1
|
Mazheika IS, Kamzolkina OV. The curtain model as an alternative and complementary to the classic turgor concept of filamentous fungi. Arch Microbiol 2025; 207:65. [PMID: 39979668 DOI: 10.1007/s00203-025-04271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Turgor pressure is critically important for all organisms with the cell wall. In fungi, turgor is involved in the apical growth of hyphae, affects cell size, provides tension to the plasma membrane, creates the necessary rigidity for hyphae to penetrate the substrate, and has many other functions. However, there is increasing evidence that turgor pressure is not always the sole or main factor influencing some of these processes. This review characterizes the curtain model, previously proposed to describe the regulation of plasma membrane tension in the hyphae of basidiomycetes. The current understanding of the four main components of the model is outlined: the driving actin cytoskeleton, the elastic cell wall, tight adhesion of the plasma membrane to the cell wall, and macroinvaginations of the plasma membrane. All four elements, as a single model, complement or replace some physiological functions of turgor and allow us to understand how a non-apical fungal cell maintains its physiological functionality under changing environmental conditions. Further experimental confirmation of this model is fundamentally important for mycology and applied sciences.
Collapse
Affiliation(s)
- Igor S Mazheika
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, Russia, 119991.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 117971.
| | - Olga V Kamzolkina
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
2
|
Li J, Ma L, Mao S, Wang J, Luo Y. Adsorption Force of Fibronectin Regulates Protein Reorganization, Desorption, and Endocytosis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2156-2166. [PMID: 39828993 DOI: 10.1021/acs.langmuir.4c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Protein adsorption on biomaterials occurs before cell adhesion. To adapt the properties of biomaterials, adhered cells may utilize and modify adsorbed proteins for survival and function. In this process, the protein-material interfacial force (Fad) is supposed to play vital roles, which, however, has received little attention. Here, we found that rat mesenchymal stem cells (rMSCs) can utilize the adsorbed fibronectin (FN) via reorganization, desorption, or endocytosis, and these utilization processes are regulated by Fad through regulating cell adhesion and force balance between the cell traction force and Fad. Furthermore, protein utilization has an Fad-dependent temporal sequence. On low Fad surface, FN endocytosis might happen prior to FN desorption and aggregation. This work confirms the importance of Fad in protein utilization and provides new insight into the mechanism by which cells process their surrounding ECM proteins, which may help to guide the design of better biomaterials.
Collapse
Affiliation(s)
- Junyao Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Lin Ma
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilong Mao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jinfeng Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
3
|
Walker C, Chandrasekaran A, Mansour D, Graham K, Torres A, Wang L, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like condensates that bind actin promote assembly and bundling of actin filaments. Dev Cell 2025:S1534-5807(25)00032-2. [PMID: 39914390 DOI: 10.1016/j.devcel.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/30/2024] [Accepted: 01/15/2025] [Indexed: 02/12/2025]
Abstract
Biomolecular condensates perform diverse physiological functions. Previous work showed that VASP, a processive actin polymerase, forms condensates that assemble and bundle actin. Here, we show that this behavior does not require proteins with specific polymerase activity. Specifically, condensates composed of Lamellipodin, a protein that binds actin but is not an actin polymerase, were also capable of assembling actin filaments. To probe the minimum requirements for condensate-mediated actin bundling, we developed an agent-based computational model. Guided by its predictions, we hypothesized that any condensate-forming protein that binds filamentous actin could bundle filaments through multivalent crosslinking. To test this, we added a filamentous-actin-binding motif to Eps15, a condensate-forming protein that does not normally bind actin. The resulting chimera formed condensates that facilitated efficient assembly and bundling of actin filaments. Collectively, these findings broaden the family of proteins that could organize cytoskeletal filaments to include any filamentous-actin-binding protein that participates in protein condensation.
Collapse
Affiliation(s)
- Caleb Walker
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aravind Chandrasekaran
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Mansour
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Kristin Graham
- Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Andrea Torres
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA.
| | - Jeanne C Stachowiak
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Hu X, Wang Y, Wang R, Pu Y, Jin R, Nie Y, Shuai X. The hybrid lipoplex induces cytoskeletal rearrangement via autophagy/RhoA signaling pathway for enhanced anticancer gene therapy. Nat Commun 2025; 16:339. [PMID: 39747218 PMCID: PMC11696071 DOI: 10.1038/s41467-024-55727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025] Open
Abstract
Delivering plasmid DNA (pDNA) to solid tumors remains a significant challenge due to the requirement for multiple transport steps and the need to promote delivery efficiency. Herein, we present a virus-mimicking hybrid lipoplex, composed of an arginine-rich cationic lipid, hyaluronic acid derivatives coated gold nanoparticles, and pDNA. This system induces cytoskeletal rearrangements through "outside-in" mechanical and "inside-out" biochemical signaling, overcoming intra- and intercellular barriers to enhance pDNA delivery. By modulating autophagy, RhoA signaling, and cytoskeletal dynamics, we achieve a 20-fold increase in gene expression with high tissue specificity in solid tumors. Furthermore, the system is applied to co-deliver a p53 plasmid and an MDM2 inhibitor, demonstrating significant synergistic antitumor effects in hepatocellular and lung carcinomas.
Collapse
Affiliation(s)
- Xueyi Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Yichun Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Ruohan Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yu Nie
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, P. R. China
| |
Collapse
|
5
|
Du L, Hou YN, Fu DD, Li J, Ao J, Ma AX, Wan QQ, Wang ZG, Liu SL, Zhang LJ, Pang DW. Revealing Different Pathways for Influenza A Virus To Reach Microtubules after Endocytosis by Quantum Dot-Based Single-Virus Tracking. ACS NANO 2024; 18:23090-23103. [PMID: 39143650 DOI: 10.1021/acsnano.4c05261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Actin- and microtubule (MT)-based transport systems are essential for intracellular transport. During influenza A virus (IAV) infection, MTs provide long tracks for virus trafficking toward the nucleus. However, the role of the actin cytoskeleton in IAV entry and especially the transit process is still ambiguous. Here, by using quantum dot-based single-virus tracking, it was revealed that the actin cytoskeleton was crucial for the virus entry via clathrin-mediated endocytosis (CME). After entry via CME, the virus reached MTs through three different pathways: the virus (1) was driven by myosin VI to move along actin filaments to reach MTs (AF); (2) was propelled by actin tails assembled by an Arp2/3-dependent mechanism to reach MTs (AT); and (3) directly reached MTs without experiencing actin-related movement (NA). Therefore, the NA pathway was the main one and the fastest for the virus to reach MTs. The AT pathway was activated only when plenty of viruses entered the cell. The viruses transported by the AF and AT pathways shared similar moving velocities, durations, and displacements. This study comprehensively visualized the role of the actin cytoskeleton in IAV entry and transport, revealing different pathways for IAV to reach MTs after entry. The results are of great significance for globally understanding IAV infection and the cellular endocytic transport pathway.
Collapse
Affiliation(s)
- Lei Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yi-Ning Hou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Jing Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Jian Ao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Ai-Xin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Qian-Qian Wan
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Li-Juan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
6
|
Cao L, Huang S, Basant A, Mladenov M, Way M. CK-666 and CK-869 differentially inhibit Arp2/3 iso-complexes. EMBO Rep 2024; 25:3221-3239. [PMID: 39009834 PMCID: PMC11316031 DOI: 10.1038/s44319-024-00201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
The inhibitors, CK-666 and CK-869, are widely used to probe the function of Arp2/3 complex mediated actin nucleation in vitro and in cells. However, in mammals, the Arp2/3 complex consists of 8 iso-complexes, as three of its subunits (Arp3, ArpC1, ArpC5) are encoded by two different genes. Here, we used recombinant Arp2/3 with defined composition to assess the activity of CK-666 and CK-869 against iso-complexes. We demonstrate that both inhibitors prevent linear actin filament formation when ArpC1A- or ArpC1B-containing complexes are activated by SPIN90. In contrast, inhibition of actin branching depends on iso-complex composition. Both drugs prevent actin branch formation by complexes containing ArpC1A, but only CK-869 can inhibit ArpC1B-containing complexes. Consistent with this, in bone marrow-derived macrophages which express low levels of ArpC1A, CK-869 but not CK-666, impacted phagocytosis and cell migration. CK-869 also only inhibits Arp3- but not Arp3B-containing iso-complexes. Our findings have important implications for the interpretation of results using CK-666 and CK-869, given that the relative expression levels of ArpC1 and Arp3 isoforms in cells and tissues remains largely unknown.
Collapse
Affiliation(s)
- LuYan Cao
- The Francis Crick Institute, London, UK.
| | | | | | | | - Michael Way
- The Francis Crick Institute, London, UK.
- Department of Infectious Disease, Imperial College, London, UK.
| |
Collapse
|
7
|
Mesa D, Barbieri E, Raimondi A, Freddi S, Miloro G, Jendrisek G, Caldieri G, Quarto M, Schiano Lomoriello I, Malabarba MG, Bresci A, Manetti F, Vernuccio F, Abdo H, Scita G, Lanzetti L, Polli D, Tacchetti C, Pinton P, Bonora M, Di Fiore PP, Sigismund S. A tripartite organelle platform links growth factor receptor signaling to mitochondrial metabolism. Nat Commun 2024; 15:5119. [PMID: 38879572 PMCID: PMC11180189 DOI: 10.1038/s41467-024-49543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/08/2024] [Indexed: 06/19/2024] Open
Abstract
One open question in the biology of growth factor receptors is how a quantitative input (i.e., ligand concentration) is decoded by the cell to produce specific response(s). Here, we show that an EGFR endocytic mechanism, non-clathrin endocytosis (NCE), which is activated only at high ligand concentrations and targets receptor to degradation, requires a tripartite organelle platform involving the plasma membrane (PM), endoplasmic reticulum (ER) and mitochondria. At these contact sites, EGFR-dependent, ER-generated Ca2+ oscillations are sensed by mitochondria, leading to increased metabolism and ATP production. Locally released ATP is required for cortical actin remodeling and EGFR-NCE vesicle fission. The same biochemical circuitry is also needed for an effector function of EGFR, i.e., collective motility. The multiorganelle signaling platform herein described mediates direct communication between EGFR signaling and mitochondrial metabolism, and is predicted to have a broad impact on cell physiology as it is activated by another growth factor receptor, HGFR/MET.
Collapse
Affiliation(s)
- Deborah Mesa
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Andrea Raimondi
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Stefano Freddi
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Gorana Jendrisek
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Micaela Quarto
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Irene Schiano Lomoriello
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Grazia Malabarba
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | | | | | - Hind Abdo
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Scita
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR Institute for Photonics and Nanotechnology (CNR-IFN), Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Pier Paolo Di Fiore
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Sara Sigismund
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
8
|
Walker C, Chandrasekaran A, Mansour D, Graham K, Torres A, Wang L, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like condensates that bind actin drive filament polymerization and bundling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592527. [PMID: 38826190 PMCID: PMC11142076 DOI: 10.1101/2024.05.04.592527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Liquid-like protein condensates perform diverse physiological functions. Previous work showed that VASP, a processive actin polymerase, forms condensates that polymerize and bundle actin. To minimize their curvature, filaments accumulated at the inner condensate surface, ultimately deforming the condensate into a rod-like shape, filled with a bundle of parallel filaments. Here we show that this behavior does not require proteins with specific polymerase activity. Specifically, we found that condensates composed of Lamellipodin, a protein that binds actin but is not an actin polymerase, were also capable of polymerizing and bundling actin filaments. To probe the minimum requirements for condensate-mediated actin bundling, we developed an agent-based computational model. Guided by its predictions, we hypothesized that any condensate-forming protein that binds actin could bundle filaments through multivalent crosslinking. To test this idea, we added an actin-binding motif to Eps15, a condensate-forming protein that does not normally bind actin. The resulting chimera formed condensates that drove efficient actin polymerization and bundling. Collectively, these findings broaden the family of proteins that could organize cytoskeletal filaments to include any actin-binding protein that participates in protein condensation.
Collapse
Affiliation(s)
- Caleb Walker
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Aravind Chandrasekaran
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Daniel Mansour
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Kristin Graham
- Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Andrea Torres
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Jeanne C. Stachowiak
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
9
|
Lübke S, Braukmann C, Rexer KH, Cigoja L, Rout P, Önel SF. The Abl-interactor Abi suppresses the function of the BRAG2 GEF family member Schizo. Biol Open 2024; 13:bio058666. [PMID: 34897417 PMCID: PMC10810563 DOI: 10.1242/bio.058666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
Abstract
Guanine nucleotide exchange factors (GEF) of the BRAG subfamily activate small Arf GTPases, which are pivotal regulators of intracellular membrane traffic and actin dynamics. Consequently, BRAG proteins have been implicated to regulate the surface levels of adhesive and signaling receptors. However, not much is known about the mechanism leading to the regulation of these surface proteins. In this study, we found that the Drosophila BRAG GEF Schizo interacts physically with the Abl-interactor (Abi). schizo mutants display severe defects in myoblast fusion during syncytial muscle formation and show increased amounts of the cell adhesion protein N-cadherin. We demonstrate that the schizo myoblast fusion phenotype can be rescued by the expression of the Schizo GEF (Sec7) and membrane-binding (pleckstrin homology) domain. Furthermore, the expression of the Sec7-PH domain in a wild-type background decreases the amounts of N-cadherin and impairs myoblast fusion. These findings support the notion that the Sec7-PH domain serves as a constitutive-active form of Schizo. Using a yeast-two hybrid assay, we show that the SH3 domain of Abi interacts with the N-terminal region of Schizo. This region is also able to bind to the cytodomain of the cell adhesion molecule N-cadherin. To shed light on the function of Schizo and Abi in N-cadherin removal, we employed epistasis experiments in different developmental contexts of Drosophila. These studies point towards a new model for the regulation of Schizo. We propose that the binding of Abi to the N-terminal part of Schizo antagonizes Schizo function to inhibit N-cadherin removal.
Collapse
Affiliation(s)
- Stefanie Lübke
- Fachbereich Medizin, Department for Molecular Cell Physiology, Institute for Physiology and Pathophysiology, Philipps-Universität Marburg, Emil-Mannkopff-Str. 2, 35037 Marburg, Germany
- Fachbereich Biologie, Department for Developmental Biology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| | - Carina Braukmann
- Fachbereich Biologie, Department for Developmental Biology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Karl-Heinz Rexer
- Fachbereich Biologie, Department for Biodiversity of Plants, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Lubjinka Cigoja
- Fachbereich Biologie, Department for Developmental Biology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Pratiti Rout
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
- Fachbereich Biologie, Department for Molecular Embryology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Susanne F. Önel
- Fachbereich Medizin, Department for Molecular Cell Physiology, Institute for Physiology and Pathophysiology, Philipps-Universität Marburg, Emil-Mannkopff-Str. 2, 35037 Marburg, Germany
- Fachbereich Biologie, Department for Developmental Biology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
- Fachbereich Biologie, Department for Molecular Embryology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| |
Collapse
|
10
|
Ai Y, Guo C, Garcia-Contreras M, Sanchez LS, Saftics A, Shodubi O, Raghunandan S, Xu J, Tsai SJ, Dong Y, Li R, Jovanovic-Talisman T, Gould S. Syntenin and CD63 Promote Exosome Biogenesis from the Plasma Membrane by Blocking Cargo Endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542409. [PMID: 37292617 PMCID: PMC10245948 DOI: 10.1101/2023.05.26.542409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exosomes are small extracellular vesicles important in health and disease. Syntenin is thought to drive the biogenesis of CD63 exosomes by recruiting Alix and the ESCRT machinery to endosomes, initiating an endosome-mediated pathway of exosome biogenesis. Contrary to this model, we show here that syntenin drives the biogenesis of CD63 exosomes by blocking CD63 endocytosis, thereby allowing CD63 to accumulate at the plasma membrane, the primary site of exosome biogenesis. Consistent with these results, we find that inhibitors of endocytosis induce the exosomal secretion of CD63, that endocytosis inhibits the vesicular secretion of exosome cargo proteins, and that high-level expression of CD63 itself also inhibits endocytosis. These and other results indicate that exosomes bud primarily from the plasma membrane, that endocytosis inhibits their loading into exosomes, that syntenin and CD63 are expression-dependent regulators of exosome biogenesis, and that syntenin drives the biogenesis of CD63 exosomes even in Alix knockout cells.
Collapse
|
11
|
Banushi B, Joseph SR, Lum B, Lee JJ, Simpson F. Endocytosis in cancer and cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00574-6. [PMID: 37217781 DOI: 10.1038/s41568-023-00574-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.
Collapse
Affiliation(s)
- Blerida Banushi
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon R Joseph
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Lum
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jason J Lee
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
12
|
Machesky LM. CYRI proteins: controllers of actin dynamics in the cellular 'eat vs walk' decision. Biochem Soc Trans 2023; 51:579-585. [PMID: 36892409 PMCID: PMC10212538 DOI: 10.1042/bst20221354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Cells use actin-based protrusions not only to migrate, but also to sample their environment and take up liquids and particles, including nutrients, antigens and pathogens. Lamellipodia are sheet-like actin-based protrusions involved in sensing the substratum and directing cell migration. Related structures, macropinocytic cups, arise from lamellipodia ruffles and can take in large gulps of the surrounding medium. How cells regulate the balance between using lamellipodia for migration and macropinocytosis is not yet well understood. We recently identified CYRI proteins as RAC1-binding regulators of the dynamics of lamellipodia and macropinocytic events. This review discusses recent advances in our understanding of how cells regulate the balance between eating and walking by repurposing their actin cytoskeletons in response to environmental cues.
Collapse
Affiliation(s)
- Laura M. Machesky
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, U.K
- CRUK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
13
|
Friebel J, Schinnerling K, Weigt K, Heldt C, Fromm A, Bojarski C, Siegmund B, Epple HJ, Kikhney J, Moter A, Schneider T, Schulzke JD, Moos V, Schumann M. Uptake of Tropheryma whipplei by Intestinal Epithelia. Int J Mol Sci 2023; 24:ijms24076197. [PMID: 37047170 PMCID: PMC10094206 DOI: 10.3390/ijms24076197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Tropheryma whipplei (TW) can cause different pathologies, e.g., Whipple’s disease and transient gastroenteritis. The mechanism by which the bacteria pass the intestinal epithelial barrier, and the mechanism of TW-induced gastroenteritis are currently unknown. Methods: Using ex vivo disease models comprising human duodenal mucosa exposed to TW in Ussing chambers, various intestinal epithelial cell (IEC) cultures exposed to TW and a macrophage/IEC coculture model served to characterize endocytic uptake mechanisms and barrier function. Results: TW exposed ex vivo to human small intestinal mucosae is capable of autonomously entering IECs, thereby invading the mucosa. Using dominant-negative mutants, TW uptake was shown to be dynamin- and caveolin-dependent but independent of clathrin-mediated endocytosis. Complementary inhibitor experiments suggested a role for the activation of the Ras/Rac1 pathway and actin polymerization. TW-invaded IECs underwent apoptosis, thereby causing an epithelial barrier defect, and were subsequently subject to phagocytosis by macrophages. Conclusions: TW enters epithelia via an actin-, dynamin-, caveolin-, and Ras-Rac1-dependent endocytosis mechanism and consecutively causes IEC apoptosis primarily in IECs invaded by multiple TW bacteria. This results in a barrier leak. Moreover, we propose that TW-packed IECs can be subject to phagocytic uptake by macrophages, thereby opening a potential entry point of TW into intestinal macrophages.
Collapse
Affiliation(s)
- Julian Friebel
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Katina Schinnerling
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Kathleen Weigt
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Claudia Heldt
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Anja Fromm
- Institute of Clinical Physiology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Christian Bojarski
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Hans-Jörg Epple
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Judith Kikhney
- Institute for Microbiology, Infectious Diseases, and Immunology, Biofilmcenter, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- MoKi Analytics GmbH, 12207 Berlin, Germany
| | - Annette Moter
- Institute for Microbiology, Infectious Diseases, and Immunology, Biofilmcenter, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- German Konsiliarlabor for Tropheryma whipplei, 10117 Berlin, Germany
- Moter Diagnostics, 12207 Berlin, Germany
| | - Thomas Schneider
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Jörg D. Schulzke
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Institute of Clinical Physiology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Verena Moos
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Michael Schumann
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513536
| |
Collapse
|
14
|
Echinacea purpurea-derived homogeneous polysaccharide exerts anti-tumor efficacy via facilitating M1 macrophage polarization. Innovation (N Y) 2023; 4:100391. [PMID: 36873268 PMCID: PMC9974447 DOI: 10.1016/j.xinn.2023.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Echinacea purpurea modulates tumor progression, but the underlying mechanism is poorly defined. We isolated and purified a novel homogeneous polysaccharide from E. purpurea (EPPA), which was shown to be an arabinogalactan with a mean molecular mass (Mr) of 3.8 × 104 Da and with α- (1 → 5) -L-Arabinan as the backbone and α-L-Araf-(1→, →6)-β-D-Galp-(1→, and →4)-α-D-GalpA-(1→ as the side chains. Interestingly, oral administration of EPPA suppresses tumor progression in vivo and shapes the immune cell profile (e.g., facilitating M1 macrophages) in tumor microenvironment by single-cell RNA sequencing (scRNA-seq) analysis. More importantly, EPPA activates the inflammasome through a phagocytosis-dependent mechanism and rewires transcriptomic and metabolic profile, thereby potentiating M1 macrophage polarization. Collectively, we propose that EPPA supplementation could function as an adjuvant therapeutic strategy for tumor suppression.
Collapse
|
15
|
Redpath GMI, Ananthanarayanan V. Endosomal sorting sorted - motors, adaptors and lessons from in vitro and cellular studies. J Cell Sci 2023; 136:292583. [PMID: 36861885 DOI: 10.1242/jcs.260749] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Motor proteins are key players in exerting spatiotemporal control over the intracellular location of membrane-bound compartments, including endosomes containing cargo. In this Review, we focus on how motors and their cargo adaptors regulate positioning of cargoes from the earliest stages of endocytosis and through the two main intracellular itineraries: (1) degradation at the lysosome or (2) recycling back to the plasma membrane. In vitro and cellular (in vivo) studies on cargo transport thus far have typically focussed independently on either the motor proteins and adaptors, or membrane trafficking. Here, we will discuss recent studies to highlight what is known about the regulation of endosomal vesicle positioning and transport by motors and cargo adaptors. We also emphasise that in vitro and cellular studies are often performed at different scales, from single molecules to whole organelles, with the aim to provide a perspective on the unified principles of motor-driven cargo trafficking in living cells that can be learned from these differing scales.
Collapse
Affiliation(s)
- Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
16
|
Yang C, Colosi P, Hugelier S, Zabezhinsky D, Lakadamyali M, Svitkina T. Actin polymerization promotes invagination of flat clathrin-coated lattices in mammalian cells by pushing at lattice edges. Nat Commun 2022; 13:6127. [PMID: 36253374 PMCID: PMC9576739 DOI: 10.1038/s41467-022-33852-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) requires energy input from actin polymerization in mechanically challenging conditions. The roles of actin in CME are poorly understood due to inadequate knowledge of actin organization at clathrin-coated structures (CCSs). Using platinum replica electron microscopy of mammalian cells, we show that Arp2/3 complex-dependent branched actin networks, which often emerge from microtubule tips, assemble along the CCS perimeter, lack interaction with the apical clathrin lattice, and have barbed ends oriented toward the CCS. This structure is hardly compatible with the widely held "apical pulling" model describing actin functions in CME. Arp2/3 complex inhibition or epsin knockout produce large flat non-dynamic CCSs, which split into invaginating subdomains upon recovery from Arp2/3 inhibition. Moreover, epsin localization to CCSs depends on Arp2/3 activity. We propose an "edge pushing" model for CME, wherein branched actin polymerization promotes severing and invagination of flat CCSs in an epsin-dependent manner by pushing at the CCS boundary, thus releasing forces opposing the intrinsic curvature of clathrin lattices.
Collapse
Affiliation(s)
- Changsong Yang
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | - Patricia Colosi
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Siewert Hugelier
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Daniel Zabezhinsky
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | - Melike Lakadamyali
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Tatyana Svitkina
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
17
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
18
|
McShane AN, Malinova D. The Ins and Outs of Antigen Uptake in B cells. Front Immunol 2022; 13:892169. [PMID: 35572544 PMCID: PMC9097226 DOI: 10.3389/fimmu.2022.892169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
A review of our current knowledge of B cell antigen uptake mechanisms, the relevance of these processes to pathology, and outstanding questions in the field. Specific antigens induce B cell activation through the B cell receptor (BCR) which initiates downstream signaling and undergoes endocytosis. While extensive research has shed light on the signaling pathways in health and disease, the endocytic mechanisms remain largely uncharacterized. Given the importance of BCR-antigen internalization for antigen presentation in initiating adaptive immune responses and its role in autoimmunity and malignancy, understanding the molecular mechanisms represents critical, and largely untapped, potential therapeutics. In this review, we discuss recent advancements in our understanding of BCR endocytic mechanisms and the role of the actin cytoskeleton and post-translational modifications in regulating BCR uptake. We discuss dysregulated BCR endocytosis in the context of B cell malignancies and autoimmune disorders. Finally, we pose several outstanding mechanistic questions which will critically advance our understanding of the coordination between BCR endocytosis and B cell activation.
Collapse
Affiliation(s)
- Adam Nathan McShane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Dessislava Malinova
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
19
|
Dhanda AS, Guttman JA. Localization of host endocytic and actin-associated proteins during Shigella flexneri intracellular motility and intercellular spreading. Anat Rec (Hoboken) 2022; 306:1088-1110. [PMID: 35582740 DOI: 10.1002/ar.24955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022]
Abstract
Shigella flexneri (S. flexneri), the causative agent of bacillary dysentery, uses an effector-mediated strategy to hijack host cells and cause disease. To propagate and spread within human tissues, S. flexneri bacteria commandeer the host actin cytoskeleton to generate slender actin-rich comet tails to move intracellularly, and later, plasma membrane actin-based protrusions to move directly between adjacent host cells. To facilitate intercellular bacterial spreading, large micron-sized endocytic-like membrane invaginations form at the periphery of neighboring host cells that come into contact with S. flexneri-containing membrane protrusions. While S. flexneri comet tails and membrane protrusions consist primarily of host actin cytoskeletal proteins, S. flexneri membrane invaginations remain poorly understood with only clathrin and the clathrin adapter epsin-1 localized to the structures. Tangentially, we recently reported that Listeria monocytogenes, another actin-hijacking pathogen, exploits an assortment of caveolar and actin-bundling proteins at their micron-sized membrane invaginations formed during their cell-to-cell movement. Thus, to further characterize the S. flexneri disease process, we set out to catalog the distribution of a variety of actin-associated and caveolar proteins during S. flexneri actin-based motility and cell-to-cell spreading. Here we show that actin-associated proteins found at L. monocytogenes comet tails and membrane protrusions mimic those present at S. flexneri comet tails with the exception of α-actinins 1 and 4, which were shed from S. flexneri membrane protrusions. We also demonstrate that all known host endocytic components found at L. monocytogenes membrane invaginations are also present at those formed during S. flexneri infections.
Collapse
Affiliation(s)
- Aaron Singh Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian Andrew Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
20
|
Schiano Lomoriello I, Sigismund S, Day KJ. Biophysics of endocytic vesicle formation: A focus on liquid–liquid phase separation. Curr Opin Cell Biol 2022; 75:102068. [DOI: 10.1016/j.ceb.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
|
21
|
Jones JH, Minshall RD. Endothelial Transcytosis in Acute Lung Injury: Emerging Mechanisms and Therapeutic Approaches. Front Physiol 2022; 13:828093. [PMID: 35431977 PMCID: PMC9008570 DOI: 10.3389/fphys.2022.828093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration causing hypoxemia and death in a substantial number of affected individuals. Loss of endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment into the injured lung are recognized mechanisms that contribute to the progression of ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative and positive bacteria or viruses (e.g., Escherichia coli, SARS-Cov-2) leads to increased protein and fluid permeability and interstitial edema, further impairing lung function. While most of the vascular leakage is attributed to loss of inter-endothelial junctional integrity, studies in animal models suggest that transendothelial transport of protein through caveolar vesicles, known as transcytosis, occurs in the early phase of ALI/ARDS. Here, we discuss the role of transcytosis in healthy and injured endothelium and highlight recent studies that have contributed to our understanding of the process during ALI/ARDS. We also cover potential approaches that utilize caveolar transport to deliver therapeutics to the lungs which may prevent further injury or improve recovery.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,Department of Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,*Correspondence: Richard D. Minshall,
| |
Collapse
|
22
|
Peruń A, Gębicka M, Biedroń R, Skalska P, Józefowski S. The CD36 and SR-A/CD204 scavenger receptors fine-tune Staphylococcus aureus-stimulated cytokine production in mouse macrophages. Cell Immunol 2022; 372:104483. [DOI: 10.1016/j.cellimm.2022.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
23
|
Redpath G, Deo N. Serotonin: an overlooked regulator of endocytosis and endosomal sorting? Biol Open 2022; 11:bio059057. [PMID: 35076063 PMCID: PMC8801889 DOI: 10.1242/bio.059057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
Serotonin is a neurotransmitter and a hormone that is typically associated with regulating our mood. However, the serotonin transporter and receptors are expressed throughout the body, highlighting the much broader, systemic role of serotonin in regulating human physiology. A substantial body of data strongly implicates serotonin as a fundamental regulator of endocytosis and endocytic sorting. Serotonin has the potential to enhance endocytosis through three distinct mechanisms - serotonin signalling, serotonylation and insertion into the plasma membrane - although the interplay and relationship between these mechanisms has not yet been explored. Endocytosis is central to the cellular response to the extracellular environment, controlling receptor distribution on the plasma membrane to modulate signalling, neurotransmitter release and uptake, circulating protein and lipid cargo uptake, and amino acid internalisation for cell proliferation. Uncovering the range of cellular and physiological circumstances in which serotonin regulates endocytosis is of great interest for our understanding of how serotonin regulates mood, and also the fundamental understanding of endocytosis and its regulation throughout the body. This article has an associated Future Leader to Watch interview with the first author of the paper.
Collapse
Affiliation(s)
- Gregory Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| | - Nikita Deo
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
24
|
Mazheika IS, Kamzolkina OV. Does macrovesicular endocytosis occur in fungal hyphae? FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
mDia1 Assembles a Linear F-Actin Coat at Membrane Invaginations To Drive Listeria monocytogenes Cell-to-Cell Spreading. mBio 2021; 12:e0293921. [PMID: 34781738 PMCID: PMC8593688 DOI: 10.1128/mbio.02939-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Direct cell-to-cell spreading of Listeria monocytogenes requires the bacteria to induce actin-based finger-like membrane protrusions in donor host cells that are endocytosed through caveolin-rich membrane invaginations by adjacent receiving cells. An actin shell surrounds these endocytic sites; however, its structure, composition, and functional significance remain elusive. Here, we show that the formin mDia1, but surprisingly not the Arp2/3 complex, is enriched at the membrane invaginations generated by L. monocytogenes during HeLa and Jeg-3 cell infections. Electron microscopy reveals a band of linear actin filaments that run along the longitudinal axis of the invagination membrane. Mechanistically, mDia1 expression is vital for the assembly of this F-actin shell. mDia1 is also required for the recruitment of Filamin A, a caveola-associated F-actin cross-linking protein, and caveolin-1 to the invaginations. Importantly, mixed-cell infection assays show that optimal caveolin-based L. monocytogenes cell-to-cell spreading correlates with the formation of the linear actin filament-containing shell by mDia1. IMPORTANCE Listeria monocytogenes spreads from one cell to another to colonize tissues. This cell-to-cell movement requires the propulsive force of an actin-rich comet tail behind the advancing bacterium, which ultimately distends the host plasma membrane into a slender bacterium-containing membrane protrusion. These membrane protrusions induce a corresponding invagination in the membrane of the adjacent host cell. The host cell that receives the protrusion utilizes caveolin-based endocytosis to internalize the structures, and filamentous actin lines these membrane invaginations. Here, we set out to determine the structure and function of this filamentous actin "shell." We demonstrate that the formin mDia1, but not the Arp2/3 complex, localizes to the invaginations. Morphologically, we show that this actin is organized into linear arrays and not branched dendritic networks. Mechanistically, we show that the actin shell is assembled by mDia1 and that mDia1 is required for efficient cell-to-cell transfer of L. monocytogenes.
Collapse
|
26
|
Liu W, Tang D, Xu XX, Liu YJ, Jiu Y. How Physical Factors Coordinate Virus Infection: A Perspective From Mechanobiology. Front Bioeng Biotechnol 2021; 9:764516. [PMID: 34778236 PMCID: PMC8585752 DOI: 10.3389/fbioe.2021.764516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Pandemics caused by viruses have threatened lives of thousands of people. Understanding the complicated process of viral infection provides significantly directive implication to epidemic prevention and control. Viral infection is a complex and diverse process, and substantial studies have been complemented in exploring the biochemical and molecular interactions between viruses and hosts. However, the physical microenvironment where infections implement is often less considered, and the role of mechanobiology in viral infection remains elusive. Mechanobiology focuses on sensation, transduction, and response to intracellular and extracellular physical factors by tissues, cells, and extracellular matrix. The intracellular cytoskeleton and mechanosensors have been proven to be extensively involved in the virus life cycle. Furthermore, innovative methods based on micro- and nanofabrication techniques are being utilized to control and modulate the physical and chemical cell microenvironment, and to explore how extracellular factors including stiffness, forces, and topography regulate viral infection. Our current review covers how physical factors in the microenvironment coordinate viral infection. Moreover, we will discuss how this knowledge can be harnessed in future research on cross-fields of mechanobiology and virology.
Collapse
Affiliation(s)
- Wei Liu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Daijiao Tang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Xin Xu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Dabbagh Moghaddam F, Ma J, Mattoli V, Tay FR. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. NANO TODAY 2021; 40:101279. [PMID: 34518771 PMCID: PMC8425779 DOI: 10.1016/j.nantod.2021.101279] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Humans are exposed to nanoscopical nanobiovectors (e.g. coronavirus SARS-CoV-2) as well as abiotic metal/carbon-based nanomaterials that enter cells serendipitously or intentionally. Understanding the interactions of cell membranes with these abiotic and biotic nanostructures will facilitate scientists to design better functional nanomaterials for biomedical applications. Such knowledge will also provide important clues for the control of viral infections and the treatment of virus-induced infectious diseases. In the present review, the mechanisms of endocytosis are reviewed in the context of how nanomaterials are uptaken into cells. This is followed by a detailed discussion of the attributes of man-made nanomaterials (e.g. size, shape, surface functional groups and elasticity) that affect endocytosis, as well as the different human cell types that participate in the endocytosis of nanomaterials. Readers are then introduced to the concept of viruses as nature-derived nanoparticles. The mechanisms in which different classes of viruses interact with various cell types to gain entry into the human body are reviewed with examples published over the last five years. These basic tenets will enable the avid reader to design advanced drug delivery and gene transfer nanoplatforms that harness the knowledge acquired from endocytosis to improve their biomedical efficacy. The review winds up with a discussion on the hurdles to be addressed in mimicking the natural mechanisms of endocytosis in nanomaterials design.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Meiling Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
28
|
Colombero C, Remy D, Antoine‐Bally S, Macé A, Monteiro P, ElKhatib N, Fournier M, Dahmani A, Montaudon E, Montagnac G, Marangoni E, Chavrier P. mTOR Repression in Response to Amino Acid Starvation Promotes ECM Degradation Through MT1-MMP Endocytosis Arrest. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101614. [PMID: 34250755 PMCID: PMC8425857 DOI: 10.1002/advs.202101614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Indexed: 05/02/2023]
Abstract
Under conditions of starvation, normal and tumor epithelial cells can rewire their metabolism toward the consumption of extracellular proteins, including extracellular matrix-derived components as nutrient sources. The mechanism of pericellular matrix degradation by starved cells has been largely overlooked. Here it is shown that matrix degradation by breast and pancreatic tumor cells and patient-derived xenograft explants increases by one order of magnitude upon amino acid and growth factor deprivation. In addition, it is found that collagenolysis requires the invadopodia components, TKS5, and the transmembrane metalloproteinase, MT1-MMP, which are key to the tumor invasion program. Increased collagenolysis is controlled by mTOR repression upon nutrient depletion or pharmacological inhibition by rapamycin. The results reveal that starvation hampers clathrin-mediated endocytosis, resulting in MT1-MMP accumulation in arrested clathrin-coated pits. The study uncovers a new mechanism whereby mTOR repression in starved cells leads to the repurposing of abundant plasma membrane clathrin-coated pits into robust ECM-degradative assemblies.
Collapse
Affiliation(s)
| | - David Remy
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
| | | | - Anne‐Sophie Macé
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
- Cell and Tissue Imaging Facility (PICT‐IBiSA)Institut CuriePSL Research UniversityParis75005France
| | - Pedro Monteiro
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
| | - Nadia ElKhatib
- Gustave Roussy InstituteUniversité Paris‐SaclayINSERM U1279Villejuif94805France
| | - Margot Fournier
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
| | - Ahmed Dahmani
- Translational Research DepartmentInstitut CuriePSL Research UniversityParis75005France
| | - Elodie Montaudon
- Translational Research DepartmentInstitut CuriePSL Research UniversityParis75005France
| | - Guillaume Montagnac
- Gustave Roussy InstituteUniversité Paris‐SaclayINSERM U1279Villejuif94805France
| | - Elisabetta Marangoni
- Translational Research DepartmentInstitut CuriePSL Research UniversityParis75005France
| | | |
Collapse
|
29
|
Cotman SL, Lefrancois S. CLN3, at the crossroads of endocytic trafficking. Neurosci Lett 2021; 762:136117. [PMID: 34274435 DOI: 10.1016/j.neulet.2021.136117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022]
Abstract
The CLN3 gene was identified over two decades ago, but the primary function of the CLN3 protein remains unknown. Recessive inheritance of loss of function mutations in CLN3 are responsible for juvenile neuronal ceroid lipofuscinosis (Batten disease, or CLN3 disease), a fatal childhood onset neurodegenerative disease causing vision loss, seizures, progressive dementia, motor function loss and premature death. CLN3 is a multipass transmembrane protein that primarily localizes to endosomes and lysosomes. Defects in endocytosis, autophagy, and lysosomal function are common findings in CLN3-deficiency model systems. However, the molecular mechanisms underlying these defects have not yet been fully elucidated. In this mini-review, we will summarize the current understanding of the CLN3 protein interaction network and discuss how this knowledge is starting to delineate the molecular pathogenesis of CLN3 disease. Accumulating evidence strongly points towards CLN3 playing a role in regulation of the cytoskeleton and cytoskeletal associated proteins to tether cellular membranes, regulation of membrane complexes such as channels/transporters, and modulating the function of small GTPases to effectively mediate vesicular movement and membrane dynamics.
Collapse
Affiliation(s)
- Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Mass General Research Institute, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, United States.
| | - Stéphane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval H7V 1B7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Canada.
| |
Collapse
|
30
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
31
|
Capitani N, Baldari CT. F-Actin Dynamics in the Regulation of Endosomal Recycling and Immune Synapse Assembly. Front Cell Dev Biol 2021; 9:670882. [PMID: 34249926 PMCID: PMC8265274 DOI: 10.3389/fcell.2021.670882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Membrane proteins endocytosed at the cell surface as vesicular cargoes are sorted at early endosomes for delivery to lysosomes for degradation or alternatively recycled to different cellular destinations. Cargo recycling is orchestrated by multimolecular complexes that include the retromer, retriever, and the WASH complex, which promote the polymerization of new actin filaments at early endosomes. These endosomal actin pools play a key role at different steps of the recycling process, from cargo segregation to specific endosomal subdomains to the generation and mobility of tubulo-vesicular transport carriers. Local F-actin pools also participate in the complex redistribution of endomembranes and organelles that leads to the acquisition of cell polarity. Here, we will present an overview of the contribution of endosomal F-actin to T-cell polarization during assembly of the immune synapse, a specialized membrane domain that T cells form at the contact with cognate antigen-presenting cells.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
32
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
33
|
Chakrabarti R, Lee M, Higgs HN. Multiple roles for actin in secretory and endocytic pathways. Curr Biol 2021; 31:R603-R618. [PMID: 34033793 DOI: 10.1016/j.cub.2021.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actin filaments play multiple roles in the secretory pathway and in endosome dynamics in mammals, including maintenance of Golgi structure, release of membrane cargo from the trans-Golgi network (TGN), endocytosis, and endosomal sorting dynamics. In addition, TGN carrier transport and endocytosis both occur by multiple mechanisms in mammals. Actin likely plays a role in at least four mammalian endocytic pathways, five pathways for membrane release from the TGN, and three processes involving endosomes. Also, the mammalian Golgi structure is highly dynamic, and actin is likely important for these dynamics. One challenge for many of these processes is the need to deal with other membrane-associated structures, such as the cortical actin network at the plasma membrane or the matrix that surrounds the Golgi. Arp2/3 complex is a major actin assembly factor in most of the processes mentioned, but roles for formins and tandem WH2-motif-containing assembly factors are being elucidated and are anticipated to grow with further study. The specific role for actin has not been defined for most of these processes, but is likely to involve the generation of force for membrane dynamics, either by actin polymerization itself or by myosin motor activity. Defining these processes mechanistically is necessary for understanding membrane dynamics in general, as well as pathways that utilize these processes, such as autophagy.
Collapse
Affiliation(s)
- Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Miriam Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
34
|
Burrinha T, Martinsson I, Gomes R, Terrasso AP, Gouras GK, Almeida CG. Up-regulation of APP endocytosis by neuronal aging drives amyloid dependent-synapse loss. J Cell Sci 2021; 134:240244. [PMID: 33910234 DOI: 10.1242/jcs.255752] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal aging increases the risk of late-onset Alzheimer's disease. During normal aging, synapses decline, and β-amyloid (Aβ) accumulates intraneuronally. However, little is known about the underlying cell biological mechanisms. We studied normal neuronal aging using normal aged brain and aged mouse primary neurons that accumulate lysosomal lipofuscin and show synapse loss. We identify the up-regulation of amyloid precursor protein (APP) endocytosis as a neuronal aging mechanism that potentiates APP processing and Aβ production in vitro and in vivo. The increased APP endocytosis may contribute to the observed early endosomes enlargement in the aged brain. Mechanistically, we show that clathrin-dependent APP endocytosis requires F-actin and that clathrin and endocytic F-actin increase with neuronal aging. Finally, Aβ production inhibition reverts synaptic decline in aged neurons while Aβ accumulation, promoted by endocytosis up-regulation in younger neurons, recapitulates aging-related synapse decline. Overall, we identify APP endocytosis up-regulation as a potential mechanism of neuronal aging and, thus, a novel target to prevent late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Tatiana Burrinha
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa,Portugal
| | - Isak Martinsson
- Experimental Dementia Research Unit, Lund University, 22184 Lund, Sweden
| | - Ricardo Gomes
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa,Portugal.,iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ana Paula Terrasso
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa,Portugal.,iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Lund University, 22184 Lund, Sweden
| | - Cláudia Guimas Almeida
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa,Portugal
| |
Collapse
|
35
|
Camblor-Perujo S, Kononenko NL. Brain-specific functions of the endocytic machinery. FEBS J 2021; 289:2219-2246. [PMID: 33896112 DOI: 10.1111/febs.15897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis is an essential cellular process required for multiple physiological functions, including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. In a broad sense, endocytosis is accomplished through either constitutive or ligand-induced invagination of the plasma membrane, which results in the formation of the plasma membrane-retrieved endocytic vesicles, which can either be sent for degradation to the lysosomes or recycled back to the PM. This additional function of endocytosis in membrane retrieval has been adopted by excitable cells, such as neurons, for membrane equilibrium maintenance at synapses. The last two decades were especially productive with respect to the identification of brain-specific functions of the endocytic machinery, which additionally include but not limited to regulation of neuronal differentiation and migration, maintenance of neuron morphology and synaptic plasticity, and prevention of neurotoxic aggregates spreading. In this review, we highlight the current knowledge of brain-specific functions of endocytic machinery with a specific focus on three brain cell types, neuronal progenitor cells, neurons, and glial cells.
Collapse
Affiliation(s)
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, University of Cologne, Germany.,Center for Physiology & Pathophysiology, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
36
|
Dynamic control of the dopamine transporter in neurotransmission and homeostasis. NPJ Parkinsons Dis 2021; 7:22. [PMID: 33674612 PMCID: PMC7935902 DOI: 10.1038/s41531-021-00161-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
The dopamine transporter (DAT) transports extracellular dopamine into the intracellular space contributing to the regulation of dopamine neurotransmission. A reduction of DAT density is implicated in Parkinson's disease (PD) by neuroimaging; dopamine turnover is dopamine turnover is elevated in early symptomatic PD and in presymptomatic individuals with monogenic mutations causal for parkinsonism. As an integral plasma membrane protein, DAT surface expression is dynamically regulated through endocytic trafficking, enabling flexible control of dopamine signaling in time and space, which in turn critically modulates movement, motivation and learning behavior. Yet the cellular machinery and functional implications of DAT trafficking remain enigmatic. In this review we summarize mechanisms governing DAT trafficking under normal physiological conditions and discuss how PD-linked mutations may disturb DAT homeostasis. We highlight the complexity of DAT trafficking and reveal DAT dysregulation as a common theme in genetic models of parkinsonism.
Collapse
|
37
|
Papalazarou V, Machesky LM. The cell pushes back: The Arp2/3 complex is a key orchestrator of cellular responses to environmental forces. Curr Opin Cell Biol 2021; 68:37-44. [PMID: 32977244 PMCID: PMC7938217 DOI: 10.1016/j.ceb.2020.08.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
The Arp2/3 complex orchestrates the formation of branched actin networks at the interface between the cytoplasm and membranes. Although it is widely appreciated that these networks are useful for scaffolding, creating pushing forces and delineating zones at the membrane interface, it has only recently come to light that branched actin networks are mechanosensitive, giving them special properties. Here, we discuss recent advances in our understanding of how Arp2/3-generated actin networks respond to load forces and thus allow cells to create pushing forces in responsive and tuneable ways to effect cellular processes such as migration, invasion, phagocytosis, adhesion and even nuclear and DNA damage repair.
Collapse
Affiliation(s)
- Vassilis Papalazarou
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Laura M Machesky
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, Garscube Estate, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
38
|
Li Z, Li B, Wang J, Lu Y, Chen AFY, Sun K, Yu Y, Chen S. GAA deficiency promotes angiogenesis through upregulation of Rac1 induced by autophagy disorder. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118969. [PMID: 33513417 DOI: 10.1016/j.bbamcr.2021.118969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 01/14/2023]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, is vital for vertebrate development and adult homeostasis. Acid α-glucosidase (GAA) is a glycoside hydrolase involved in the lysosomal breakdown of glycogen. Our previous study showed that GAA was highly expressed in mouse pulmonary veins. While whether GAA was involved in angiogenesis remained largely unknown, thus, we performed knockdown experiments both in vivo and in vitro and endothelial cell function experiments to clarify this concern point. We identified that GAA expressed widely at different levels during zebrafish embryonic development and GAA morphants showed excessive angiogenesis of ISV at later stage. In GAA knockdown HUVECs, the migration and tube formation capacity were increased, resulted from the formation of large lamellipodia-like protrusions at the edge of cells. By analyzing autophagic flux, we found that autophagy disorder was the mechanism of GAA knockdown-induced excessive angiogenesis. The block of autophagic flux caused upregulation of Rac1, a small GTPase, and the latter promoted excessive sprouts in zebrafish and enhanced angiogenic behavior in HUVECs. In addition, overexpression of transcription factor E3, a master regulator of autophagy, rescued upregulation of RAC1 and enhanced angiogenic function in GAA-knockdown HUVECs. Also, inhibition of Rac1 partly restored enhanced angiogenic function in GAA-knockdown HUVECs. Taken together, our study firstly reported a novel function of GAA in angiogenesis which is mediated by upregulation of Rac1 induced by autophagy disorder.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baolei Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yanan Lu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Alex F Y Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yu Yu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
39
|
Overhoff M, De Bruyckere E, Kononenko NL. Mechanisms of neuronal survival safeguarded by endocytosis and autophagy. J Neurochem 2020; 157:263-296. [PMID: 32964462 DOI: 10.1111/jnc.15194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Multiple aspects of neuronal physiology crucially depend on two cellular pathways, autophagy and endocytosis. During endocytosis, extracellular components either unbound or recognized by membrane-localized receptors (termed "cargo") become internalized into plasma membrane-derived vesicles. These can serve to either recycle the material back to the plasma membrane or send it for degradation to lysosomes. Autophagy also uses lysosomes as a terminal degradation point, although instead of degrading the plasma membrane-derived cargo, autophagy eliminates detrimental cytosolic material and intracellular organelles, which are transported to lysosomes by means of double-membrane vesicles, referred to as autophagosomes. Neurons, like all non-neuronal cells, capitalize on autophagy and endocytosis to communicate with the environment and maintain protein and organelle homeostasis. Additionally, the highly polarized, post-mitotic nature of neurons made them adopt these two pathways for cell-specific functions. These include the maintenance of the synaptic vesicle pool in the pre-synaptic terminal and the long-distance transport of signaling molecules. Originally discovered independently from each other, it is now clear that autophagy and endocytosis are closely interconnected and share several common participating molecules. Considering the crucial role of autophagy and endocytosis in cell type-specific functions in neurons, it is not surprising that defects in both pathways have been linked to the pathology of numerous neurodegenerative diseases. In this review, we highlight the recent knowledge of the role of endocytosis and autophagy in neurons with a special focus on synaptic physiology and discuss how impairments in genes coding for autophagy and endocytosis proteins can cause neurodegeneration.
Collapse
Affiliation(s)
- Melina Overhoff
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Elodie De Bruyckere
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Li H, Liu S, Wu S, Ge R, Cheng CY. NC1-Peptide From Collagen α3 (IV) Chains in the Basement Membrane of Testes Regulates Spermatogenesis via p-FAK-Y407. Endocrinology 2020; 161:5881724. [PMID: 32761085 PMCID: PMC7478323 DOI: 10.1210/endocr/bqaa133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023]
Abstract
The blood-testis barrier (BTB) in the testis is an important ultrastructure to support spermatogenesis. This blood-tissue barrier undergoes remodeling at late stage VII to early stage IX of the epithelial cycle to support the transport of preleptotene spermatocytes across the BTB to prepare for meiosis I/II at the apical compartment through a mechanism that remains to be delineated. Studies have shown that NC1-peptide-derived collagen α3 (IV) chain in the basement membrane is a bioactive peptide that induces BTB remodeling. It also promotes the release of fully developed spermatids into the tubule lumen. Thus, this endogenously produced peptide coordinates these 2 cellular events across the seminiferous epithelium. Using an NC1-peptide complementary deoxyribonucleic acid (cDNA) construct to transfect adult rat testes for overexpression, NC1-peptide was found to effectively induce germ cell exfoliation and BTB remodeling, which was associated with a surge and activation of p-rpS6, the downstream signaling protein of mTORC1 and the concomitant downregulation of p-FAK-Y407 in the testis. In order to define the functional relationship between p-rpS6 and p-FAK-Y407 signaling to confer the ability of NC1-peptide to regulate testis function, a phosphomimetic (and thus constitutively active) mutant of p-FAK-Y407 (p-FAK-Y407E-MT) was used for its co-transfection, utilizing Sertoli cells cultured in vitro with a functional tight junction (TJ) barrier that mimicked the BTB in vivo. Overexpression of p-FAK-Y407E-MT blocked the effects of NC1-peptide to perturb Sertoli cell BTB function by promoting F-actin and microtubule cytoskeleton function, and downregulated the NC1-peptide-mediated induction of p-rpS6 activation. In brief, NC1-peptide is an important endogenously produced biomolecule that regulates BTB dynamics.
Collapse
Affiliation(s)
- Huitao Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Siwen Wu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- Correspondence: C. Yan Cheng, PhD, Senior Scientist, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065. E-mail:
| |
Collapse
|
41
|
Mazheika I, Voronko O, Kamzolkina O. Early endocytosis as a key to understanding mechanisms of plasma membrane tension regulation in filamentous fungi. Biol Cell 2020; 112:409-426. [PMID: 32860722 DOI: 10.1111/boc.202000066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Two main systems regulate plasma membrane tension (PMT) and provide a close connection between the protoplast and the cell wall in fungi: turgor pressure and the actin cytoskeleton. These systems work together with the plasma membrane focal adhesion to the cell wall and their contribution to fungal cell organization and physiology has been partially studied. However, it remains controversial in model filamentous ascomycetes and oomycetes and even less investigated in filamentous basidiomycetes. Early endocytosis can be used to research the mechanisms regulating PMT since the dynamics of early endocytosis is largely dependent on this tension. RESULTS This study examined the effects of actin polymerization inhibitors and hyperosmotic shock on early endocytosis and cell morphology in two filamentous basidiomycetes. The main obtained results are: (i) the depolymerisation of F-actin leads to the fast formation of endocytic pits while inhibiting of their scission from the plasma membrane and (ii) the moderate hyperosmotic shock does not affect the dynamics of early endocytosis. These and our other results have allowed suggesting a curtain model for the regulation of PMT in basidiomycetes. CONCLUSIONS AND SIGNIFICANCE According to the proposed curtain model, the PMT in many non-apical cells of hyphae is more often regulated not by turgor pressure but by a system of actin driver cables that are associated with the proteins of the focal adhesion sites. The change in PMT occurs similar to the movement of a curtain along the curtain rod using the curtain drivers. This model addresses the fundamental properties of the fungal structure and physiology. It requires confirmation including the currently technically unavailable high-quality labelling of the actin cytoskeleton of the basidiomycetes.
Collapse
Affiliation(s)
- Igor Mazheika
- Department of mycology and algology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Oksana Voronko
- Department of mycology and algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga Kamzolkina
- Department of mycology and algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
42
|
Casamento A, Boucrot E. Molecular mechanism of Fast Endophilin-Mediated Endocytosis. Biochem J 2020; 477:2327-2345. [PMID: 32589750 PMCID: PMC7319585 DOI: 10.1042/bcj20190342] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Clathrin-mediated endocytosis (CME) is the housekeeping pathway in resting cells but additional Clathrin-independent endocytic (CIE) routes, including Fast Endophilin-Mediated Endocytosis (FEME), internalize specific cargoes and support diverse cellular functions. FEME is part of the Dynamin-dependent subgroup of CIE pathways. Here, we review our current understanding of the molecular mechanism of FEME. Key steps are: (i) priming, (ii) cargo selection, (iii) membrane curvature and carrier formation, (iv) membrane scission and (v) cytosolic transport. All steps are controlled by regulatory mechanisms mediated by phosphoinositides and by kinases such as Src, LRRK2, Cdk5 and GSK3β. A key feature of FEME is that it is not constitutively active but triggered upon the stimulation of selected cell surface receptors by their ligands. In resting cells, there is a priming cycle that concentrates Endophilin into clusters on discrete locations of the plasma membrane. In the absence of receptor activation, the patches quickly abort and new cycles are initiated nearby, constantly priming the plasma membrane for FEME. Upon activation, receptors are swiftly sorted into pre-existing Endophilin clusters, which then bud to form FEME carriers within 10 s. We summarize the hallmarks of FEME and the techniques and assays required to identify it. Next, we review similarities and differences with other CIE pathways and proposed cargoes that may use FEME to enter cells. Finally, we submit pending questions and future milestones and discuss the exciting perspectives that targeting FEME may boost treatments against cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandra Casamento
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, U.K
| |
Collapse
|
43
|
Endogenously produced LG3/4/5-peptide protects testes against toxicant-induced injury. Cell Death Dis 2020; 11:436. [PMID: 32513914 PMCID: PMC7280515 DOI: 10.1038/s41419-020-2608-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022]
Abstract
Laminin-α2 chain is one of the major constituent proteins of the basement membrane in the mammalian testis. The laminin-type globular (LG) domains of LG3, 4 and 5 (LG3/4/5, an 80 kDa fragment) can be cleaved from laminin-α2 chain at the C-terminus via the action of matrix metalloproteinase 9 (MMP-9). This LG3/4/5 is a biologically active fragment, capable of modulating the Sertoli cell blood–testis barrier (BTB) function by tightening the barrier both in vitro and in vivo. Overexpression of LG3/4/5 cloned into a mammalian expression vector pCI-neo in Sertoli cells in a Sertoli cell in vitro model with a functional BTB also protected Sertoli cells from cadmium chloride (CdCl2, an environmental toxicant) mediated cell injury. Importantly, overexpression of LG3/4/5 in the testis in vivo was found to block or rescue cadmium-induced BTB disruption and testis injury. LG3/4/5 was found to exert its BTB and spermatogenesis promoting effects through corrective spatiotemporal expression of actin- and MT-based regulatory proteins by maintaining the cytoskeletons in the testis, illustrating the therapeutic implication of this novel bioactive fragment.
Collapse
|
44
|
Walpole GFW, Grinstein S. Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides. F1000Res 2020; 9. [PMID: 32494357 PMCID: PMC7233180 DOI: 10.12688/f1000research.22393.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Despite their comparatively low abundance in biological membranes, phosphoinositides are key to the regulation of a diverse array of signaling pathways and direct membrane traffic. The role of phosphoinositides in the initiation and progression of endocytic pathways has been studied in considerable depth. Recent advances have revealed that distinct phosphoinositide species feature prominently in clathrin-dependent and -independent endocytosis as well as in phagocytosis and macropinocytosis. Moreover, a variety of intracellular and cell-associated pathogens have developed strategies to commandeer host cell phosphoinositide metabolism to gain entry and/or metabolic advantage, thereby promoting their survival and proliferation. Here, we briefly survey the current knowledge on the involvement of phosphoinositides in endocytosis, phagocytosis, and macropinocytosis and highlight several examples of molecular mimicry employed by pathogens to either “hitch a ride” on endocytic pathways endogenous to the host or create an entry path of their own.
Collapse
Affiliation(s)
- Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
45
|
Liu D, Fu X, Wang Y, Wang X, Wang H, Wen J, Kang N. Protein diaphanous homolog 1 (Diaph1) promotes myofibroblastic activation of hepatic stellate cells by regulating Rab5a activity and TGFβ receptor endocytosis. FASEB J 2020; 34:7345-7359. [PMID: 32304339 PMCID: PMC7686927 DOI: 10.1096/fj.201903033r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 01/19/2023]
Abstract
TGFβ induces the differentiation of hepatic stellate cells (HSCs) into tumor-promoting myofibroblasts but underlying mechanisms remain incompletely understood. Because endocytosis of TGFβ receptor II (TβRII), in response to TGFβ stimulation, is a prerequisite for TGF signaling, we investigated the role of protein diaphanous homolog 1 (known as Diaph1 or mDia1) for the myofibroblastic activation of HSCs. Using shRNA to knockdown Diaph1 or SMIFH2 to target Diaph1 activity of HSCs, we found that the inactivation of Diaph1 blocked internalization and intracellular trafficking of TβRII and reduced SMAD3 phosphorylation induced by TGFβ1. Mechanistic studies revealed that the N-terminal portion of Diaph1 interacted with both TβRII and Rab5a directly and that Rab5a activity of HSCs was increased by Diaph1 overexpression and decreased by Diaph1 knockdown. Additionally, expression of Rab5aQ79L (active Rab5a mutant) increased whereas the expression of Rab5aS34N (inactive mutant) reduced the endosomal localization of TβRII in HSCs compared to the expression of wild-type Rab5a. Functionally, TGFβ stimulation promoted HSCs to express tumor-promoting factors, and α-smooth muscle actin, fibronection, and CTGF, markers of myofibroblastic activation of HSCs. Targeting Diaph1 or Rab5a suppressed HSC activation and limited tumor growth in a tumor implantation mouse model. Thus, Dipah1 and Rab5a represent targets for inhibiting HSC activation and the hepatic tumor microenvironment.
Collapse
Affiliation(s)
- Donglian Liu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xinhui Fu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Hua Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jialing Wen
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|
46
|
Mazheika I, Voronko O, Kudryavtseva O, Novoselova D, Pozdnyakov L, Mukhin V, Kolomiets O, Kamzolkina O. Nitrogen-obtaining and -conserving strategies in xylotrophic basidiomycetes. Mycologia 2020; 112:455-473. [PMID: 32238121 DOI: 10.1080/00275514.2020.1716567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nitrogen in sufficient quantities is strictly necessary for all living organisms. In this study, the ability of some xylotrophic basidiomycetes to grow extremely long on a solid growth medium full of carbon nutrition but lacking a nitrogen source in its composition was discovered. The nitrogen oligotrophy of wood-decaying fungi is associated with their adaptation to live in a wood substrate, which is also deficient in nitrogen content. This nitrogen-depleted cultural growth is called "pseudo-foraging" and can be used as a simplified model of wood-decaying growth. Four main nitrogen-obtaining and -conserving strategies (nitrogen concentration, using alternative sources of nitrogen, economy of growth, and nutritional recycling), which are attributed to wood-colonizing xylotrophs in the literature, were revised studying the pseudo-foraging model. Based on the results, some aspects of the behavior of xylotrophs deep in undecomposed wood were predicted. For example, one of the results is that for pseudo-foraging xylotrophs, the main way to obtain nitrogen is its concentration in their mycelium from the nutrient medium in which nitrogen is contained in the impurities of the components of the medium. The result suggests that in bulk solid wood, the nitrogen concentration strategy also dominates the strategy of using diazotrophic and other alternative nitrogen. In addition, three individual unprecedented mechanisms, which supposedly help the xylotrophic fungi to colonize wood in nature (generation of fine mycelium, macrovesicular endocytosis, formation and conversion of super-elongated mitochondria), were investigated in the laboratory.
Collapse
Affiliation(s)
- Igor Mazheika
- Lomonosov Moscow State University , Moscow, Russia, 119991.,Vavilov Institute of General Genetics, Russian Academy of Sciences , Moscow, Russia, 117971
| | - Oxana Voronko
- Lomonosov Moscow State University , Moscow, Russia, 119991
| | | | | | - Lev Pozdnyakov
- Lomonosov Moscow State University , Moscow, Russia, 119991
| | - Viktor Mukhin
- Institute of Plant and Animal Ecology, Ural Branch Russian Academy of Sciences , Yekaterinburg, Russia, 620144
| | - Oxana Kolomiets
- Vavilov Institute of General Genetics, Russian Academy of Sciences , Moscow, Russia, 117971
| | | |
Collapse
|
47
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
48
|
Roper SI, Wasim L, Malinova D, Way M, Cox S, Tolar P. B cells extract antigens at Arp2/3-generated actin foci interspersed with linear filaments. eLife 2019; 8:e48093. [PMID: 31815664 PMCID: PMC6917489 DOI: 10.7554/elife.48093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Antibody production depends on B cell internalization and presentation of antigens to helper T cells. To acquire antigens displayed by antigen-presenting cells, B cells form immune synapses and extract antigens by the mechanical activity of the acto-myosin cytoskeleton. While cytoskeleton organization driving the initial formation of the B cell synapse has been studied, how the cytoskeleton supports antigen extraction remains poorly understood. Here we show that after initial cell spreading, F-actin in synapses of primary mouse B cells and human B cell lines forms a highly dynamic pattern composed of actin foci interspersed with linear filaments and myosin IIa. The foci are generated by Arp2/3-mediated branched-actin polymerization and stochastically associate with antigen clusters to mediate internalization. However, antigen extraction also requires the activity of formins, which reside near the foci and produce the interspersed filaments. Thus, a cooperation of branched-actin foci supported by linear filaments underlies B cell mechanics during antigen extraction.
Collapse
Affiliation(s)
- Sophie I Roper
- Immune Receptor Activation LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - Laabiah Wasim
- Immune Receptor Activation LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - Dessislava Malinova
- Immune Receptor Activation LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
- Division of Immunology and Inflammation, Department of MedicineImperial College LondonLondonUnited Kingdom
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - Susan Cox
- Randall Centre for Cell and Molecular BiophysicsKing’s College LondonLondonUnited Kingdom
| | - Pavel Tolar
- Immune Receptor Activation LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
- Division of Immunology and Inflammation, Department of MedicineImperial College LondonLondonUnited Kingdom
| |
Collapse
|
49
|
Min P, Zhao S, Liu L, Zhang Y, Ma Y, Zhao X, Wang Y, Song Y, Zhu C, Jiang H, Gu L, Du J. MICAL-L2 potentiates Cdc42-dependent EGFR stability and promotes gastric cancer cell migration. J Cell Mol Med 2019; 23:4475-4488. [PMID: 31034158 PMCID: PMC6533512 DOI: 10.1111/jcmm.14353] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/29/2019] [Accepted: 04/12/2019] [Indexed: 01/21/2023] Open
Abstract
Enhanced migration potential is a common characteristic of cancer cells induced by mechanisms that are incompletely defined. The present study was designed to investigate relationship of a new discovered cytoskeleton regulator MICAL‐L2 and the endogenous epidermal growth factor receptor (EGFR) signalling pathways in gastric cancer cell migration. Increased expression of MICAL‐L2 in gastric cancer cells up‐regulated EGFR protein level, accompanied by the increase of cell migration, whereas silencing MICAL‐L2 down‐regulated EGFR and inhibited cell migration. Expression of MICAL‐L2 was also shown positively correlated with the activation of HSP27/cytoskeleton and HSP27/β‐catenin signalling pathways that provide key mechanisms controlling cell migration. The up‐regulating effect of MICAL‐L2 on EGFR is mediated through a transcription‐independent mechanism that involves inhibiting EGFR protein degradation in lysosome. Further analysis indicated that Cdc42 activation contributed in maintaining the effect of MICAL‐L2 on EGFR stability. Furthermore analysis of clinic specimens revealed increased expression of MICAL‐L2 in carcinoma tissues and a positive correlation between MICAL‐L2 and EGFR expression levels. The above results indicate that MICAL‐L2 potentiates gastric cell migration via inhibiting EGFR degradation in lysosome via a Cdc42‐dependent manner that leads to the activation of EGFR/HSP27 signalling pathways.
Collapse
Affiliation(s)
- Pengxiang Min
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yadong Ma
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuyang Zhao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yixuan Song
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenchen Zhu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haonan Jiang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
50
|
Shitara A, Malec L, Ebrahim S, Chen D, Bleck C, Hoffman MP, Weigert R. Cdc42 negatively regulates endocytosis during apical membrane maintenance in live animals. Mol Biol Cell 2018; 30:324-332. [PMID: 30540520 PMCID: PMC6589572 DOI: 10.1091/mbc.e18-10-0615] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lumen establishment and maintenance are fundamental for tubular organs physiological functions. Most of the studies investigating the mechanisms regulating this process have been carried out in cell cultures or in smaller organisms, whereas little has been done in mammalian model systems in vivo. Here we used the salivary glands of live mice to examine the role of the small GTPase Cdc42 in the regulation of the homeostasis of the intercellular canaliculi, a specialized apical domain of the acinar cells, where protein and fluid secretion occur. Depletion of Cdc42 in adult mice induced a significant expansion of the apical canaliculi, whereas depletion at late embryonic stages resulted in a complete inhibition of their postnatal formation. In addition, intravital subcellular microscopy revealed that reduced levels of Cdc42 affected membrane trafficking from and toward the plasma membrane, highlighting a novel role for Cdc42 in membrane remodeling through the negative regulation of selected endocytic pathways.
Collapse
Affiliation(s)
- Akiko Shitara
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lenka Malec
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Seham Ebrahim
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Desu Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742
| | - Christopher Bleck
- Electron Microscopy Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institutes of Health, Bethesda, MD 20892
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Intracellular Membrane Trafficking Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|