-induced VC, which highlighted a promising preventive target against high phosphate-induced VC in CKD.
Collapse
|
18
|
Affiliation(s)
- Mark W Majesky
- From the Department of Pediatrics and Department of Pathology, Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington, Seattle
| |
Collapse
|
19
|
Paredes F, Williams HC, Quintana RA, San Martin A. Mitochondrial Protein Poldip2 (Polymerase Delta Interacting Protein 2) Controls Vascular Smooth Muscle Differentiated Phenotype by O-Linked GlcNAc (N-Acetylglucosamine) Transferase-Dependent Inhibition of a Ubiquitin Proteasome System. Circ Res 2019; 126:41-56. [PMID: 31656131 DOI: 10.1161/circresaha.119.315932] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RATIONALE The mitochondrial Poldip2 (protein polymerase interacting protein 2) is required for the activity of the tricarboxylic acid cycle. As a consequence, Poldip2 deficiency induces metabolic reprograming with repressed mitochondrial respiration and increased glycolytic activity. Though homozygous deletion of Poldip2 is lethal, heterozygous mice are viable and show protection against aneurysm and injury-induced neointimal hyperplasia, diseases linked to loss of vascular smooth muscle differentiation. Thus, we hypothesize that the metabolic reprograming induced by Poldip2 deficiency controls VSMC differentiation. OBJECTIVE To determine the role of Poldip2-mediated metabolic reprograming in phenotypic modulation of VSMC. METHODS AND RESULTS We show that Poldip2 deficiency in vascular smooth muscle in vitro and in vivo induces the expression of the SRF (serum response factor), myocardin, and MRTFA (myocardin-related transcription factor A) and dramatically represses KLF4 (Krüppel-like factor 4). Consequently, Poldip2-deficient VSMC and mouse aorta express high levels of contractile proteins and, more significantly, these cells do not dedifferentiate nor acquire macrophage-like characteristics when exposed to cholesterol or PDGF (platelet-derived growth factor). Regarding the mechanism, we found that Poldip2 deficiency upregulates the hexosamine biosynthetic pathway and OGT (O-linked N-acetylglucosamine transferase)-mediated protein O-GlcNAcylation. Increased protein glycosylation causes the inhibition of a nuclear ubiquitin proteasome system responsible for SRF stabilization and KLF4 repression and is required for the establishment of the differentiated phenotype in Poldip2-deficient cells. CONCLUSIONS Our data show that Poldip2 deficiency induces a highly differentiated phenotype in VSMCs through a mechanism that involves regulation of metabolism and proteostasis. Additionally, our study positions mitochondria-initiated signaling as key element of the VSMC differentiation programs that can be targeted to modulate VSMC phenotype during vascular diseases.
Collapse
Affiliation(s)
- Felipe Paredes
- From the Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA
| | - Holly C Williams
- From the Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA
| | - Raymundo A Quintana
- From the Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA
| | - Alejandra San Martin
- From the Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA
| |
Collapse
|
20
|
Li Y, Xie M, Men L, Du J. O-GlcNAcylation in immunity and inflammation: An intricate system (Review). Int J Mol Med 2019; 44:363-374. [PMID: 31198979 PMCID: PMC6605495 DOI: 10.3892/ijmm.2019.4238] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic, low‑grade inflammation associated with obesity and diabetes result from the infiltration of adipose and vascular tissue by immune cells and contributes to cardiovascular complications. Despite an incomplete understanding of the mechanistic underpinnings of immune cell differentiation and inflammation, O‑GlcNAcylation, the addition of O‑linked N‑acetylglucosamine (O‑GlcNAc) to cytoplasmic, nuclear and mitochondrial proteins by the two cycling enzymes, the O‑linked N‑acetylglucosamine transferase (OGT) and the O‑GlcNAcase (OGA), may contribute to fine‑tune immunity and inflammation in both physiological and pathological conditions. Early studies have indicated that O‑GlcNAcylation of proteins play a pro‑inflammatory role in diabetes and insulin resistance, whereas subsequent studies have demonstrated that this post‑translational modification could also be protective against acute injuries. These studies suggest that diverse types of insults result in dynamic changes to O‑GlcNAcylation patterns, which fluctuate with cellular metabolism to promote or inhibit inflammation. In this review, the current understanding of O‑GlcNAcylation and its adaptive modulation in immune and inflammatory responses is summarized.
Collapse
Affiliation(s)
- Yu Li
- Department of Endocrinology
| | - Mingzheng Xie
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | | | - Jianling Du
- Department of Endocrinology
- Correspondence to: Dr Jianling Du, Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning 116011, P.R. China, E-mail:
| |
Collapse
|
21
|
O-GlcNAcylation of core components of the translation initiation machinery regulates protein synthesis. Proc Natl Acad Sci U S A 2019; 116:7857-7866. [PMID: 30940748 DOI: 10.1073/pnas.1813026116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein synthesis is essential for cell growth, proliferation, and survival. Protein synthesis is a tightly regulated process that involves multiple mechanisms. Deregulation of protein synthesis is considered as a key factor in the development and progression of a number of diseases, such as cancer. Here we show that the dynamic modification of proteins by O-linked β-N-acetyl-glucosamine (O-GlcNAcylation) regulates translation initiation by modifying core initiation factors eIF4A and eIF4G, respectively. Mechanistically, site-specific O-GlcNAcylation of eIF4A on Ser322/323 disrupts the formation of the translation initiation complex by perturbing its interaction with eIF4G. In addition, O-GlcNAcylation inhibits the duplex unwinding activity of eIF4A, leading to impaired protein synthesis, and decreased cell proliferation. In contrast, site-specific O-GlcNAcylation of eIF4G on Ser61 promotes its interaction with poly(A)-binding protein (PABP) and poly(A) mRNA. Depletion of eIF4G O-GlcNAcylation results in inhibition of protein synthesis, cell proliferation, and soft agar colony formation. The differential glycosylation of eIF4A and eIF4G appears to be regulated in the initiation complex to fine-tune protein synthesis. Our study thus expands the current understanding of protein synthesis, and adds another dimension of complexity to translational control of cellular proteins.
Collapse
|
22
|
Scott E, Munkley J. Glycans as Biomarkers in Prostate Cancer. Int J Mol Sci 2019; 20:E1389. [PMID: 30893936 PMCID: PMC6470778 DOI: 10.3390/ijms20061389] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men, claiming over350,000 lives worldwide annually. Current diagnosis relies on prostate-specific antigen (PSA)testing, but this misses some aggressive tumours, and leads to the overtreatment of non-harmfuldisease. Hence, there is an urgent unmet clinical need to identify new diagnostic and prognosticbiomarkers. As prostate cancer is a heterogeneous and multifocal disease, it is likely that multiplebiomarkers will be needed to guide clinical decisions. Fluid-based biomarkers would be ideal, andattention is now turning to minimally invasive liquid biopsies, which enable the analysis oftumour components in patient blood or urine. Effective diagnostics using liquid biopsies willrequire a multifaceted approach, and a recent high-profile review discussed combining multipleanalytes, including changes to the tumour transcriptome, epigenome, proteome, and metabolome.However, the concentration on genomics-based paramaters for analysing liquid biopsies ispotentially missing a goldmine. Glycans have shown huge promise as disease biomarkers, anddata suggests that integrating biomarkers across multi-omic platforms (including changes to theglycome) can improve the stratification of patients with prostate cancer. A wide range ofalterations to glycans have been observed in prostate cancer, including changes to PSAglycosylation, increased sialylation and core fucosylation, increased O-GlcNacylation, theemergence of cryptic and branched N-glyans, and changes to galectins and proteoglycans. In thisreview, we discuss the huge potential to exploit glycans as diagnostic and prognostic biomarkersfor prostate cancer, and argue that the inclusion of glycans in a multi-analyte liquid biopsy test forprostate cancer will help maximise clinical utility.
Collapse
Affiliation(s)
- Emma Scott
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
23
|
Gao H, Shi M, Wang R, Wang C, Shao C, Gu Y, Yu W. A widely compatible expression system for the production of highly O-GlcNAcylated recombinant protein in Escherichia coli. Glycobiology 2019; 28:949-957. [PMID: 30462203 DOI: 10.1093/glycob/cwy077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is a ubiquitous and dynamic post-translational modification on serine/threonine residues of nucleocytoplasmic proteins in metazoa, which plays a critical role in numerous physiological and pathological processes. But the O-GlcNAcylation on most proteins is often substoichiometric, which hinders the functional study of the O-GlcNAcylation. This study aimed to improve the production of highly O-GlcNAcylated recombinant proteins in Escherichia coli (E. coli). To achieve this goal, we constructed a bacterial artificial chromosome-based chloramphenicol-resistant expression vector co-expressing O-GlcNAc transferase (OGT) and key enzymes (phosphoglucose mutase, GlmM and N-acetylglucosamine-1-phosphate uridyltransferase, GlmU) of the uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis pathway in E. coli, which can effectively increase the O-GlcNAcylation of the OGT target protein expressed by another vector. The results revealed that the expression of GlmM and GlmU increases the cellular concentration of UDP-GlcNAc in E. coli, which markedly enhanced the activity of the co-expressed OGT to its target proteins, such as H2B, p53 and TAB1. Altogether, we established a widely compatible E. coli expression system for producing highly O-GlcNAcylated protein, which could be used for modifying OGT target proteins expressed by almost any commercial expression vectors in E. coli. This new expression system provides possibility for investigating the roles of O-GlcNAcylation in the enzymatic activity, protein-protein interaction and structure of OGT target proteins.
Collapse
Affiliation(s)
- Hong Gao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China
| | - Minghui Shi
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China
| | - Ruihong Wang
- Outpatient Department, Qingdao Central Hospital, 127 Siliu Road, Qingdao, China
| | - Chaojie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Changlun Shao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Yuchao Gu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| |
Collapse
|
24
|
Rauth M, Freund P, Orlova A, Grünert S, Tasic N, Han X, Ruan HB, Neubauer HA, Moriggl R. Cell Metabolism Control Through O-GlcNAcylation of STAT5: A Full or Empty Fuel Tank Makes a Big Difference for Cancer Cell Growth and Survival. Int J Mol Sci 2019; 20:E1028. [PMID: 30818760 PMCID: PMC6429193 DOI: 10.3390/ijms20051028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/23/2022] Open
Abstract
O-GlcNAcylation is a post-translational modification that influences tyrosine phosphorylation in healthy and malignant cells. O-GlcNAc is a product of the hexosamine biosynthetic pathway, a side pathway of glucose metabolism. It is essential for cell survival and proper gene regulation, mirroring the metabolic status of a cell. STAT3 and STAT5 proteins are essential transcription factors that can act in a mutational context-dependent manner as oncogenes or tumor suppressors. They regulate gene expression for vital processes such as cell differentiation, survival, or growth, and are also critically involved in metabolic control. The role of STAT3/5 proteins in metabolic processes is partly independent of their transcriptional regulatory role, but is still poorly understood. Interestingly, STAT3 and STAT5 are modified by O-GlcNAc in response to the metabolic status of the cell. Here, we discuss and summarize evidence of O-GlcNAcylation-regulating STAT function, focusing in particular on hyperactive STAT5A transplant studies in the hematopoietic system. We emphasize that a single O-GlcNAc modification is essential to promote development of neoplastic cell growth through enhancing STAT5A tyrosine phosphorylation. Inhibition of O-GlcNAcylation of STAT5A on threonine 92 lowers tyrosine phosphorylation of oncogenic STAT5A and ablates malignant transformation. We conclude on strategies for new therapeutic options to block O-GlcNAcylation in combination with tyrosine kinase inhibitors to target neoplastic cancer cell growth and survival.
Collapse
Affiliation(s)
- Manuel Rauth
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Patricia Freund
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
| | | | | | - Xiaonan Han
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health, Institute of Laboratory Animal Sciences (ILAS), Beijing 100730, China.
- Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing 100006, China.
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229-3026, USA.
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
- Medical University Vienna, Vienna 1090, Austria.
| |
Collapse
|
25
|
Abstract
In the early 1980s, while using purified glycosyltransferases to probe glycan structures on surfaces of living cells in the murine immune system, we discovered a novel form of serine/threonine protein glycosylation (O-linked β-GlcNAc; O-GlcNAc) that occurs on thousands of proteins within the nucleus, cytoplasm, and mitochondria. Prior to this discovery, it was dogma that protein glycosylation was restricted to the luminal compartments of the secretory pathway and on extracellular domains of membrane and secretory proteins. Work in the last 3 decades from several laboratories has shown that O-GlcNAc cycling serves as a nutrient sensor to regulate signaling, transcription, mitochondrial activity, and cytoskeletal functions. O-GlcNAc also has extensive cross-talk with phosphorylation, not only at the same or proximal sites on polypeptides, but also by regulating each other's enzymes that catalyze cycling of the modifications. O-GlcNAc is generally not elongated or modified. It cycles on and off polypeptides in a time scale similar to phosphorylation, and both the enzyme that adds O-GlcNAc, the O-GlcNAc transferase (OGT), and the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), are highly conserved from C. elegans to humans. Both O-GlcNAc cycling enzymes are essential in mammals and plants. Due to O-GlcNAc's fundamental roles as a nutrient and stress sensor, it plays an important role in the etiologies of chronic diseases of aging, including diabetes, cancer, and neurodegenerative disease. This review will present an overview of our current understanding of O-GlcNAc's regulation, functions, and roles in chronic diseases of aging.
Collapse
Affiliation(s)
- Gerald W Hart
- From the Complex Carbohydrate Research Center and Biochemistry and Molecular Biology Department, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
26
|
El Qaidi S, Zhu C, McDonald P, Roy A, Maity PK, Rane D, Perera C, Hardwidge PR. High-Throughput Screening for Bacterial Glycosyltransferase Inhibitors. Front Cell Infect Microbiol 2018; 8:435. [PMID: 30619781 PMCID: PMC6305410 DOI: 10.3389/fcimb.2018.00435] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/05/2018] [Indexed: 11/25/2022] Open
Abstract
The enteropathogenic and enterohemorrhagic Escherichia coli NleB proteins as well as the Salmonella enterica SseK proteins are type III secretion system effectors that function as glycosyltransferase enzymes to post-translationally modify host substrates on arginine residues. This modification is unusual because it occurs on the guanidinium groups of arginines, which are poor nucleophiles, and is distinct from the activity of the mammalian O-linked N-acetylglucosaminyltransferase. We conducted high-throughput screening assays to identify small molecules that inhibit NleB/SseK activity. Two compounds, 100066N and 102644N, both significantly inhibited NleB1, SseK1, and SseK2 activities. Addition of these compounds to cultured mammalian cells was sufficient to inhibit NleB1 glycosylation of the tumor necrosis factor receptor type 1-associated DEATH domain protein. These compounds were also capable of inhibiting Salmonella enterica strain ATCC 14028 replication in mouse macrophage-like cells. Neither inhibitor was significantly toxic to mammalian cells, nor showed in vitro cross-reactivity with the mammalian O-linked N-acetylglucosaminyltransferase. These compounds or derivatives generated from medicinal chemistry refinements may have utility as a potential alternative therapeutic strategy to antibiotics or as reagents to further the study of bacterial glycosyltransferases.
Collapse
Affiliation(s)
- Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Peter McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS, United States
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS, United States
| | - Pradip Kumar Maity
- Synthetic Chemical Biology Core Laboratory, University of Kansas, Lawrence, KS, United States
| | - Digamber Rane
- Synthetic Chemical Biology Core Laboratory, University of Kansas, Lawrence, KS, United States
| | - Chamani Perera
- Synthetic Chemical Biology Core Laboratory, University of Kansas, Lawrence, KS, United States
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
27
|
Biwi J, Biot C, Guerardel Y, Vercoutter-Edouart AS, Lefebvre T. The Many Ways by Which O-GlcNAcylation May Orchestrate the Diversity of Complex Glycosylations. Molecules 2018; 23:molecules23112858. [PMID: 30400201 PMCID: PMC6278486 DOI: 10.3390/molecules23112858] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Unlike complex glycosylations, O-GlcNAcylation consists of the addition of a single N-acetylglucosamine unit to serine and threonine residues of target proteins, and is confined within the nucleocytoplasmic and mitochondrial compartments. Nevertheless, a number of clues tend to show that O-GlcNAcylation is a pivotal regulatory element of its complex counterparts. In this perspective, we gather the evidence reported to date regarding this connection. We propose different levels of regulation that encompass the competition for the nucleotide sugar UDP-GlcNAc, and that control the wide class of glycosylation enzymes via their expression, catalytic activity, and trafficking. We sought to better envision that nutrient fluxes control the elaboration of glycans, not only at the level of their structure composition, but also through sweet regulating actors.
Collapse
Affiliation(s)
- James Biwi
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR 8576, UGSF, 59000 Lille, France.
| | - Christophe Biot
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR 8576, UGSF, 59000 Lille, France.
| | - Yann Guerardel
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR 8576, UGSF, 59000 Lille, France.
| | | | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR 8576, UGSF, 59000 Lille, France.
| |
Collapse
|
28
|
Very N, Lefebvre T, El Yazidi-Belkoura I. Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget 2018; 9:1380-1402. [PMID: 29416702 PMCID: PMC5787446 DOI: 10.18632/oncotarget.22377] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths in the world. Drug resistance of tumour cells remains the main challenge toward curative treatments efficiency. Several epidemiologic studies link emergence and recurrence of this cancer to metabolic disorders. Glycosylation that modifies more than 80% of human proteins is one of the most widepread nutrient-sensitive post-translational modifications. Aberrant glycosylation participates in the development and progression of cancer. Thus, some of these glycan changes like carbohydrate antigen CA 19-9 (sialyl Lewis a, sLea) or those found on carcinoembryonic antigen (CEA) are already used as clinical biomarkers to detect and monitor CRC. The current review highlights emerging evidences accumulated mainly during the last decade that establish the role played by altered glycosylations in CRC drug resistance mechanisms that induce resistance to apoptosis and activation of signaling pathways, alter drug absorption and metabolism, and led to stemness acquisition. Knowledge in this field of investigation could aid to the development of better therapeutic approaches with new predictive biomarkers and targets tied in with adapted diet.
Collapse
Affiliation(s)
- Ninon Very
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| | - Ikram El Yazidi-Belkoura
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| |
Collapse
|
29
|
Aquino-Gil MO, Kupferschmid M, Shams-Eldin H, Schmidt J, Yamakawa N, Mortuaire M, Krzewinski F, Hardivillé S, Zenteno E, Rolando C, Bray F, Pérez Campos E, Dubremetz JF, Perez-Cervera Y, Schwarz RT, Lefebvre T. Apart From Rhoptries, Identification of Toxoplasma gondii's O-GlcNAcylated Proteins Reinforces the Universality of the O-GlcNAcome. Front Endocrinol (Lausanne) 2018; 9:450. [PMID: 30177911 PMCID: PMC6109639 DOI: 10.3389/fendo.2018.00450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/20/2018] [Indexed: 11/23/2022] Open
Abstract
O-linked β-N-acetylglucosaminylation or O-GlcNAcylation is a widespread post-translational modification that belongs to the large and heterogeneous group of glycosylations. The functions managed by O-GlcNAcylation are diverse and include regulation of transcription, replication, protein's fate, trafficking, and signaling. More and more evidences tend to show that deregulations in the homeostasis of O-GlcNAcylation are involved in the etiology of metabolic diseases, cancers and neuropathologies. O-GlcNAc transferase or OGT is the enzyme that transfers the N-acetylglucosamine residue onto target proteins confined within the cytosolic and nuclear compartments. A form of OGT was predicted for Toxoplasma and recently we were the first to show evidence of O-GlcNAcylation in the apicomplexans Toxoplasma gondii and Plasmodium falciparum. Numerous studies have explored the O-GlcNAcome in a wide variety of biological models but very few focus on protists. In the present work, we used enrichment on sWGA-beads and immunopurification to identify putative O-GlcNAcylated proteins in Toxoplasma gondii. Many of the proteins found to be O-GlcNAcylated were originally described in higher eukaryotes and participate in cell shape organization, response to stress, protein synthesis and metabolism. In a more original way, our proteomic analyses, confirmed by sWGA-enrichment and click-chemistry, revealed that rhoptries, proteins necessary for invasion, are glycosylated. Together, these data show that regardless of proteins strictly specific to organisms, O-GlcNAcylated proteins are rather similar among living beings.
Collapse
Affiliation(s)
- Moyira Osny Aquino-Gil
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Instituto Tecnológico de Oaxaca, Tecnológico Nacional de México, Oaxaca, Mexico
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Mattis Kupferschmid
- Laboratory of Parasitology, Institute for Virology, Philipps-University, Marburg, Germany
| | - Hosam Shams-Eldin
- Laboratory of Parasitology, Institute for Virology, Philipps-University, Marburg, Germany
| | - Jörg Schmidt
- Laboratory of Parasitology, Institute for Virology, Philipps-University, Marburg, Germany
| | - Nao Yamakawa
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Marlène Mortuaire
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Frédéric Krzewinski
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Stéphan Hardivillé
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Edgar Zenteno
- Facultad de Medicina de la Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Christian Rolando
- CNRS, MSAP USR 3290, FR 3688 FRABIO, FR 2638 Institut Eugène-Michel Chevreul, Université de Lille, Lille, France
| | - Fabrice Bray
- CNRS, MSAP USR 3290, FR 3688 FRABIO, FR 2638 Institut Eugène-Michel Chevreul, Université de Lille, Lille, France
| | - Eduardo Pérez Campos
- Instituto Tecnológico de Oaxaca, Tecnológico Nacional de México, Oaxaca, Mexico
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Jean-François Dubremetz
- Unité Mixte de Recherche 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier, Montpellier, France
| | - Yobana Perez-Cervera
- Instituto Tecnológico de Oaxaca, Tecnológico Nacional de México, Oaxaca, Mexico
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Ralph T. Schwarz
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Laboratory of Parasitology, Institute for Virology, Philipps-University, Marburg, Germany
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Tony Lefebvre
| |
Collapse
|
30
|
Kupferschmid M, Aquino-Gil MO, Shams-Eldin H, Schmidt J, Yamakawa N, Krzewinski F, Schwarz RT, Lefebvre T. Identification of O-GlcNAcylated proteins in Plasmodium falciparum. Malar J 2017; 16:485. [PMID: 29187233 PMCID: PMC5707832 DOI: 10.1186/s12936-017-2131-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Post-translational modifications (PTMs) constitute a huge group of chemical modifications increasing the complexity of the proteomes of living beings. PTMs have been discussed as potential anti-malarial drug targets due to their involvement in many cell processes. O-GlcNAcylation is a widespread PTM found in different organisms including Plasmodium falciparum. The aim of this study was to identify O-GlcNAcylated proteins of P. falciparum, to learn more about the modification process and to understand its eventual functions in the Apicomplexans. METHODS The P. falciparum strain 3D7 was amplified in erythrocytes and purified. The proteome was checked for O-GlcNAcylation using different methods. The level of UDP-GlcNAc, the donor of the sugar moiety for O-GlcNAcylation processes, was measured using high-pH anion exchange chromatography. O-GlcNAcylated proteins were enriched and purified utilizing either click chemistry labelling or adsorption on succinyl-wheat germ agglutinin beads. Proteins were then identified by mass-spectrometry (nano-LC MS/MS). RESULTS While low when compared to MRC5 control cells, P. falciparum disposes of its own pool of UDP-GlcNAc. By using proteomics methods, 13 O-GlcNAcylated proteins were unambiguously identified (11 by click-chemistry and 6 by sWGA-beads enrichment; 4 being identified by the 2 approaches) in late trophozoites. These proteins are all part of pathways, functions and structures important for the parasite survival. By probing clicked-proteins with specific antibodies, Hsp70 and α-tubulin were identified as P. falciparum O-GlcNAc-bearing proteins. CONCLUSIONS This study is the first report on the identity of P. falciparum O-GlcNAcylated proteins. While the parasite O-GlcNAcome seems close to those of other species, the structural differences exhibited by the proteomes provides a glimpse of innovative therapeutic paths to fight malaria. Blocking biosynthesis of UDP-GlcNAc in the parasites is another promising option to reduce Plasmodium life cycle.
Collapse
Affiliation(s)
- Mattis Kupferschmid
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
| | - Moyira Osny Aquino-Gil
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.,Instituto Tecnológico de Oaxaca, Tecnológico Nacional de México, Oaxaca, Mexico.,Centro de Investigación UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Hosam Shams-Eldin
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
| | - Jörg Schmidt
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
| | - Nao Yamakawa
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Frédéric Krzewinski
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Ralph T Schwarz
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany.,Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.
| |
Collapse
|
31
|
Scott NE, Giogha C, Pollock GL, Kennedy CL, Webb AI, Williamson NA, Pearson JS, Hartland EL. The bacterial arginine glycosyltransferase effector NleB preferentially modifies Fas-associated death domain protein (FADD). J Biol Chem 2017; 292:17337-17350. [PMID: 28860194 DOI: 10.1074/jbc.m117.805036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/28/2017] [Indexed: 01/01/2023] Open
Abstract
The inhibition of host innate immunity pathways is essential for the persistence of attaching and effacing pathogens such as enteropathogenic Escherichia coli (EPEC) and Citrobacter rodentium during mammalian infections. To subvert these pathways and suppress the antimicrobial response, attaching and effacing pathogens use type III secretion systems to introduce effectors targeting key signaling pathways in host cells. One such effector is the arginine glycosyltransferase NleB1 (NleBCR in C. rodentium) that modifies conserved arginine residues in death domain-containing host proteins with N-acetylglucosamine (GlcNAc), thereby blocking extrinsic apoptosis signaling. Ectopically expressed NleB1 modifies the host proteins Fas-associated via death domain (FADD), TNFRSF1A-associated via death domain (TRADD), and receptor-interacting serine/threonine protein kinase 1 (RIPK1). However, the full repertoire of arginine GlcNAcylation induced by pathogen-delivered NleB1 is unknown. Using an affinity proteomic approach for measuring arginine-GlcNAcylated glycopeptides, we assessed the global profile of arginine GlcNAcylation during ectopic expression of NleB1, EPEC infection in vitro, or C. rodentium infection in vivo NleB overexpression resulted in arginine GlcNAcylation of multiple host proteins. However, NleB delivery during EPEC and C. rodentium infection caused rapid and preferential modification of Arg117 in FADD. This FADD modification was extremely stable and insensitive to physiological temperatures, glycosidases, or host cell degradation. Despite its stability and effect on the inhibition of apoptosis, arginine GlcNAcylation did not elicit any proteomic changes, even in response to prolonged NleB1 expression. We conclude that, at normal levels of expression during bacterial infection, NleB1/NleBCR antagonizes death receptor-induced apoptosis of infected cells by modifying FADD in an irreversible manner.
Collapse
Affiliation(s)
- Nichollas E Scott
- From the Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia,
| | - Cristina Giogha
- From the Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Georgina L Pollock
- From the Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Catherine L Kennedy
- From the Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Melbourne, Australia.,the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia, and
| | - Nicholas A Williamson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Jaclyn S Pearson
- From the Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Elizabeth L Hartland
- From the Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| |
Collapse
|