1
|
Zhao M, Liu Z, Xue P, Zhang X, Wan X. Genomic characterization of the NAC transcription factors in carnation and function analysis of DcNAC41 involved in thermotolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109390. [PMID: 39653006 DOI: 10.1016/j.plaphy.2024.109390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 02/05/2025]
Abstract
As pivotal regulators unique to plants, NAC family extensively orchestrate various life processes ranging from seed germination through growth and development to responses to environmental stresses. This study unraveled 71 NAC TFs in the carnation (Dianthus caryophyllus L.) genome, designated as DcNAC1 to DcNAC71, encoding amino acid sequences ranging from 80 to 718 residues. Subcellular localization predictions revealed a predominance of nuclear localization among these DcNACs. Phylogenetic analysis classified DcNACs into 14 distinct subgroups, each exhibiting similar gene structures and motifs. Promoter analysis highlighted the abundance of cis-regulatory elements (CREs) associated with plant growth and development regulation, hormone signaling, light response, and diverse stress responses, with stress-responsive CREs being the most prevalent, with at least one stress-responsive CRE detected in all DcNAC promoters. To assess their functional roles, 12 DcNACs, were randomly selected from different subgroups for expression profiling under heat, ABA, cold, and salt stress conditions, revealing distinct expression patterns for specific stress types. Notably, DcNAC41, which exhibited marked up-regulation under heat stress, was isolated and subsequently transformed into Arabidopsis. In heat-stressed conditions, transgenic Arabidopsis overexpressing DcNAC41 exhibited significant improvements in growth performance, survival rates, enhanced photosynthetic capacity, and strengthened ROS scavenging abilities. This study offers valuable insights into the comprehensive response of carnation DcNACs towards heat stress, particularly underscoring the potential of DcNAC41 as a promising candidate for enhancing thermotolerance in plants.
Collapse
Affiliation(s)
- Mei Zhao
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Ziyi Liu
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Pengcheng Xue
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xiaojing Zhang
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xueli Wan
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Wang G, Wang X, Li D, Yang X, Hu T, Fu J. Comparative proteomics in tall fescue to reveal underlying mechanisms for improving Photosystem II thermotolerance during heat stress memory. BMC Genomics 2024; 25:683. [PMID: 38982385 PMCID: PMC11232258 DOI: 10.1186/s12864-024-10580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The escalating impacts of global warming intensify the detrimental effects of heat stress on crop growth and yield. Among the earliest and most vulnerable sites of damage is Photosystem II (PSII). Plants exposed to recurring high temperatures develop heat stress memory, a phenomenon that enables them to retain information from previous stress events to better cope with subsequent one. Understanding the components and regulatory networks associated with heat stress memory is crucial for the development of heat-resistant crops. RESULTS Physiological assays revealed that heat priming (HP) enabled tall fescue to possess higher Photosystem II photochemical activity when subjected to trigger stress. To investigate the underlying mechanisms of heat stress memory, we performed comparative proteomic analyses on tall fescue leaves at S0 (control), R4 (primed), and S5 (triggering), using an integrated approach of Tandem Mass Tag (TMT) labeling and Liquid Chromatography-Mass Spectrometry. A total of 3,851 proteins were detected, with quantitative information available for 3,835 proteins. Among these, we identified 1,423 differentially abundant proteins (DAPs), including 526 proteins that were classified as Heat Stress Memory Proteins (HSMPs). GO and KEGG enrichment analyses revealed that the HSMPs were primarily associated with the "autophagy" in R4 and with "PSII repair", "HSP binding", and "peptidase activity" in S5. Notably, we identified 7 chloroplast-localized HSMPs (HSP21, DJC77, EGY3, LHCA4, LQY1, PSBR and DEGP8, R4/S0 > 1.2, S5/S0 > 1.2), which were considered to be effectors linked to PSII heat stress memory, predominantly in cluster 4. Protein-protein interaction (PPI) analysis indicated that the ubiquitin-proteasome system, with key nodes at UPL3, RAD23b, and UCH3, might play a role in the selective retention of memory effectors in the R4 stage. Furthermore, we conducted RT-qPCR validation on 12 genes, and the results showed that in comparison to the S5 stage, the R4 stage exhibited reduced consistency between transcript and protein levels, providing additional evidence for post-transcriptional regulation in R4. CONCLUSIONS These findings provide valuable insights into the establishment of heat stress memory under recurring high-temperature episodes and offer a conceptual framework for breeding thermotolerant crops with improved PSII functionality.
Collapse
Affiliation(s)
- Guangyang Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China
| | - Xiulei Wang
- Urban Management Bureau, Taiqian County, Puyang City, 457600, China
| | - Dongli Li
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China
| | - Xuehe Yang
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China
| | - Tao Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou city, 730020, China.
| | - Jinmin Fu
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China.
| |
Collapse
|
3
|
Zhu X, Wang H. Revisiting the role and mechanism of ELF3 in circadian clock modulation. Gene 2024; 913:148378. [PMID: 38490512 DOI: 10.1016/j.gene.2024.148378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The gene encoding EARLY FLOWERING3 (ELF3) is necessary for photoperiodic flowering and the normal regulation of circadian rhythms. It provides important information at the cellular level to uncover the biological mechanisms that improve plant growth and development. ELF3 interactions with transcription factors such as BROTHER OF LUX ARRHYTHMO (BOA), LIGHT-REGULATED WD1 (LWD1), PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), PHYTOCHROME-INTERACTING FACTOR 7 (PIF7), and LUX ARRHYTHMO (LUX) suggest a role in evening complex (EC) independent pathways, demanding further investigation to elucidate the EC-dependent versus EC-independent mechanisms. The ELF3 regulation of flowering time about photoperiod and temperature variations can also optimize crop cultivation across diverse latitudes. In this review paper, we summarize how ELF3's role in the circadian clock and light-responsive flowering control in crops offers substantial potential for scientific advancement and practical applications in biotechnology and agriculture. Despite its essential role in crop adaptation, very little is known in many important crops. Consequently, comprehensive and targeted research is essential for extrapolating ELF3-related insights from Arabidopsis to other crops, utilizing both computational and experimental methodologies. This research should prioritize investigations into ELF3's protein-protein interactions, post-translational modifications, and genomic targets to elucidate its contribution to accurate circadian clock regulation.
Collapse
Affiliation(s)
- Xingzun Zhu
- College of Landscape Architecture, Changchun University, No.1 Weixinglu Changchun, Jilin, China.
| | - Hongtao Wang
- College of Life Sciences, Tonghua Normal University, Tonghua, 950, Yucai Road, China.
| |
Collapse
|
4
|
de Leone MJ, Yanovsky MJ. The circadian clock and thermal regulation in plants: novel insights into the role of positive circadian clock regulators in temperature responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2809-2818. [PMID: 38373194 DOI: 10.1093/jxb/erae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The impact of rising global temperatures on crop yields is a serious concern, and the development of heat-resistant crop varieties is crucial for mitigating the effects of climate change on agriculture. To achieve this, a better understanding of the molecular basis of the thermal responses of plants is necessary. The circadian clock plays a central role in modulating plant biology in synchrony with environmental changes, including temperature fluctuations. Recent studies have uncovered the role of transcriptional activators of the core circadian network in plant temperature responses. This expert view highlights key novel findings regarding the role of the RVE and LNK gene families in controlling gene expression patterns and plant growth under different temperature conditions, ranging from regular diurnal oscillations to extreme stress temperatures. These findings reinforce the essential role of the circadian clock in plant adaptation to changing temperatures and provide a basis for future studies on crop improvement.
Collapse
Affiliation(s)
- María José de Leone
- Fundación Instituto Leloir-IIBBA/CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Javier Yanovsky
- Fundación Instituto Leloir-IIBBA/CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
Zhang Y, Ma Y, Zhang H, Xu J, Gao X, Zhang T, Liu X, Guo L, Zhao D. Environmental F actors coordinate circadian clock function and rhythm to regulate plant development. PLANT SIGNALING & BEHAVIOR 2023; 18:2231202. [PMID: 37481743 PMCID: PMC10364662 DOI: 10.1080/15592324.2023.2231202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Changes in the external environment necessitate plant growth plasticity, with environmental signals such as light, temperature, and humidity regulating growth and development. The plant circadian clock is a biological time keeper that can be "reset" to adjust internal time to changes in the external environment. Exploring the regulatory mechanisms behind plant acclimation to environmental factors is important for understanding how plant growth and development are shaped and for boosting agricultural production. In this review, we summarize recent insights into the coordinated regulation of plant growth and development by environmental signals and the circadian clock, further discussing the potential of this knowledge.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yuru Ma
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Hao Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Jiahui Xu
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xiaokuan Gao
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
| | - Tengteng Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xigang Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Lin Guo
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Dan Zhao
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|