1
|
Rodrigues ML, Janbon G, O'Connell RJ, Chu TTH, May RC, Jin H, Reis FCG, Alves LR, Puccia R, Fill TP, Rizzo J, Zamith-Miranda D, Miranda K, Gonçalves T, Ene IV, Kabani M, Anderson M, Gow NAR, Andes DR, Casadevall A, Nosanchuk JD, Nimrichter L. Characterizing extracellular vesicles of human fungal pathogens. Nat Microbiol 2025; 10:825-835. [PMID: 40148564 PMCID: PMC12035713 DOI: 10.1038/s41564-025-01962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Since their discovery in 2007, there has been growing awareness of the importance of fungal extracellular vesicles (EVs) for fungal physiology, host-pathogen interactions and virulence. Fungal EVs are nanostructures comprising bilayered membranes and molecules of various types that participate in several pathophysiological processes in fungal biology, including secretion, cellular communication, immunopathogenesis and drug resistance. However, many questions remain regarding the classification of EVs, their cellular origin, passage across the cell wall, experimental models for functional and compositional analyses, production in vitro and in vivo and biomarkers for EVs. Here, we discuss gaps in the literature of fungal EVs and identify key questions for the field. We present the history of fungal EV discovery, discuss five major unanswered questions in fungal EV biology and provide future perspectives for fungal EV research. We primarily focus our discussion on human fungal pathogens, but also extend it to include knowledge of other fungi, such as plant pathogens. With this Perspective we hope to stimulate new approaches and expand studies to understand the biology of fungal EVs.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil.
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Guilhem Janbon
- RNA Biology of Fungal Pathogens Unit, Department of Mycology, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Thi-Thu-Huyen Chu
- BIOGER Research Unit, INRAE, Université Paris-Saclay, Paris, France
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24 and CNRS UMS3633, Paris, France
| | - Robin C May
- Institute of Microbiology and Infection and School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Flavia C G Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | | | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Taicia P Fill
- Institute of Chemistry, State University of Campinas, São Paulo, Brazil
| | - Juliana Rizzo
- Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Zamith-Miranda
- Departments of Medicine (Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Kildare Miranda
- Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Teresa Gonçalves
- Center for Neuroscience and Cell Biology and Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, University Coimbra, Coimbra, Portugal
| | - Iuliana V Ene
- Fungal Heterogeneity Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mehdi Kabani
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CNRS and CEA, Paris, France
| | - Marilyn Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Joshua D Nosanchuk
- Departments of Medicine (Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Rede Micologia RJ-Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Dartois V, Dick T. Toward better cures for Mycobacterium abscessus lung disease. Clin Microbiol Rev 2024; 37:e0008023. [PMID: 39360834 PMCID: PMC11629636 DOI: 10.1128/cmr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
SUMMARYThe opportunistic pathogen Mycobacterium abscessus (Mab) causes fatal lung infections that bear similarities-and notable differences-with tuberculosis (TB) pulmonary disease. In contrast to TB, no antibiotic is formally approved to treat Mab disease, there is no reliable cure, and the discovery and development pipeline is incredibly thin. Here, we discuss the factors behind the unsatisfactory cure rates of Mab disease, namely intrinsic resistance and persistence of the pathogen, and the use of underperforming, often parenteral and toxic, repurposed drugs. We propose preclinical strategies to build injectable-free sterilizing and safe regimens: (i) prioritize oral bactericidal antibiotic classes, with an initial focus on approved agents or advanced clinical candidates to provide immediate options for desperate patients, (ii) test drug combinations early, (iii) optimize novel leads specifically for M. abscessus, and (iv) consider pharmacokinetic-pharmacodynamic targets at the site of disease, the lung lesions in which drug tolerant bacterial populations reside. Knowledge and tool gaps in the preclinical drug discovery process are identified, including validated mouse models and computational platforms to enable in vitro mouse-human translation. We briefly discuss recent advances in clinical development, the need for readouts and biomarkers that correlate with cure, and clinical trial concepts adapted to the uniqueness of Mab patient populations for new regimen development. In an era when most pharmaceutical firms have withdrawn from antimicrobial drug discovery, the breakthroughs needed to fill the regimen development pipeline will likely come from partnerships between academia, biotech, pharma, non-profit organizations, and governments, with incentives that reward cooperation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
3
|
Brown GD, Ballou ER, Bates S, Bignell EM, Borman AM, Brand AC, Brown AJP, Coelho C, Cook PC, Farrer RA, Govender NP, Gow NAR, Hope W, Hoving JC, Dangarembizi R, Harrison TS, Johnson EM, Mukaremera L, Ramsdale M, Thornton CR, Usher J, Warris A, Wilson D. The pathobiology of human fungal infections. Nat Rev Microbiol 2024; 22:687-704. [PMID: 38918447 DOI: 10.1038/s41579-024-01062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Human fungal infections are a historically neglected area of disease research, yet they cause more than 1.5 million deaths every year. Our understanding of the pathophysiology of these infections has increased considerably over the past decade, through major insights into both the host and pathogen factors that contribute to the phenotype and severity of these diseases. Recent studies are revealing multiple mechanisms by which fungi modify and manipulate the host, escape immune surveillance and generate complex comorbidities. Although the emergence of fungal strains that are less susceptible to antifungal drugs or that rapidly evolve drug resistance is posing new threats, greater understanding of immune mechanisms and host susceptibility factors is beginning to offer novel immunotherapeutic options for the future. In this Review, we provide a broad and comprehensive overview of the pathobiology of human fungal infections, focusing specifically on pathogens that can cause invasive life-threatening infections, highlighting recent discoveries from the pathogen, host and clinical perspectives. We conclude by discussing key future challenges including antifungal drug resistance, the emergence of new pathogens and new developments in modern medicine that are promoting susceptibility to infection.
Collapse
Affiliation(s)
- Gordon D Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Elizabeth R Ballou
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Steven Bates
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elaine M Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Andrew M Borman
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Carolina Coelho
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Nelesh P Govender
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - William Hope
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - J Claire Hoving
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Rachael Dangarembizi
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Thomas S Harrison
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elizabeth M Johnson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Liliane Mukaremera
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Mark Ramsdale
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
4
|
Wang X, Lee JC. Staphylococcus aureus membrane vesicles: an evolving story. Trends Microbiol 2024; 32:1096-1105. [PMID: 38677977 PMCID: PMC11511790 DOI: 10.1016/j.tim.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
Staphylococcus aureus is an important bacterial pathogen that causes a wide variety of human diseases in community and hospital settings. S. aureus employs a diverse array of virulence factors, both surface-associated and secreted, to promote colonization, infection, and immune evasion. Over the past decade, a growing body of research has shown that S. aureus generates extracellular membrane vesicles (MVs) that package a variety of bacterial components, many of which are virulence factors. In this review, we summarize recent advances in our understanding of S. aureus MVs and highlight their biogenesis, cargo, and potential role in the pathogenesis of staphylococcal infections. Lastly, we present some emerging questions in the field.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
5
|
Guryanova SV. Bacteria and Allergic Diseases. Int J Mol Sci 2024; 25:10298. [PMID: 39408628 PMCID: PMC11477026 DOI: 10.3390/ijms251910298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Microorganisms colonize all barrier tissues and are present on the skin and all mucous membranes from birth. Bacteria have many ways of influencing the host organism, including activation of innate immunity receptors by pathogen-associated molecular patterns and synthesis of various chemical compounds, such as vitamins, short-chain fatty acids, bacteriocins, toxins. Bacteria, using extracellular vesicles, can also introduce high-molecular compounds, such as proteins and nucleic acids, into the cell, regulating the metabolic pathways of the host cells. Epithelial cells and immune cells recognize bacterial bioregulators and, depending on the microenvironment and context, determine the direction and intensity of the immune response. A large number of factors influence the maintenance of symbiotic microflora, the diversity of which protects hosts against pathogen colonization. Reduced bacterial diversity is associated with pathogen dominance and allergic diseases of the skin, gastrointestinal tract, and upper and lower respiratory tract, as seen in atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, and asthma. Understanding the multifactorial influence of microflora on maintaining health and disease determines the effectiveness of therapy and disease prevention and changes our food preferences and lifestyle to maintain health and active longevity.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; ; Tel.: +7-(915)3150073
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
6
|
Huang S, Lin J, Han X. Extracellular vesicles-Potential link between periodontal disease and diabetic complications. Mol Oral Microbiol 2024; 39:225-239. [PMID: 38227219 DOI: 10.1111/omi.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024]
Abstract
It has long been suggested that a bidirectional impact exists between periodontitis and diabetes. Periodontitis may affect diabetes glycemic control, insulin resistance, and diabetic complications. Diabetes can worsen periodontitis by delaying wound healing and increasing the chance of infection. Extracellular vesicles (EVs) are heterogeneous particles of membrane-enclosed spherical structure secreted by eukaryotes and prokaryotes and play a key role in a variety of diseases. This review will introduce the biogenesis, release, and biological function of EVs from a microbial and host cell perspective, discuss the functional properties of EVs in the development of periodontitis and diabetes, and explore their role in the pathogenesis and clinical application of these two diseases. Their clinical implication and diagnostic value are also discussed.
Collapse
Affiliation(s)
- Shengyuan Huang
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiang Lin
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaozhe Han
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
7
|
Li Z, Barnaby R, Nymon A, Roche C, Koeppen K, Ashare A, Hogan DA, Gerber SA, Taatjes DJ, Hampton TH, Stanton BA. P. aeruginosa tRNA-fMet halves secreted in outer membrane vesicles suppress lung inflammation in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2024; 326:L574-L588. [PMID: 38440830 PMCID: PMC11380944 DOI: 10.1152/ajplung.00018.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/06/2024] Open
Abstract
Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.
Collapse
Affiliation(s)
- Zhongyou Li
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Amanda Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Carolyn Roche
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Katja Koeppen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
- Pulmonary and Critical Care Medicine, Dartmouth Health Medical Center, Lebanon, New Hampshire, United States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Scott A Gerber
- Dartmouth Health Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Center for Biomedical Shared Resources, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| |
Collapse
|
8
|
Castelli RF, Pereira A, Honorato L, Valdez A, de Oliveira HC, Bazioli JM, Garcia AWA, Klimeck TDF, Reis FCG, Camillo-Andrade AC, Santos MDM, Carvalho PC, Zaragoza O, Staats CC, Nimrichter L, Fill TP, Rodrigues ML. Corrected and republished from: "Extracellular Vesicle Formation in Cryptococcus deuterogattii Impacts Fungal Virulence". Infect Immun 2024; 92:e0003724. [PMID: 38470135 PMCID: PMC11003230 DOI: 10.1128/iai.00037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024] Open
Abstract
Small molecules are components of fungal extracellular vesicles (EVs), but their biological roles are only superficially known. NOP16 is a eukaryotic gene that is required for the activity of benzimidazoles against Cryptococcus deuterogattii. In this study, during the phenotypic characterization of C. deuterogattii mutants expected to lack NOP16 expression, we observed a reduced EV production. Whole-genome sequencing, RNA-Seq, and cellular proteomics revealed that, contrary to our initial findings, these mutants expressed Nop16 but exhibited altered expression of 14 genes potentially involved in sugar transport. Based on this observation, we designated these mutant strains as Past1 and Past2, representing potentially altered sugar transport. Analysis of the small molecule composition of EVs produced by wild-type cells and the Past1 and Past2 mutant strains revealed not only a reduced number of EVs but also an altered small molecule composition. In a Galleria mellonella model of infection, the Past1 and Past2 mutant strains were hypovirulent. The hypovirulent phenotype was reverted when EVs produced by wild-type cells, but not mutant EVs, were co-injected with the mutant cells in G. mellonella. These results connect EV biogenesis, cargo, and cryptococcal virulence.
Collapse
Affiliation(s)
- Rafael F. Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Alana Pereira
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Leandro Honorato
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Valdez
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jaqueline M. Bazioli
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ane W. A. Garcia
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Flavia C. G. Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Marlon D. M. Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Analytical Biochemistry and Proteomics Unit. IIBCE/Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paulo C. Carvalho
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Oscar Zaragoza
- Mycology Reference Laboratory. National Centre for Microbiology. Instituto de Salud Carlos III, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases, CB21/13/00105, Instituto de Salud Carlos III, Madrid, Spain
| | - Charley C. Staats
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taícia P. Fill
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Li Z, Barnaby R, Nymon A, Roche C, Koeppen K, Ashare A, Hogan DA, Gerber SA, Taatjes DJ, Hampton TH, Stanton BA. P. aeruginosa tRNA-fMet halves secreted in outer membrane vesicles suppress lung inflammation in Cystic Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578737. [PMID: 38352468 PMCID: PMC10862835 DOI: 10.1101/2024.02.03.578737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa . The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lung, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection. New and noteworthy The experiments in this report identify a novel mechanim whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet haves in OMVs secreted by P. aeruginiosa , which reduced the OMV-LPS induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF. Graphical abstract The anti-inflammatory effect of tobramycin mediated by 5' tRNA-fMet halves secreted in P. aeruginosa OMVs. (A) P. aeruginosa colonizes the CF lungs and secrets OMVs. OMVs diffuse through the mucus layer overlying bronchial epithelial cells and induce IL-8 secretion, which recruits neutrophils that causes lung damage. ( B ) Tobramycin increases 5' tRNA-fMet halves in OMVs secreted by P. aeruginosa . 5' tRNA-fMet halves are delivered into host cells after OMVs fuse with lipid rafts in CF-HBEC and down-regulate protein expression of MAPK10, IKBKG, and EP300, which suppresses IL-8 secretion and neutrophils in the lungs. A reduction in neutrophils in CF BALF is predicted to improve lung function and decrease lung damage.
Collapse
|
10
|
Nenciarini S, Cavalieri D. Immunomodulatory Potential of Fungal Extracellular Vesicles: Insights for Therapeutic Applications. Biomolecules 2023; 13:1487. [PMID: 37892168 PMCID: PMC10605264 DOI: 10.3390/biom13101487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicular organelles that perform a variety of biological functions including cell communication across different biological kingdoms. EVs of mammals and, to a lesser extent, bacteria have been deeply studied over the years, whereas investigations of fungal EVs are still in their infancy. Fungi, encompassing both yeast and filamentous forms, are increasingly recognized for their production of extracellular vesicles (EVs) containing a wealth of proteins, lipids, and nucleic acids. These EVs play pivotal roles in orchestrating fungal communities, bolstering pathogenicity, and mediating interactions with the environment. Fungal EVs have emerged as promising candidates for innovative applications, not only in the management of mycoses but also as carriers for therapeutic molecules. Yet, numerous questions persist regarding fungal EVs, including their mechanisms of generation, release, cargo regulation, and discharge. This comprehensive review delves into the present state of knowledge regarding fungal EVs and provides fresh insights into the most recent hypotheses on the mechanisms driving their immunomodulatory properties. Furthermore, we explore the considerable potential of fungal EVs in the realms of medicine and biotechnology. In the foreseeable future, engineered fungal cells may serve as vehicles for tailoring cargo- and antigen-specific EVs, positioning them as invaluable biotechnological tools for diverse medical applications, such as vaccines and drug delivery.
Collapse
Affiliation(s)
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
11
|
Cheng AP, Kwon S, Adeshara T, Göhre V, Feldbrügge M, Weiberg A. Extracellular RNAs released by plant-associated fungi: from fundamental mechanisms to biotechnological applications. Appl Microbiol Biotechnol 2023; 107:5935-5945. [PMID: 37572124 PMCID: PMC10485130 DOI: 10.1007/s00253-023-12718-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/14/2023]
Abstract
Extracellular RNAs are an emerging research topic in fungal-plant interactions. Fungal plant pathogens and symbionts release small RNAs that enter host cells to manipulate plant physiology and immunity. This communication via extracellular RNAs between fungi and plants is bidirectional. On the one hand, plants release RNAs encapsulated inside extracellular vesicles as a defense response as well as for intercellular and inter-organismal communication. On the other hand, recent reports suggest that also full-length mRNAs are transported within fungal EVs into plants, and these fungal mRNAs might get translated inside host cells. In this review article, we summarize the current views and fundamental concepts of extracellular RNAs released by plant-associated fungi, and we discuss new strategies to apply extracellular RNAs in crop protection against fungal pathogens. KEY POINTS: • Extracellular RNAs are an emerging topic in plant-fungal communication. • Fungi utilize RNAs to manipulate host plants for colonization. • Extracellular RNAs can be engineered to protect plants against fungal pathogens.
Collapse
Affiliation(s)
- An-Po Cheng
- Faculty of Biology, Ludwig-Maximilians Universität München (LMU), 82152, Martinsried, Germany
| | - Seomun Kwon
- Institute for Microbiology, Heinrich Heine Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Trusha Adeshara
- Institute for Microbiology, Heinrich Heine Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Vera Göhre
- Institute for Microbiology, Heinrich Heine Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Arne Weiberg
- Faculty of Biology, Ludwig-Maximilians Universität München (LMU), 82152, Martinsried, Germany.
| |
Collapse
|
12
|
Sartorio MG, Pardue EJ, Scott NE, Feldman MF. Human gut bacteria tailor extracellular vesicle cargo for the breakdown of diet- and host-derived glycans. Proc Natl Acad Sci U S A 2023; 120:e2306314120. [PMID: 37364113 PMCID: PMC10319031 DOI: 10.1073/pnas.2306314120] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Extracellular vesicles are produced in all three domains of life, and their biogenesis has common ancient origins in eukaryotes and archaea. Although bacterial vesicles were discovered several decades ago and multiple roles have been attributed to them, no mechanism has been established for vesicles biogenesis in bacteria. For this reason, there is a significant level of skepticism about the biological relevance of bacterial vesicles. Bacteroides thetaiotaomicron (Bt), a prominent member of the human intestinal microbiota, produces significant amounts of outer membrane vesicles (OMVs) which have been proposed to play key physiological roles. Here, we employed a dual marker system, consisting of outer membrane- and OMV-specific markers fused to fluorescent proteins to visualize OMV biogenesis by time-lapse microscopy. Furthermore, we performed comparative proteomic analyses to show that, in Bt, the OMV cargo is adapted for the optimal utilization of different polysaccharides. We also show that a negatively charged N-terminal motif acts as a signal for protein sorting into OMVs irrespective of the nutrient availability. Our results demonstrate that OMV production is the result of a highly regulated process in Bt.
Collapse
Affiliation(s)
- Mariana G. Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Evan J. Pardue
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC3000, Australia
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| |
Collapse
|
13
|
De Vallée A, Dupuy JW, Moriscot C, Gallet B, Vanderperre S, Guignard G, Rascle C, Calvar G, Malbert B, Gillet FX, Dieryckx C, Choquer M, Girard V, Poussereau N, Bruel C. Extracellular Vesicles of the Plant Pathogen Botrytis cinerea. J Fungi (Basel) 2023; 9:jof9040495. [PMID: 37108947 PMCID: PMC10146736 DOI: 10.3390/jof9040495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal secretomes are known to contain a multitude of components involved in nutrition, cell growth or biotic interactions. Recently, extra-cellular vesicles have been identified in a few fungal species. Here, we used a multidisciplinary approach to identify and characterize extracellular vesicles produced by the plant necrotroph Botrytis cinerea. Transmission electron microscopy of infectious hyphae and hyphae grown in vitro revealed extracellular vesicles of various sizes and densities. Electron tomography showed the co-existence of ovoid and tubular vesicles and pointed to their release via the fusion of multi-vesicular bodies with the cell plasma membrane. The isolation of these vesicles and exploration of their protein content using mass spectrometry led to the identification of soluble and membrane proteins involved in transport, metabolism, cell wall synthesis and remodeling, proteostasis, oxidoreduction and traffic. Confocal microscopy highlighted the capacity of fluorescently labeled vesicles to target cells of B. cinerea, cells of the fungus Fusarium graminearum, and onion epidermal cells but not yeast cells. In addition, a specific positive effect of these vesicles on the growth of B. cinerea was quantified. Altogether, this study broadens our view on the secretion capacity of B. cinerea and its cell-to-cell communication.
Collapse
Affiliation(s)
- Amelie De Vallée
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| | | | | | - Benoit Gallet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Solène Vanderperre
- Centre Technologique des Microstructures, Université Lyon 1, 69622 Villeurbanne, France
| | - Gaëtan Guignard
- Univ. Lyon, Université Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69622 Villeurbanne, France
| | - Christine Rascle
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| | - Glen Calvar
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| | - Bastien Malbert
- Bayer SAS, Crop Science Division Centre de Recherche La Dargoire, 69009 Lyon, France
| | | | - Cindy Dieryckx
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| | - Mathias Choquer
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| | - Vincent Girard
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| | | | - Christophe Bruel
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| |
Collapse
|
14
|
Sartorio MG, Pardue EJ, Scott NE, Feldman MF. Human gut bacteria tailor extracellular vesicle cargo for the breakdown of diet- and host-derived glycans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535451. [PMID: 37066189 PMCID: PMC10104005 DOI: 10.1101/2023.04.03.535451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Extracellular vesicles (EV) are produced in all three domains of life, and their biogenesis have common ancient origins in eukaryotes and archaea. Although bacterial vesicles were discovered several decades ago and multiple roles have been attributed to them, no mechanism has been established for vesicles biogenesis in bacteria. For this reason, there is a significant level of skepticism about the biological relevance of bacterial vesicles. In Bacteroides thetaiotaomicron ( Bt ), a prominent member of the human intestinal microbiota, outer membrane vesicles (OMVs) have been proposed to play key physiological roles. By employing outer membrane- and OMV-specific markers fused to fluorescent proteins we visualized OMV biogenesis in live-cells. We performed comparative proteomic analyses to demonstrate that Bt actively tailors its vesicle cargo to optimize the breakdown of diet- and host-derived complex glycans. Surprisingly, our data suggests that OMV are not employed for mucin degradation. We also show that, in Bt , a negatively-charged N-terminal motif acts as a signal for protein sorting into OMVs irrespective of the nutrient availability. We conclude that OMVs are the result of an exquisitely orchestrated mechanism. This work lays the foundation for further investigations into the physiological relevance of OMVs and their roles in gut homeostasis. Furthermore, our work constitutes a roadmap to guide EV biogenesis research in other bacteria.
Collapse
|
15
|
Involvement of Bacterial Extracellular Membrane Nanovesicles in Infectious Diseases and Their Application in Medicine. Pharmaceutics 2022; 14:pharmaceutics14122597. [PMID: 36559091 PMCID: PMC9784355 DOI: 10.3390/pharmaceutics14122597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial extracellular membrane nanovesicles (EMNs) are attracting the attention of scientists more and more every year. These formations are involved in the pathogenesis of numerous diseases, among which, of course, the leading role is occupied by infectious diseases, the causative agents of which are a range of Gram-positive and Gram-negative bacteria. A separate field for the study of the role of EMN is cancer. Extracellular membrane nanovesicles nowadays have a practical application as vaccine carriers for immunization against many infectious diseases. At present, the most essential point is their role in stimulating immune response to bacterial infections and tumor cells. The possibility of nanovesicles' practical use in several disease treatments is being evaluated. In our review, we listed diseases, focusing on their multitude and diversity, for which EMNs are essential, and also considered in detail the possibilities of using EMNs in the therapy and prevention of various pathologies.
Collapse
|
16
|
Castelli RF, Pereira A, Honorato L, Valdez A, de Oliveira HC, Bazioli JM, Garcia AWA, Klimeck TDF, Reis FCG, Staats CC, Nimrichter L, Fill TP, Rodrigues ML. Extracellular Vesicle Formation in Cryptococcus deuterogattii Impacts Fungal Virulence and Requires the NOP16 Gene. Infect Immun 2022; 90:e0023222. [PMID: 35862719 PMCID: PMC9387281 DOI: 10.1128/iai.00232-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 01/14/2023] Open
Abstract
Small molecules are components of fungal extracellular vesicles (EVs), but their biological roles are only superficially known. NOP16 is a eukaryotic gene that is required for the activity of benzimidazoles against Cryptococcus deuterogattii. In this study, during the phenotypic characterization of C. deuterogattii mutants lacking NOP16 expression, we observed that this gene was required for EV production. Analysis of the small molecule composition of EVs produced by wild-type cells and two independent nop16Δ mutants revealed that the deletion of NOP16 resulted not only in a reduced number of EVs but also an altered small molecule composition. In a Galleria mellonella model of infection, the nop16Δ mutants were hypovirulent. The hypovirulent phenotype was reverted when EVs produced by wild-type cells, but not mutant EVs, were coinjected with the nop16Δ cells in G. mellonella. These results reveal a role for NOP16 in EV biogenesis and cargo, and also indicate that the composition of EVs is determinant for cryptococcal virulence.
Collapse
Affiliation(s)
- Rafael F. Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Alana Pereira
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Leandro Honorato
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Valdez
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jaqueline M. Bazioli
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ane W. A. Garcia
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Flavia C. G. Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Charley C. Staats
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taícia P. Fill
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Mehaffy C, Ryan JM, Kruh-Garcia NA, Dobos KM. Extracellular Vesicles in Mycobacteria and Tuberculosis. Front Cell Infect Microbiol 2022; 12:912831. [PMID: 35719351 PMCID: PMC9204639 DOI: 10.3389/fcimb.2022.912831] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) remains a public health issue causing millions of infections every year. Of these, about 15% ultimately result in death. Efforts to control TB include development of new and more effective vaccines, novel and more effective drug treatments, and new diagnostics that test for both latent TB Infection and TB disease. All of these areas of research benefit from a good understanding of the physiology of Mycobacterium tuberculosis (Mtb), the primary causative agent of TB. Mtb secreted protein antigens have been the focus of vaccine and diagnosis research for the past century. Recently, the discovery of extracellular vesicles (EVs) as an important source of secreted antigens in Mtb has gained attention. Similarly, the discovery that host EVs can carry Mtb products during in vitro and in vivo infection has spiked interest because of its potential use in blood-based diagnostics. Despite advances in understanding the content of Mtb and Mtb-infected host extracellular vesicles, our understanding on the biogenesis and role of Mtb and host extracellular vesicles during Mtb infection is still nascent. Here, we explore the current literature on extracellular vesicles regarding Mtb, discuss the host and Mtb extracellular vesicles as distinct entities, and discuss current gaps in the field.
Collapse
|
18
|
Gaurivaud P, Tardy F. The Mycoplasma spp. ‘Releasome’: A New Concept for a Long-Known Phenomenon. Front Microbiol 2022; 13:853440. [PMID: 35495700 PMCID: PMC9051441 DOI: 10.3389/fmicb.2022.853440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The bacterial secretome comprises polypeptides expressed at the cell surface or released into the extracellular environment as well as the corresponding secretion machineries. Despite their reduced coding capacities, Mycoplasma spp. are able to produce and release several components into their environment, including polypeptides, exopolysaccharides and extracellular vesicles. Technical difficulties in purifying these elements from the complex broth media used to grow mycoplasmas have recently been overcome by optimizing growth conditions and switching to chemically defined culture media. However, the secretion pathways responsible for the release of these structurally varied elements are still poorly described in mycoplasmas. We propose the use of the term ‘releasome,’ instead of secretome, to refer to molecules released by mycoplasmas into their environment. The aim of this review is to more precisely delineate the elements that should be considered part of the mycoplasmal releasome and their role in the interplay of mycoplasmas with host cells and tissues.
Collapse
|
19
|
Sahr T, Escoll P, Rusniok C, Bui S, Pehau-Arnaudet G, Lavieu G, Buchrieser C. Translocated Legionella pneumophila small RNAs mimic eukaryotic microRNAs targeting the host immune response. Nat Commun 2022; 13:762. [PMID: 35140216 PMCID: PMC8828724 DOI: 10.1038/s41467-022-28454-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/26/2022] [Indexed: 02/08/2023] Open
Abstract
Legionella pneumophila is an intracellular bacterial pathogen that can cause a severe form of pneumonia in humans, a phenotype evolved through interactions with aquatic protozoa in the environment. Here, we show that L. pneumophila uses extracellular vesicles to translocate bacterial small RNAs (sRNAs) into host cells that act on host defence signalling pathways. The bacterial sRNA RsmY binds to the UTR of ddx58 (RIG-I encoding gene) and cRel, while tRNA-Phe binds ddx58 and irak1 collectively reducing expression of RIG-I, IRAK1 and cRel, with subsequent downregulation of IFN-β. Thus, RsmY and tRNA-Phe are bacterial trans-kingdom regulatory RNAs downregulating selected sensor and regulator proteins of the host cell innate immune response. This miRNA-like regulation of the expression of key sensors and regulators of immunity is a feature of L. pneumophila host-pathogen communication and likely represents a general mechanism employed by bacteria that interact with eukaryotic hosts.
Collapse
Affiliation(s)
- Tobias Sahr
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France
| | - Christophe Rusniok
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France
| | - Sheryl Bui
- Université de Paris, INSERM ERL U1316, UMR 7057/CNRS, Paris, France
| | - Gérard Pehau-Arnaudet
- Unité de Technologie et Service BioImagerie Ultrastructurale and CNRS UMR 3528, Paris, France
| | - Gregory Lavieu
- Université de Paris, INSERM ERL U1316, UMR 7057/CNRS, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France.
| |
Collapse
|
20
|
Tang Y, Yan X, Gu C, Yuan X. Biogenesis, Trafficking, and Function of Small RNAs in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:825477. [PMID: 35251095 PMCID: PMC8891129 DOI: 10.3389/fpls.2022.825477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNAs) encoded by plant genomes have received widespread attention because they can affect multiple biological processes. Different sRNAs that are synthesized in plant cells can move throughout the plants, transport to plant pathogens via extracellular vesicles (EVs), and transfer to mammals via food. Small RNAs function at the target sites through DNA methylation, RNA interference, and translational repression. In this article, we reviewed the systematic processes of sRNA biogenesis, trafficking, and the underlying mechanisms of its functions.
Collapse
Affiliation(s)
- Yunjia Tang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoning Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxian Gu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiaofeng Yuan,
| |
Collapse
|
21
|
Cardoso D, Lima S, Matinha-Cardoso J, Tamagnini P, Oliveira P. The Role of Outer Membrane Protein(s) Harboring SLH/OprB-Domains in Extracellular Vesicles’ Production in Synechocystis sp. PCC 6803. PLANTS 2021; 10:plants10122757. [PMID: 34961227 PMCID: PMC8707739 DOI: 10.3390/plants10122757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023]
Abstract
Cyanobacteria are a group of photosynthetic prokaryotes that contribute to primary production on a global scale. These microorganisms release vesicles to the extracellular environment, spherical nanosized structures, derived essentially from the outer membrane. Even though earlier works in model Gram-negative bacteria have hypothesized that outer membrane stability is crucial in vesicle formation, the mechanisms determining vesicle biogenesis in cyanobacteria remain unknown. Here, we report on the identification of six candidate genes encoding outer membrane proteins harboring SLH/OprB-domains in the genome of the model cyanobacterium Synechocystis sp. PCC 6803. Using a genetics-based approach, one gene was found to encode an essential protein (Slr1841), while the remaining five are not essential for growth under standard conditions. Vesicle production was monitored, and it was found that a mutant in the gene encoding the second most abundant SLH/OprB protein in Synechocystis sp. PCC 6803 outer membrane (Slr1908) produces more vesicles than any of the other tested strains. Moreover, the Slr1908-protein was also found to be important for iron uptake. Altogether, our results suggest that proteins containing the SLH/OprB-domains may have dual biological role, related to micronutrient uptake and to outer membrane stability, which, together or alone, seem to be involved in cyanobacterial vesicle biogenesis.
Collapse
Affiliation(s)
- Delfim Cardoso
- MABBS—Mestrado em Aplicações em Biotecnologia e Biologia Sintética, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Steeve Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- MCbiology Doctoral Program, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Jorge Matinha-Cardoso
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Paula Tamagnini
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Paulo Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| |
Collapse
|
22
|
Lahiri D, Nag M, Dey A, Sarkar T, Pattnaik S, Ghosh S, Edinur HA, Pati S, Kari ZA, Ray RR. Exosome-associated host–pathogen interaction: a potential effect of biofilm formation. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractExosomes being non-ionized micro-vesicles with a size range of 30–100 nm possess the ability to bring about intracellular communication and intercellular transport of various types of cellular components like miRNA, mRNA, DNA, and proteins. This is achieved through the targeted transmission of various inclusions to nearby or distant tissues. This is associated with the effective communication of information to bring about changes in physiological properties and functional attributes. The extracellular vesicles (EVs), produced by fungi, parasites, and bacteria, are responsible to bring about modulation/alteration of the immune responses exerted by the host body. The lipids, nucleic acids, proteins, and glycans of EVs derived from the pathogens act as the ligands of different families of pattern recognition receptors of the host body. The bacterial membrane vesicles (BMVs) are responsible for the transfer of small RNA species, along with other types of noncoding RNA thereby playing a key role in the regulation of the host immune system. Apart from immunomodulation, the BMVs are also responsible for bacterial colonization in the host tissue, biofilm formation, and survival therein showing antibiotic resistance, leading to pathogenesis and virulence. This mini-review would focus on the role of exosomes in the development of biofilm and consequent immunological responses within the host body along with an analysis of the mechanism associated with the development of resistance.
Collapse
|
23
|
Bittel M, Reichert P, Sarfati I, Dressel A, Leikam S, Uderhardt S, Stolzer I, Phu TA, Ng M, Vu NK, Tenzer S, Distler U, Wirtz S, Rothhammer V, Neurath MF, Raffai RL, Günther C, Momma S. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo. J Extracell Vesicles 2021; 10:e12159. [PMID: 34664784 PMCID: PMC8524437 DOI: 10.1002/jev2.12159] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022] Open
Abstract
The intestinal microbiota influences mammalian host physiology in health and disease locally in the gut but also in organs devoid of direct contact with bacteria such as the liver and brain. Extracellular vesicles (EVs) or outer membrane vesicles (OMVs) released by microbes are increasingly recognized for their potential role as biological shuttle systems for inter-kingdom communication. However, physiologically relevant evidence for the transfer of functional biomolecules from the intestinal microbiota to individual host cells by OMVs in vivo is scarce. By introducing Escherichia coli engineered to express Cre-recombinase (E. coliCre ) into mice with a Rosa26.tdTomato-reporter background, we leveraged the Cre-LoxP system to report the transfer of bacterial OMVs to recipient cells in vivo. Colonizing the intestine of these mice with E. coliCre , resulted in Cre-recombinase induced fluorescent reporter gene-expression in cells along the intestinal epithelium, including intestinal stem cells as well as mucosal immune cells such as macrophages. Furthermore, even far beyond the gut, bacterial-derived Cre induced extended marker gene expression in a wide range of host tissues, including the heart, liver, kidney, spleen, and brain. Together, our findings provide a method and proof of principle that OMVs can serve as a biological shuttle system for the horizontal transfer of functional biomolecules between bacteria and mammalian host cells.
Collapse
Affiliation(s)
- Miriam Bittel
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Patrick Reichert
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Ilann Sarfati
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Anja Dressel
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Stefanie Leikam
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Stefan Uderhardt
- Department of Internal Medicine 3University Hospital Erlangen and Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)ErlangenGermany
- Exploratory Research UnitOptical Imaging Centre ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Iris Stolzer
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Tuan Anh Phu
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Martin Ng
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Ngan K. Vu
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Stefan Tenzer
- Institute of ImmunologyUniversity Medical Centre of the Johannes‐Gutenberg University MainzMainzGermany
- Research Centre for Immunotherapy (FZI)University Medical Center of the Johannes‐Gutenberg University MainzMainzGermany
| | - Ute Distler
- Institute of ImmunologyUniversity Medical Centre of the Johannes‐Gutenberg University MainzMainzGermany
- Research Centre for Immunotherapy (FZI)University Medical Center of the Johannes‐Gutenberg University MainzMainzGermany
| | - Stefan Wirtz
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Veit Rothhammer
- Neurology Department (Experimental Glia Biology)University Hospital Erlangen and Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Markus F. Neurath
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Robert L. Raffai
- Department of SurgeryDivision of Vascular and Endovascular SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Veterans AffairsSurgical Service (112G)San Francisco VA Medical CentreSan FranciscoCaliforniaUSA
| | - Claudia Günther
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Stefan Momma
- Institute of Neurology (Edinger Institute)Goethe UniversityFrankfurt am MainGermany
| |
Collapse
|
24
|
Liu J, Cvirkaite-Krupovic V, Commere PH, Yang Y, Zhou F, Forterre P, Shen Y, Krupovic M. Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments. THE ISME JOURNAL 2021; 15:2892-2905. [PMID: 33903726 PMCID: PMC8443754 DOI: 10.1038/s41396-021-00984-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/22/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Membrane-bound extracellular vesicles (EVs), secreted by cells from all three domains of life, transport various molecules and act as agents of intercellular communication in diverse environments. Here we demonstrate that EVs produced by a hyperthermophilic and acidophilic archaeon Sulfolobus islandicus carry not only a diverse proteome, enriched in membrane proteins, but also chromosomal and plasmid DNA, and can transfer this DNA to recipient cells. Furthermore, we show that EVs can support the heterotrophic growth of Sulfolobus in minimal medium, implicating EVs in carbon and nitrogen fluxes in extreme environments. Finally, our results indicate that, similar to eukaryotes, production of EVs in S. islandicus depends on the archaeal ESCRT machinery. We find that all components of the ESCRT apparatus are encapsidated into EVs. Using synchronized S. islandicus cultures, we show that EV production is linked to cell division and appears to be triggered by increased expression of ESCRT proteins during this cell cycle phase. Using a CRISPR-based knockdown system, we show that archaeal ESCRT-III and AAA+ ATPase Vps4 are required for EV production, whereas archaea-specific component CdvA appears to be dispensable. In particular, the active EV production appears to coincide with the expression patterns of ESCRT-III-1 and ESCRT-III-2, rather than ESCRT-III, suggesting a prime role of these proteins in EV budding. Collectively, our results suggest that ESCRT-mediated EV biogenesis has deep evolutionary roots, likely predating the divergence of eukaryotes and archaea, and that EVs play an important role in horizontal gene transfer and nutrient cycling in extreme environments.
Collapse
Affiliation(s)
- Junfeng Liu
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China ,grid.428999.70000 0001 2353 6535Archaeal Virology Unit, Institut Pasteur, Paris, France
| | | | - Pierre-Henri Commere
- grid.428999.70000 0001 2353 6535Institut Pasteur, Flow Cytometry Platform, Paris, France
| | - Yunfeng Yang
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Fan Zhou
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Patrick Forterre
- grid.428999.70000 0001 2353 6535Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Yulong Shen
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Mart Krupovic
- grid.428999.70000 0001 2353 6535Archaeal Virology Unit, Institut Pasteur, Paris, France
| |
Collapse
|
25
|
Reis FCG, Gimenez B, Jozefowicz LJ, Castelli RF, Martins ST, Alves LR, de Oliveira HC, Rodrigues ML. Analysis of Cryptococcal Extracellular Vesicles: Experimental Approaches for Studying Their Diversity Among Multiple Isolates, Kinetics of Production, Methods of Separation, and Detection in Cultures of Titan Cells. Microbiol Spectr 2021; 9:e0012521. [PMID: 34346749 PMCID: PMC8552642 DOI: 10.1128/spectrum.00125-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Extracellular vesicles (EVs) produced by members of the Cryptococcus genus are associated with fundamental processes of fungal physiology and virulence. However, several questions about the properties of cryptococcal EVs remain unanswered, mostly because of technical limitations. We recently described a fast and efficient protocol of high-yield EV isolation from solid medium. In this study, we aimed at using the solid medium protocol to address some of the open questions about EVs, including the kinetics of EV production, the diversity of EVs produced by multiple isolates under different culture conditions, the separation of vesicles in a density gradient followed by the recovery of functional EVs, the direct detection of EVs in culture supernatants, and the production of vesicles in solid cultures of Titan cells. Our results indicate that the production of EVs is directly impacted by the culture medium and time of growth, resulting in variable detection of EVs per cell and a peak of EV detection at 24 h of growth. Nanoparticle tracking analysis (NTA) of EV samples revealed that multiple isolates produce vesicles with variable properties, including particles of diverging dimensions. EVs were produced in the solid medium in amounts that were separated on a centrifugation density gradient, resulting in the recovery of functional EVs containing the major cryptococcal capsular antigen. We also optimized the solid medium protocol for induction of the formation of Titan cells, and analyzed the production of EVs by NTA and transmission electron microscopy. This analysis confirmed that EVs were isolated from solid cultures of cryptococcal enlarged cells. With these approaches, we expect to implement simple methods that will facilitate the analysis of EVs produced by fungal cells. IMPORTANCE Fungal extracellular vesicles (EVs) are considered to be important players in the biology of fungal pathogens. However, the limitations in the methodological approaches to studying fungal EVs impair the expansion of knowledge in this field. In the present study, we used the Cryptococcus genus as a model for the study of EVs. We explored the simplification of protocols for EV analysis, which helped us to address some important, but still unanswered, questions about fungal EVs.
Collapse
Affiliation(s)
- Flavia C. G. Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brazil
| | - Bianca Gimenez
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | | | - Rafael F. Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Sharon T. Martins
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Lysangela R. Alves
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | | | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Santos P, Almeida F. Exosome-Based Vaccines: History, Current State, and Clinical Trials. Front Immunol 2021; 12:711565. [PMID: 34335627 PMCID: PMC8317489 DOI: 10.3389/fimmu.2021.711565] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) are released by most cell types as part of an intracellular communication system in crucial processes such as inflammation, cell proliferation, and immune response. However, EVs have also been implicated in the pathogenesis of several diseases, such as cancer and numerous infectious diseases. An important feature of EVs is their ability to deliver a wide range of molecules to nearby targets or over long distances, which allows the mediation of different biological functions. This delivery mechanism can be utilized for the development of therapeutic strategies, such as vaccination. Here, we have highlighted several studies from a historical perspective, with respect to current investigations on EV-based vaccines. For example, vaccines based on exosomes derived from dendritic cells proved to be simpler in terms of management and cost-effectiveness than dendritic cell vaccines. Recent evidence suggests that EVs derived from cancer cells can be leveraged for therapeutics to induce strong anti-tumor immune responses. Moreover, EV-based vaccines have shown exciting and promising results against different types of infectious diseases. We have also summarized the results obtained from completed clinical trials conducted on the usage of exosome-based vaccines in the treatment of cancer, and more recently, coronavirus disease.
Collapse
Affiliation(s)
- Patrick Santos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
27
|
Abstract
Extracellular vesicles (EVs) have recently garnered attention for their participation in host-microbe interactions in pneumococcal infections. However, the effect of EVs on the host immune system remain poorly understood. Our studies focus on EVs produced by Streptococcus pneumoniae (pEVs), and reveal that pEVs are internalized by macrophages, T cells, and epithelial cells. In vitro, pEVs induce NF-κB activation in a dosage-dependent manner and polarize human macrophages to an alternative (M2) phenotype. In addition, pEV pretreatment conditions macrophages to increase bacteria uptake and such macrophages may act as a reservoir for pneumococcal cells by increasing survival of the phagocytosed bacteria. When administered systemically in mice, pEVs induce cytokine release; when immobilized locally, they recruit lymphocytes and macrophages. Taken together, pEVs emerge as critical contributors to inflammatory responses and tissue damage in mammalian hosts.
Collapse
|
28
|
Garcia-Ceron D, Dawson CS, Faou P, Bleackley MR, Anderson MA. Size-exclusion chromatography allows the isolation of EVs from the filamentous fungal plant pathogen Fusarium oxysporum f. sp. vasinfectum (Fov). Proteomics 2021; 21:e2000240. [PMID: 33609009 DOI: 10.1002/pmic.202000240] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized compartments involved in cell communication and macromolecule transport that are well characterized in mammalian organisms. Fungal EVs transport virulence-related cargo and modulate the host immune response, but most work has been focused on human yeast pathogens. Additionally, the study of EVs from filamentous fungi has been hindered by the lack of protein markers and efficient isolation methods. In this study we performed the isolation and proteomic characterization of EVs from the filamentous cotton pathogen Fusarium oxysporum f. sp. vasinfectum (Fov). EVs were recovered from two different growth media, Czapek Dox and Saboraud's dextrose broth, and purified by size-exclusion chromatography. Our results show that the EV proteome changes depending on the growth medium but EV production remains constant. EVs contained proteins involved in polyketide synthesis, cell wall modifications, proteases and potential effectors. These results support a role in modulation of host-pathogen interactions for Fov EVs.
Collapse
Affiliation(s)
- Donovan Garcia-Ceron
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Charlotte S Dawson
- Cambridge Centre for Proteomics, Department of Biochemistry, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Pierre Faou
- La Trobe Comprehensive Proteomics Platform, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
29
|
Begić M, Josić D. Biofilm formation and extracellular microvesicles-The way of foodborne pathogens toward resistance. Electrophoresis 2020; 41:1718-1739. [PMID: 32901923 DOI: 10.1002/elps.202000106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
Almost all known foodborne pathogens are able to form biofilms as one of the strategies for survival under harsh living conditions, to ward off the inhibition and the disinfection during food production, transport and storage, as well as during cleaning and sanitation of corresponding facilities. Biofilms are communities where microbial cells live under constant intracellular interaction and communication. Members of the biofilm community are embedded into extracellular matrix that contains polysaccharides, DNA, lipids, proteins, and small molecules that protect microorganisms and enable their intercellular communication under stress conditions. Membrane vesicles (MVs) are produced by both Gram positive and Gram negative bacteria. These lipid membrane-enveloped nanoparticles play an important role in biofilm genesis and in communication between different biofilm members. Furthermore, MVs are involved in other important steps of bacterial life like cell wall modeling, cellular division, and intercellular communication. They also carry toxins and virulence factors, as well as nucleic acids and different metabolites, and play a key role in host infections. After entering host cells, MVs can start many pathologic processes and cause serious harm and cell death. Prevention and inhibition of both biofilm formation and shedding of MVs by foodborne pathogens has a very important role in food production, storage, and food safety in general. Better knowledge of biofilm formation and maintaining, as well as the role of microbial vesicles in this process and in the process of host cells' infection is essential for food safety and prevention of both food spoilage and host infection.
Collapse
Affiliation(s)
- Marija Begić
- Faculty of Medicine, Juraj Dobrila University, Pula, Croatia
| | - Djuro Josić
- Faculty of Medicine, Juraj Dobrila University, Pula, Croatia.,Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
30
|
Tosar JP, Cayota A. Extracellular tRNAs and tRNA-derived fragments. RNA Biol 2020; 17:1149-1167. [PMID: 32070197 PMCID: PMC7549618 DOI: 10.1080/15476286.2020.1729584] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/08/2023] Open
Abstract
Fragmentation of tRNAs generates a family of small RNAs collectively known as tRNA-derived fragments. These fragments vary in sequence and size but have been shown to regulate many processes involved in cell homoeostasis and adaptations to stress. Additionally, the field of extracellular RNAs (exRNAs) is rapidly growing because exRNAs are a promising source of biomarkers in liquid biopsies, and because exRNAs seem to play key roles in intercellular and interspecies communication. Herein, we review recent descriptions of tRNA-derived fragments in the extracellular space in all domains of life, both in biofluids and in cell culture. The purpose of this review is to find consensus on which tRNA-derived fragments are more prominent in each extracellular fraction (including extracellular vesicles, lipoproteins and ribonucleoprotein complexes). We highlight what is becoming clear and what is still controversial in this field, in order to stimulate future hypothesis-driven studies which could clarify the role of full-length tRNAs and tRNA-derived fragments in the extracellular space.
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Analytical Biochemistry Unit, Nuclear Research Center, Faculty of Science, Universidad de la República, Montevideo, Uruguay
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Department of Medicine, University Hospital, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Lima S, Matinha-Cardoso J, Tamagnini P, Oliveira P. Extracellular Vesicles: An Overlooked Secretion System in Cyanobacteria. Life (Basel) 2020; 10:E129. [PMID: 32751844 PMCID: PMC7459746 DOI: 10.3390/life10080129] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
In bacteria, the active transport of material from the interior to the exterior of the cell, or secretion, represents a very important mechanism of adaptation to the surrounding environment. The secretion of various types of biomolecules is mediated by a series of multiprotein complexes that cross the bacterial membrane(s), each complex dedicated to the secretion of specific substrates. In addition, biological material may also be released from the bacterial cell in the form of vesicles. Extracellular vesicles (EVs) are bilayered, nanoscale structures, derived from the bacterial cell envelope, which contain membrane components as well as soluble products. In cyanobacteria, the knowledge regarding EVs is lagging far behind compared to what is known about, for example, other Gram-negative bacteria. Here, we present a summary of the most important findings regarding EVs in Gram-negative bacteria, discussing aspects of their composition, formation processes and biological roles, and highlighting a number of technological applications tested. This lays the groundwork to raise awareness that the release of EVs by cyanobacteria likely represents an important, and yet highly disregarded, survival strategy. Furthermore, we hope to motivate future studies that can further elucidate the role of EVs in cyanobacterial cell biology and physiology.
Collapse
Affiliation(s)
- Steeve Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Jorge Matinha-Cardoso
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Paula Tamagnini
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Paulo Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
32
|
Jiang Y, Cai X, Yao J, Guo H, Yin L, Leung W, Xu C. Role of Extracellular Vesicles in Influenza Virus Infection. Front Cell Infect Microbiol 2020; 10:366. [PMID: 32850473 PMCID: PMC7396637 DOI: 10.3389/fcimb.2020.00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Influenza virus infection is a major health care concern associated with significant morbidity and mortality worldwide, and cause annual seasonal epidemics and pandemics at irregular intervals. Recent research has highlighted that viral components can be found on the extracellular vesicles (EVs) released from infected cells, implying a functional relevance of EVs with influenza virus dissemination. Therefore, exploring the role of EVs in influenza virus infection has been attracting significant attention. In this review, we will briefly introduce the biogenesis of EVs, and focus on the role of EVs in influenza virus infection, and then discuss the EVs-based influenza vaccines and the limitations of EVs studies, to further enrich and boost the development of preventative and therapeutic strategies to combat influenza virus.
Collapse
Affiliation(s)
- Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiwen Yao
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huanhuan Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liangjun Yin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Tuen Mun, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Rizzo J, Rodrigues ML, Janbon G. Extracellular Vesicles in Fungi: Past, Present, and Future Perspectives. Front Cell Infect Microbiol 2020; 10:346. [PMID: 32760680 PMCID: PMC7373726 DOI: 10.3389/fcimb.2020.00346] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) have garnered much interest in the cell biology and biomedical research fields. Many studies have reported the existence of EVs in all types of living cells, including in fifteen different fungal genera. EVs play diverse biological roles, from the regulation of physiological events and response to specific environmental conditions to the mediation of highly complex interkingdom communications. This review will provide a historical perspective on EVs produced by fungi and an overview of the recent discoveries in the field. We will also review the current knowledge about EV biogenesis and cargo, their role in cell-to-cell interactions, and methods of EV analysis. Finally, we will discuss the perspectives of EVs as vehicles for the delivery of biologically active molecules.
Collapse
Affiliation(s)
- Juliana Rizzo
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| |
Collapse
|
34
|
Role of the ESCRT Pathway in Laccase Trafficking and Virulence of Cryptococcus neoformans. Infect Immun 2020; 88:IAI.00954-19. [PMID: 32284371 DOI: 10.1128/iai.00954-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/17/2020] [Indexed: 12/20/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) plays a crucial role in the transportation and degradation of proteins. We determined that Vps27, a key protein of the ESCRT-0 complex, is required for the transport of the virulence factor laccase to the cell wall in Cryptococcus neoformans Laccase activity was perturbed, as was melanin production, in vps27Δ strains. In the absence of VPS27, there was an accumulation of multivesicular bodies with vacuolar fragmentation and mistargeting of the vacuolar carboxypeptidase CPY/Prc1, resulting in an extracellular localization. In addition, deletion of VPS27 resulted in a defect in laccase targeting of a Lac1-green fluorescent protein (GFP) fusion to the cell wall with trapping within intracellular puncta; this deletion was accompanied by reduced virulence in a mouse model. However, the actin cytoskeleton remained intact, suggesting that the trafficking defect is not due to defects in actin-related localization. Extracellular vesicle maturation was also defective in the vps27Δ mutant, which had a larger vesicle size as measured by dynamic light scattering. Our data identify cryptococcal VPS27 as a required gene for laccase trafficking and attenuates virulence of C. neoformans in a mouse intravenous (i.v.) meningitis model.
Collapse
|
35
|
Lipidomic and Ultrastructural Characterization of the Cell Envelope of Staphylococcus aureus Grown in the Presence of Human Serum. mSphere 2020; 5:5/3/e00339-20. [PMID: 32554713 PMCID: PMC7300354 DOI: 10.1128/msphere.00339-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comprehensive lipidomics of S. aureus grown in the presence of human serum suggests that human serum lipids can associate with the cell envelope without being truly integrated into the lipid membrane. However, fatty acids derived from human serum lipids, including unsaturated fatty acids, can be incorporated into lipid classes that can be biosynthesized by S. aureus itself. Cholesteryl esters and triglycerides are found to be the major source of incorporated fatty acids upon hydrolysis by lipases. These findings have significant implications for the nature of the S. aureus cell surface when grown in vivo. Changes in phospholipid and glycolipid abundances and fatty acid composition could affect membrane biophysics and function and the activity of membrane-targeting antimicrobials. Finally, the association of serum lipids with the cell envelope has implications for the physicochemical nature of the cell surface and its interaction with host defense systems. Staphylococcus aureus can incorporate exogenous straight-chain unsaturated and saturated fatty acids (SCUFAs and SCFAs, respectively) to replace some of the normally biosynthesized branched-chain fatty acids and SCFAs. In this study, the impact of human serum on the S. aureus lipidome and cell envelope structure was comprehensively characterized. When S. aureus was grown in the presence of 20% human serum, typical human serum lipids, such as cholesterol, sphingomyelin, phosphatidylethanolamines, and phosphatidylcholines, were present in the total lipid extracts. Mass spectrometry showed that SCUFAs were incorporated into all major S. aureus lipid classes, i.e., phosphatidylglycerols, lysyl-phosphatidylglycerols, cardiolipins, and diglucosyldiacylglycerols. Heat-killed S. aureus retained fewer serum lipids and failed to incorporate SCUFAs, suggesting that association and incorporation of serum lipids with S. aureus require a living or nondenatured cell. Cytoplasmic membranes isolated from lysostaphin-produced protoplasts of serum-grown cells retained serum lipids, but washing cells with Triton X-100 removed most of them. Furthermore, electron microscopy studies showed that serum-grown cells had thicker cell envelopes and associated material on the surface, which was partially removed by Triton X-100 washing. To investigate which serum lipids were preferentially hydrolyzed by S. aureus lipases for incorporation, we incubated individual serum lipid classes with S. aureus and found that cholesteryl esters (CEs) and triglycerides (TGs) are the major donors of the incorporated fatty acids. Further experiments using purified Geh lipase confirmed that CEs and TGs were the substrates of this enzyme. Thus, growth in the presence of serum altered the nature of the cell surface with implications for interactions with the host. IMPORTANCE Comprehensive lipidomics of S. aureus grown in the presence of human serum suggests that human serum lipids can associate with the cell envelope without being truly integrated into the lipid membrane. However, fatty acids derived from human serum lipids, including unsaturated fatty acids, can be incorporated into lipid classes that can be biosynthesized by S. aureus itself. Cholesteryl esters and triglycerides are found to be the major source of incorporated fatty acids upon hydrolysis by lipases. These findings have significant implications for the nature of the S. aureus cell surface when grown in vivo. Changes in phospholipid and glycolipid abundances and fatty acid composition could affect membrane biophysics and function and the activity of membrane-targeting antimicrobials. Finally, the association of serum lipids with the cell envelope has implications for the physicochemical nature of the cell surface and its interaction with host defense systems.
Collapse
|
36
|
Batista JH, Leal FC, Fukuda TTH, Alcoforado Diniz J, Almeida F, Pupo MT, da Silva Neto JF. Interplay between two quorum sensing-regulated pathways, violacein biosynthesis and VacJ/Yrb, dictates outer membrane vesicle biogenesis in Chromobacterium violaceum. Environ Microbiol 2020; 22:2432-2442. [PMID: 32329144 DOI: 10.1111/1462-2920.15033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Outer membrane vesicles (OMVs) are lipid nanoparticles released by Gram-negative bacteria, which play multiple roles in bacterial physiology and adaptation to diverse environments. In this work, we demonstrate that OMVs released by the environmental pathogen Chromobacterium violaceum deliver the antimicrobial compound violacein to competitor bacteria, mediating its toxicity in vivo at a long distance. OMVs purified by ultracentrifugation from the wild-type strain, but not from a violacein-abrogated mutant ΔvioABCDE, contained violacein and inhibited several Gram-positive bacteria. Competition tests using co-culture and transwell assays indicated that the C. violaceum wild-type strain killed Staphylococcus aureus better than the ΔvioABCDE mutant strain. We found that C. violaceum achieves growth phase-dependent OMV release by the concerted expression of two quorum sensing (QS)-regulated pathways, namely violacein biosynthesis and VacJ/Yrb system. Although both pathways were activated at high cell density in a QS-dependent manner, the effect on vesiculation was the opposite. While the ΔvioABCDE mutant produced twofold fewer vesicles than the wild-type strain, indicating that violacein induces OMV biogenesis for its own delivery, the ΔvacJ and ΔyrbE mutants were hypervesiculating strains. Our findings uncovered QS-regulated pathways involved in OMV biogenesis used by C. violaceum to package violacein into OMVs for interbacterial competition.
Collapse
Affiliation(s)
- Juliana H Batista
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda C Leal
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Taise T H Fukuda
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Alcoforado Diniz
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mônica T Pupo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
37
|
Vallhov H, Johansson C, Veerman RE, Scheynius A. Extracellular Vesicles Released From the Skin Commensal Yeast Malassezia sympodialis Activate Human Primary Keratinocytes. Front Cell Infect Microbiol 2020; 10:6. [PMID: 32039038 PMCID: PMC6993562 DOI: 10.3389/fcimb.2020.00006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) released from fungi have been shown to participate in inter-organismal communication and in cross-kingdom modulation of host defense. Malassezia species are the dominant commensal fungal members of the human skin microbiota. We have previously found that Malassezia sympodialis releases EVs. These EVs, designated MalaEx, carry M. sympodialis allergens and induce a different inflammatory cytokine response in peripheral blood mononuclear cells (PBMC) from patients with atopic dermatitis compared to healthy controls. In this study, we explored the host-microbe interaction between MalaEx and human keratinocytes with the hypothesis that MalaEx might be able to activate human keratinocytes to express the intercellular adhesion molecule-1 (ICAM-1, CD54). MalaEx were prepared from M. sympodialis (ATCC 42132) culture supernatants by a combination of centrifugation, filtration and serial ultracentrifugation. The MalaEx showed a size range of 70–580 nm with a mean of 154 nm using nanoparticle tracking analysis. MalaEx were found to induce a significant up-regulation of ICAM-1 expression on primary human keratinocytes isolated from human ex vivo skin (p = 0.026, n = 3), compared to the unstimulated keratinocytes. ICAM-1 is a counter ligand for the leukocyte integrins lymphocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1), of which induced expression on epithelial cells leads to the attraction of immune competent cells. Thus, the capacity of MalaEx to activate keratinocytes with an enhanced ICAM-1 expression indicates an important step in the cutaneous defense against M. sympodialis. How this modulation of host cells by a fungus is balanced between the commensal, pathogenic, or beneficial states on the skin in the interplay with the host needs to be further elucidated.
Collapse
Affiliation(s)
- Helen Vallhov
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Catharina Johansson
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Rosanne E Veerman
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Abstract
The release of extracellular vesicles (EVs) by fungi is a fundamental cellular process. EVs carry several biomolecules, including pigments, proteins, enzymes, lipids, nucleic acids, and carbohydrates, and are involved in physiological and pathological processes. EVs may play a pivotal role in the establishment of fungal infections, as they can interact with the host immune system to elicit multiple outcomes. The release of extracellular vesicles (EVs) by fungi is a fundamental cellular process. EVs carry several biomolecules, including pigments, proteins, enzymes, lipids, nucleic acids, and carbohydrates, and are involved in physiological and pathological processes. EVs may play a pivotal role in the establishment of fungal infections, as they can interact with the host immune system to elicit multiple outcomes. It has been observed that, depending on the fungal pathogen, EVs can exacerbate or attenuate fungal infections. The study of the interaction between fungal EVs and the host immune system and understanding of the mechanisms that regulate those interactions might be useful for the development of new adjuvants as well as the improvement of protective immune responses against infectious or noninfectious diseases. In this review, we describe the immunomodulatory properties of EVs produced by pathogenic fungi and discuss their potential as adjuvants for prophylactic or therapeutic strategies.
Collapse
|