1
|
Zambrano E, Reyes-Castro LA, Rodríguez-González GL, Chavira R, Lomas-Soria C, Gerow KG, Nathanielsz PW. Developmental Programming-Aging Interactions Have Sex-Specific and Developmental Stage of Exposure Outcomes on Life Course Circulating Corticosterone and Dehydroepiandrosterone (DHEA) Concentrations in Rats Exposed to Maternal Protein-Restricted Diets. Nutrients 2023; 15:nu15051239. [PMID: 36904238 PMCID: PMC10005360 DOI: 10.3390/nu15051239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
The steroids corticosterone and dehydroepiandrosterone (DHEA) perform multiple life course functions. Rodent life-course circulating corticosterone and DHEA trajectories are unknown. We studied life course basal corticosterone and DHEA in offspring of rats fed protein-restricted (10% protein, R) or control (20% protein, C), pregnancy diet first letter, and/or lactation second letter, producing four offspring groups-CC, RR, CR, and RC. We hypothesize that 1. maternal diet programs are sexually dimorphic, offspring life course steroid concentrations, and 2. an aging-related steroid will fall. Both changes differ with the plastic developmental period offspring experienced R, fetal life or postnatally, pre-weaning. Corticosterone was measured by radioimmunoassay and DHEA by ELISA. Steroid trajectories were evaluated by quadratic analysis. Female corticosterone was higher than male in all groups. Male and female corticosterone were highest in RR, peaked at 450 days, and fell thereafter. DHEA declined with aging in all-male groups. DHEA: corticosterone fell in three male groups but increased in all-female groups with age. In conclusion, life course and sexually dimorphic steroid developmental programming-aging interactions may explain differences in steroid studies at different life stages and between colonies experiencing different early-life programming. These data support our hypotheses of sex and programming influences and aging-related fall in rat life course serum steroids. Life course studies should address developmental programming-aging interactions.
Collapse
Affiliation(s)
- Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Luis A. Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Guadalupe L. Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Roberto Chavira
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- CONACyT-Cátedras, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico
| | - Kenneth G. Gerow
- Department of Statistics, University of Wyoming, Laramie, WY 82071, USA
| | - Peter W. Nathanielsz
- Wyoming Center for Pregnancy and Life Course Health Research, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
- Correspondence:
| |
Collapse
|
2
|
Ojeda ML, Carreras O, Nogales F. The Role of Selenoprotein Tissue Homeostasis in MetS Programming: Energy Balance and Cardiometabolic Implications. Antioxidants (Basel) 2022; 11:antiox11020394. [PMID: 35204276 PMCID: PMC8869711 DOI: 10.3390/antiox11020394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential trace element mainly known for its antioxidant, anti-inflammatory, and anti-apoptotic properties, as it is part of the catalytic center of 25 different selenoproteins. Some of them are related to insulin resistance (IR) and metabolic syndrome (MetS) generation, modulating reactive oxygen species (ROS), and the energetic sensor AMP-activated protein kinase (AMPK); they can also regulate the nuclear transcription factor kappa-B (NF-kB), leading to changes in inflammation production. Selenoproteins are also necessary for the correct synthesis of insulin and thyroid hormones. They are also involved in endocrine central regulation of appetite and energy homeostasis, affecting growth and development. MetS, a complex metabolic disorder, can appear during gestation and lactation in mothers, leading to energetic and metabolic changes in their offspring that, according to the metabolic programming theory, will produce cardiovascular and metabolic diseases later in life. However, there is a gap concerning Se tissue levels and selenoproteins’ implications in MetS generation, which is even greater during MetS programming. This narrative review also provides an overview of the existing evidence, based on experimental research from our laboratory, which strengthens the fact that maternal MetS leads to changes in Se tissue deposits and antioxidant selenoproteins’ expression in their offspring. These changes contribute to alterations in tissues’ oxidative damage, inflammation, energy balance, and tissue function, mainly in the heart. Se imbalance also could modulate appetite and endocrine energy balance, affecting pups’ growth and development. MetS pups present a profile similar to that of diabetes type 1, which also appeared when dams were exposed to low-Se dietary supply. Maternal Se supplementation should be taken into account if, during gestation and/or lactation periods, there are suspicions of endocrine energy imbalance in the offspring, such as MetS. It could be an interesting therapy to induce heart reprogramming. However, more studies are necessary.
Collapse
|
3
|
Aderibigbe AS, Ajuwon KM, Adeola O. Dietary phosphorus level regulates appetite through modulation of gut and hypothalamic expression of anorexigenic genes in broiler chickens. Poult Sci 2021; 101:101591. [PMID: 34890944 PMCID: PMC8665405 DOI: 10.1016/j.psj.2021.101591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/12/2021] [Accepted: 10/24/2021] [Indexed: 12/04/2022] Open
Abstract
Two experiments were designed to elucidate gut and hypothalamic molecular regulation of appetite by dietary phosphorus (P) concentration in broiler chickens. Birds (192 Cobb-500 broiler chickens) were randomly assigned to 3 experimental diets in experiment 1 (Exp. 1) and 24 broiler chickens were randomly assigned to 3 treatment groups in Exp. 2. Each diet comprised 8 replicate cages, with either 8 birds (Exp. 1) or 1 bird (Exp. 2) per replicate cage. In Exp. 1, diets contained 1.2 (P-deficient), 2.8 (P-marginal) or 4.4 (P-adequate) g/kg non-phytate P (nPP). In Exp. 2, birds fed the P-adequate diet were pair-fed (PF) to the feed consumption levels of birds fed the P-deficient diet. Feed intake and BW gain (P < 0.001) decreased in birds fed the P-deficient diet in Exp. 1. Birds fed the P-deficient diet had similar feed intake and BW gain with PF group fed the P-adequate diet (Exp. 2) but was significantly lower (P < 0.001) than birds fed the P-adequate diets. Sodium-phosphate cotransporter (NaPi-IIb) mRNA was upregulated (P < 0.05) in both experiments. Conversely, cholecystokinin (CCK) mRNA was downregulated (P < 0.01) in birds fed P-deficient diets. Anorexia-related hypothalamic cholecystokinin receptor (CCKAR) and melanocortin receptors (MC3R and MC4R) were upregulated (P < 0.05) in birds fed P-deficient diets, in both experiments. The current data show that dietary P deficiency decreases feed intake in broiler chickens by altering the expression of anorexigenic genes in the gut and hypothalamus of broiler chickens.
Collapse
Affiliation(s)
- A S Aderibigbe
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - K M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - O Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Christians JK, Shergill HK, Albert AYK. Sex-dependent effects of prenatal food and protein restriction on offspring physiology in rats and mice: systematic review and meta-analyses. Biol Sex Differ 2021; 12:21. [PMID: 33563335 PMCID: PMC7871651 DOI: 10.1186/s13293-021-00365-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Males and females may experience different effects of early-life adversity on life-long health. One hypothesis is that male foetuses invest more in foetal growth and relatively less in placental growth, and that this makes them susceptible to poor nutrition in utero, particularly if nutrition is reduced part-way through gestation. OBJECTIVES Our objectives were to examine whether (1) food and/ or protein restriction in rats and mice has consistent sex-dependent effects, (2) sex-dependency differs between types of outcomes, and (3) males are more severely affected when restriction starts part-way through gestation. DATA SOURCES PubMed and Web of Science were searched to identify eligible studies. STUDY ELIGIBILITY CRITERIA Eligible studies described controlled experiments that restricted protein or food during gestation in rats or mice, examined physiological traits in offspring from manipulated pregnancies, and tested whether effects differed between males and females. RESULTS Our search identified 292 articles, of which the full texts of 72 were assessed, and 65 were included for further synthesis. A majority (50) used Wistar or Sprague-Dawley rats and so these were the primary focus. Among studies in which maternal diet was restricted for the duration of gestation, no type of trait was consistently more severely affected in one particular sex, although blood pressure was generally increased in both sexes. Meta-analysis found no difference between sexes in the effect of protein restriction throughout gestation on blood pressure. Among studies restricting food in the latter half of gestation only, there were again few consistent sex-dependent effects, although three studies found blood pressure was increased in males only. Meta-analysis found that food restriction in the second half of gestation increased adult blood pressure in both sexes, with a significantly greater effect in males. Birthweight was consistently reduced in both sexes, a result confirmed by meta-analysis. CONCLUSIONS We found little support for the hypotheses that males are more affected by food and protein restriction, or that effects are particularly severe if nutrition is reduced part-way through gestation. However, less than half of the studies tested for sex by maternal diet interactions to identify sex-dependent effects. As a result, many reported sex-specific effects may be false positives.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada.
| | - Haroop K Shergill
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Arianne Y K Albert
- Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Desclée de Maredsous C, Carlin G, Oosting A, Delteil C, Azzout-Marniche D, Chaumontet C, Blachier F, Barbillon P, Mary-Huard T, Tomé D, Oozeer R, Davila AM. Increased Susceptibility to Obesity and Glucose Intolerance in Adult Female Rats Programmed by High-Protein Diet during Gestation, But Not during Lactation. Nutrients 2020; 12:E315. [PMID: 31991777 PMCID: PMC7071251 DOI: 10.3390/nu12020315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Fetal and early postnatal nutritional environments contribute to lifelong health. High-protein (HP) intake in early life can increase obesity risk in response to specific feeding conditions after weaning. This study investigated the effects of a maternal HP diet during pregnancy and/or lactation on the metabolic health of offspring. Three groups of dams received a normal-protein (NP, 20E% proteins) diet during gestation and lactation (Control group), an HP diet (55E% proteins) during gestation (HPgest group), or an HP diet during lactation (HPlact group). From weaning until 10 weeks, female pups were exposed to the NP, the HP or the western (W) diet. HPgest pups had more adipocytes (p = 0.009), more subcutaneous adipose tissue (p = 0.04) and increased expression of genes involved in liver fatty acid synthesis at 10 weeks (p < 0.05). HPgest rats also showed higher food intake and adiposity under the W diet compared to the Control and HPlact rats (p ≤ 0.04). The post-weaning HP diet reduced weight (p < 0.0001), food intake (p < 0.0001), adiposity (p < 0.0001) and glucose tolerance (p < 0.0001) compared to the NP and W diets; this effect was enhanced in the HPgest group (p = 0.04). These results show that a maternal HP diet during gestation, but not lactation, leads to a higher susceptibility to obesity and glucose intolerance in female offspring.
Collapse
Affiliation(s)
- Caroline Desclée de Maredsous
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (A.O.); (R.O.)
| | - Gabrielle Carlin
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| | - Annemarie Oosting
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (A.O.); (R.O.)
| | - Corine Delteil
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| | - Dalila Azzout-Marniche
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| | - Catherine Chaumontet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| | - François Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| | - Pierre Barbillon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005 Paris, France; (P.B.); (T.M.-H.)
| | - Tristan Mary-Huard
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005 Paris, France; (P.B.); (T.M.-H.)
| | - Daniel Tomé
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| | - Raish Oozeer
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (A.O.); (R.O.)
| | - Anne-Marie Davila
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| |
Collapse
|
6
|
Chen Z, Gong L, Zhang P, Li Y, Liu B, Zhang L, Zhuang J, Xiao D. Epigenetic Down-Regulation of Sirt 1 via DNA Methylation and Oxidative Stress Signaling Contributes to the Gestational Diabetes Mellitus-Induced Fetal Programming of Heart Ischemia-Sensitive Phenotype in Late Life. Int J Biol Sci 2019; 15:1240-1251. [PMID: 31223283 PMCID: PMC6567811 DOI: 10.7150/ijbs.33044] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Rationale: The incidence of gestational diabetes mellitus (GDM) is increasing worldwide. However, whether and how GDM exposure induces fetal programming of adult cardiac dysfunctional phenotype, especially the underlying epigenetic molecular mechanisms and theranostics remain unclear. To address this problem, we developed a late GDM rat model. Methods: Pregnant rats were made diabetic on day 12 of gestation by streptozotocin (STZ). Experiments were conducted in 6 weeks old offspring. Results: There were significant increases in ischemia-induced cardiac infarction and gender-dependent left ventricular (LV) dysfunction in male offspring in GDM group as compared to controls. Exposure to GDM enhanced ROS level and caused a global DNA methylation in offspring cardiomyocytes. GDM attenuated cardiac Sirt 1 protein and p-Akt/Akt levels, but enhanced autophagy-related proteins expression (Atg 5 and LC3 II/LC3 I) as compared to controls. Ex-vivo treatment of DNA methylation inhibitor, 5-Aza directly inhibited Dnmt3A and enhanced Sirt 1 protein expression in fetal hearts. Furthermore, treatment with antioxidant, N-acetyl-cysteine (NAC) in offspring reversed GDM-mediated DNA hypermethylation, Sirt1 repression and autophagy-related gene protein overexpression in the hearts, and rescued GDM-induced deterioration in heart ischemic injury and LV dysfunction. Conclusion: Our data indicated that exposure to GDM induced offspring cardiac oxidative stress and DNA hypermethylation, resulting in an epigenetic down-regulation of Sirt1 gene and aberrant development of heart ischemia-sensitive phenotype, which suggests that Sirt 1-mediated signaling is the potential therapeutic target for the heart ischemic disease in offspring.
Collapse
Affiliation(s)
- Zewen Chen
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA.,Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lei Gong
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Peng Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Bailin Liu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Jian Zhuang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
7
|
Abstract
Evidence suggests that both high and low birth weight children have increased the risk for obesity and the metabolic syndrome in adulthood. Previously we have found altered feeding behaviour and food preferences in pre-school children and adults born with low birth weight. In this study, we investigated if birth weight was associated with different intake of fat, carbohydrate and/or protein at 6-12 years of age. This is a cross-sectional study where 255 guardians answered online and telephone questions including anthropometrics and demographic data, parental family food rules (food control, encouragement and restriction) and a complete web-based FFQ for their children (130 boys and 125 girls). Baseline demographic and parental food rules characteristics did not differ accordingly to sex. Linear regression models were conducted separately for each sex, adjusted for income, age and maternal age. There were no differences in total energy intake, but energy density (ED, energy content/g) was negatively associated with birth weight in boys. Macronutrient analysis showed that ED intake was from a greater intake of fat. Birth weight was not a significant predictor of protein and carbohydrate intake in boys. In girls, we saw a positive correlation between fat intake and cholesterol intake v. birth weight, but no association with ED intake (results did not remain after adjustment). The study shows that low birth weight is associated with altered fat intake in childhood in a sex-specific manner. It is likely that biological factors such as fetal programming of homoeostatic and/or hedonic pathways influencing food preferences are involved in this process.
Collapse
|
8
|
Santos LS, Cordeiro GS, Perez GS, Santo DAE, Macêdo APA, Lima MS, Carneiro IBC, Machado MEPC, Deiró TCJ, Barreto-Medeiros JM. Influence of mother nutrition during pregnancy and/or lactation on offspring food preference in experimental models. BRAZ J BIOL 2019; 79:220-232. [DOI: 10.1590/1519-6984.179134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/30/2017] [Indexed: 11/21/2022] Open
Abstract
Abstract Introduction Understanding associations between food preferences and maternal nutrition during pregnancy and lactation could inform efforts to understanding the obesity mechanisms and provide insight to prevent it. Objective: To identify studies that investigated the effects of nutritional interventions during the pregnancy and lactation on the food preferences of offspring. Method: The review was conducted with search for articles in the databases: Scopus, Pubmed, Medline, LILACS, Scielo and Science Direct. Exclusion criteria were used: reviews, human studies, studies with drugs or other substances not related to food. Results: At the end of the search in the databases, 176 references were found. After use the exclusion criteria, reading the titles, abstracts and full articles, were selected 11 articles to compose the review. Conclusion: The selected studies suggested that unbalanced nutrition in early life alters the food preference and neural components related to the consumption of fatty and sugary foods in offspring rodents.
Collapse
Affiliation(s)
- L. S. Santos
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | - G. S. Cordeiro
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | - G. S. Perez
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | - D. A. E. Santo
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | | | | | - I. B. C. Carneiro
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | - M. E. P. C. Machado
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | - T. C.B. J. Deiró
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | | |
Collapse
|
9
|
Portella AK, Paquet C, Bischoff AR, Molle RD, Faber A, Moore S, Arora N, Levitan R, Silveira PP, Dube L. Multi-behavioral obesogenic phenotypes among school-aged boys and girls along the birth weight continuum. PLoS One 2019; 14:e0212290. [PMID: 30789933 PMCID: PMC6383887 DOI: 10.1371/journal.pone.0212290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/30/2019] [Indexed: 11/18/2022] Open
Abstract
Evidence shows that extremes of birth weight (BW) carry a common increased risk for the development of adiposity and related cardiovascular diseases, but little is known about the role of obesogenic behaviors in this process. Moreover, no one has empirically examined whether the relationship between BW, obesogenic behaviors and BMI along the full low-to-high birthweight continuum reflects the U-shape pattern expected from common risk at both BW extremes. Our objective was to characterize physical activity, screen time, and eating behavior and their relationship to BMI as a function of BW among school-aged boys and girls. In this cross-sectional study, 460 children aged 6 to 12 years (50% boys) from Montreal, Canada provided information on sleeping time, screen time, physical activity levels, eating behavior (emotional, external and restrained eating) and anthropometrics (height, weight, BW) through parent reported questionnaires. BMI was normalized using WHO Standards (zBMI), and BW expressed as ratio using Canadian population standards (BW for gestational age and sex). Analyses were conducted using generalized linear models with linear and quadratic terms for BW, stratified by sex and adjusted for age, ethnicity and household income. In boys, physical activity and screen time showed U-shaped associations with BW, while physical activity had an inverted U-shaped in girls. Emotional and restrained eating had positive linear relations with BW in boys and girls. Sleep time and external eating were not associated with BW. A U-shaped relationship between BW and zBMI was found in boys but no association was found in girls. Only sleep (in boys and girls), and emotional eating (girls only) were related to zBMI and mediation of the BW-zBMI relationship was only supported for emotional eating. In conclusion, BW relates to obesogenic behaviors and BMI in both non-linear and linear ways, and these associations differed by sex.
Collapse
Affiliation(s)
- Andre Krumel Portella
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
- PostGraduate Program in Pediatrics, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS, Brasil
- * E-mail:
| | - Catherine Paquet
- School of Health Sciences, Centre for Population Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Adrianne Rahde Bischoff
- Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Roberta Dalle Molle
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aida Faber
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| | - Spencer Moore
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | | | - Robert Levitan
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Patricia Pelufo Silveira
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Sackler Institute for Epigenetics & Psychobiology, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Laurette Dube
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Zhang S, Heng J, Song H, Zhang Y, Lin X, Tian M, Chen F, Guan W. Role of Maternal Dietary Protein and Amino Acids on Fetal Programming, Early Neonatal Development, and Lactation in Swine. Animals (Basel) 2019; 9:ani9010019. [PMID: 30642135 PMCID: PMC6356768 DOI: 10.3390/ani9010019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Dietary protein is an important nutrient source for sows, necessary for not only growth and production, but also other physiological functions. Protein limitations in maternal diets have the potential to impair fetal myogenesis, while excess maternal dietary protein appears to only have minor effects on early fetal muscle formation. Effects of maternal protein deficiency on increased fat deposition in porcine neonates is inconsistent with gene expressions in the neonates. Sufficient maternal dietary protein can enhance porcine milk protein and fat concentration. Understanding the function of protein and amino acids in sows and the effects on their offspring can provide rational approaches for the regulation of piglet growth and further improvements in meat quality in the future. Abstract Maternal nutrition plays a vital role in fetal development, early development of neonates, and lactation and regulates the lifetime productivity of offspring. During pregnancy, maternal nutrition alters expression of the fetal genome and the development of tissues and organs via fetal programming. After parturition, maternal nutrition continues to regulate growth and development of piglets through maternal milk, which contains carbohydrates, lipids, proteins and oligosaccharides. Thus, deficiencies in maternal nutrition are detrimental to development of piglets, which can lead to inefficient growth and decreased carcass merit. Protein is an important nutritional component for sows, which not only functions in muscle development, but also plays a vital role in embryonic and neonatal development and lactation. Although effects of maternal undernutrition on neonatal development have been widely studied in sows, the function of different maternal dietary protein levels on fetal development, neonatal growth and lactation performance of sows is largely unknown. Determination of the effects and underlying mechanisms of maternal dietary protein levels on development of piglets is vital to the pork industry. Therefore, we summarized recent reports regarding mechanisms of effects of maternal protein levels on regulation of conceptus growth and early postnatal development though uterine fetal programming and lactation in swine.
Collapse
Affiliation(s)
- Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Jinghui Heng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Hanqing Song
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yufeng Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaofeng Lin
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
- College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
11
|
Carlin G, Chaumontet C, Blachier F, Barbillon P, Darcel N, Blais A, Delteil C, Guillin FM, Blat S, van der Beek EM, Kodde A, Tomé D, Davila AM. Maternal High-Protein Diet during Pregnancy Modifies Rat Offspring Body Weight and Insulin Signalling but Not Macronutrient Preference in Adulthood. Nutrients 2019; 11:nu11010096. [PMID: 30621263 PMCID: PMC6356951 DOI: 10.3390/nu11010096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 01/21/2023] Open
Abstract
Diet of mothers during gestation may impact offspring phenotype. This study evaluated the consequences of a maternal High-Protein (HP) diet during gestation on food preferences and phenotypic characteristics in adult rat offspring. Dams were fed a HP or a Normal-Protein (NP) isocaloric diet during gestation only. Weaned female pups were divided into 3 diet groups: NP control or one of two dietary self-selection (DSS) conditions. In DSS1, offspring had a free choice between proteins (100%) or a mix of carbohydrates (88%) and lipids (12%). In DSS2, the choice was between proteins (100%), carbohydrate (100%) or lipids (100%). DSS2 groups consumed more of their energy from protein and lipids, with a decreased carbohydrate intake (p < 0.0001) compared to NP groups, regardless of the maternal diet. Offspring from HP gestation dams fed the DSS2 diet (HPDSS2) had a 41.2% increase of total adiposity compared to NPDSS2 (p < 0.03). Liver Insulin receptor and Insulin substrate receptor 1 expression was decreased in offspring from HP compared to NP gestation dams. These results showed the specific effects of DSS and maternal diet and data suggested that adult, female offspring exposed to a maternal HP diet during foetal life were more prone to adiposity development, in response to postweaning food conditions.
Collapse
Affiliation(s)
- Gabrielle Carlin
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | | | - François Blachier
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Pierre Barbillon
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Nicolas Darcel
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Anne Blais
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Corine Delteil
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Florence M Guillin
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Sophie Blat
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, 35000 Rennes, France.
| | - Eline M van der Beek
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands.
- Dept Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Andrea Kodde
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands.
| | - Daniel Tomé
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Anne-Marie Davila
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| |
Collapse
|
12
|
Mohan R, Baumann D, Alejandro EU. Fetal undernutrition, placental insufficiency, and pancreatic β-cell development programming in utero. Am J Physiol Regul Integr Comp Physiol 2018; 315:R867-R878. [PMID: 30110175 DOI: 10.1152/ajpregu.00072.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of obesity and type 2 (T2D) diabetes is a major health concern in the United States and around the world. T2D is a complex disease characterized by pancreatic β-cell failure in association with obesity and insulin resistance in peripheral tissues. Although several genes associated with T2D have been identified, it is speculated that genetic variants account for only <10% of the risk for this disease. A strong body of data from both human epidemiological and animal studies shows that fetal nutrient factors in utero confer significant susceptibility to T2D. Numerous studies done in animals have shown that suboptimal maternal environment or placental insufficiency causes intrauterine growth restriction (IUGR) in the fetus, a critical factor known to predispose offspring to obesity and T2D, in part by causing permanent consequences in total functional β-cell mass. This review will focus on the potential contribution of the placenta in fetal programming of obesity and TD and its likely impact on pancreatic β-cell development and growth.
Collapse
Affiliation(s)
- Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Daniel Baumann
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Emilyn Uy Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
13
|
Liu J, Dias K, Plagnes-Juan E, Veron V, Panserat S, Marandel L. Long-term programming effect of embryonic hypoxia exposure and high-carbohydrate diet at first feeding on glucose metabolism in juvenile rainbow trout. ACTA ACUST UNITED AC 2017; 220:3686-3694. [PMID: 28798080 DOI: 10.1242/jeb.161406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022]
Abstract
Environmental conditions experienced during early life play an important role in the long-term metabolic status of individuals. The present study investigated whether hypoxia exposure [for 24 h: 2.5 mg O2 l-1 (20% dissolved O2)] during the embryonic stage alone (hypoxic history) or combined with a 5-day high-carbohydrate (60%) diet stimulus at first feeding (HC dietary history) can affect glucose metabolism later in life, i.e. in juvenile fish. After 19 weeks of growth, we observed a decrease in final body mass in fish with an HC dietary history. Feed efficiency was significantly affected by both hypoxic and HC dietary histories. After a short challenge test (5 days) performed with a 30% carbohydrate diet in juvenile trout, our results also showed that, in trout that experienced hypoxic history, mRNA levels of gluconeogenic genes in liver and glucose transport genes in both liver and muscle were significantly increased at the juvenile stage. Besides, mRNA levels of glycolytic genes were decreased in fish with an HC dietary history. Both hypoxic and dietary histories barely affected plasma metabolites or global epigenetic modifications in juvenile fish after the challenge test. In conclusion, our results demonstrated that an acute hypoxic stimulus during early development alone or combined with a hyperglucidic stimulus at first feeding can modify growth performance and glucose metabolism at the molecular level in juvenile trout.
Collapse
Affiliation(s)
- Jingwei Liu
- INRA, Université de Pau et des pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Karine Dias
- INRA, Université de Pau et des pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRA, Université de Pau et des pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Vincent Veron
- INRA, Université de Pau et des pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRA, Université de Pau et des pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRA, Université de Pau et des pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
14
|
Ramírez-López MT, Arco R, Decara J, Vázquez M, Rivera P, Blanco RN, Alén F, Gómez de Heras R, Suárez J, Rodríguez de Fonseca F. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators. Front Behav Neurosci 2016; 10:241. [PMID: 28082878 PMCID: PMC5187359 DOI: 10.3389/fnbeh.2016.00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022] Open
Abstract
Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes (Faah, Daglα, Daglβ, Mgll) and several key regulators of fatty-acid β-oxidation (Cpt1b, Acox1), mitochondrial respiration (Cox4i1), and lipid flux (Pparγ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Pparα, Pparγ, the eCBs-degrading enzymes Faah and Mgll, the de novo lipogenic enzymes Acaca and Fasn, and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr. Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner.
Collapse
Affiliation(s)
- María T Ramírez-López
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Hospital Universitario de GetafeMadrid, Spain
| | - Rocío Arco
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Mariam Vázquez
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Rosario Noemi Blanco
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Raquel Gómez de Heras
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain; Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Ciencias, Universidad de MálagaMálaga, Spain
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| |
Collapse
|
15
|
Confortim HD, Jerônimo LC, Centenaro LA, Pinheiro PFF, Matheus SMM, Torrejais MM. Maternal protein restriction during pregnancy and lactation affects the development of muscle fibers and neuromuscular junctions in rats. Muscle Nerve 2016; 55:109-115. [PMID: 27171684 DOI: 10.1002/mus.25187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 11/08/2022]
Abstract
INTRODUCTION A balanced maternal diet is a determining factor in normal fetal development. The objective of this study was to evaluate the effects of maternal protein restriction during pregnancy and lactation on muscle fiber and neuromuscular junction (NMJ) morphology of rat offspring at 21 days of age. METHODS Wistar rats were divided into a control group (CG), offspring of mothers fed a normal protein diet (17%), and a restricted group (RG), offspring of mothers fed a low-protein diet (6%). After a period of lactation, the animals were euthanized, and soleus muscles were obtained from pups for analysis. RESULTS The soleus muscles of the RG exhibited an increase of 133% in the number of fibers and of 79% in the amount of nuclei. Moreover, the number of NMJs was lower in the restricted group than in the CG. CONCLUSIONS Maternal protein restriction alters the normal development of the neuromuscular system. Muscle Nerve 55: 109-115, 2017.
Collapse
Affiliation(s)
- Heloisa Deola Confortim
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Leslie Cazetta Jerônimo
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Lígia Aline Centenaro
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Patrícia Fernanda Felipe Pinheiro
- Departamento de Anatomia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, Brazil
| | - Selma Maria Michelin Matheus
- Departamento de Anatomia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, Brazil
| | - Marcia Miranda Torrejais
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
16
|
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesis proposes that several non-communicable diseases have their origins in prenatal life and in early childhood. This is believed to work through programming, an insult, taking place at a sensitive period of development, may have lifelong consequences, increasing and programming disease risk later in life. The Helsinki Birth Cohort Study (HBCS) has been focusing upon the importance of factors active during periods in early life and their influence on later health in 20,431 people born 1924-44. This review will focus upon findings from the HBCS over the past 20 years. Early growth patterns associated with coronary heart disease, type 2 diabetes and other health outcomes are described. The long-term health impact of maternal adiposity is also discussed. Potential underlying mechanisms explaining the associations are discussed including epigenetic factors. Key messages Several non-communicable diseases - including coronary heart disease and type 2 diabetes - have their origins in early life. Early life programming during sensitive periods of development may permanently program future health and disease risk. Optimizing the health and lifestyle of women of reproductive age will have positive health consequences for their offspring.
Collapse
Affiliation(s)
- Johan G Eriksson
- a Department of Chronic Disease Prevention , National Institute for Health and Welfare , Helsinki , Finland.,b Folkhälsan Research Center , Helsinki , Finland.,c Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| |
Collapse
|
17
|
Arentson-Lantz EJ, Zou M, Teegarden D, Buhman KK, Donkin SS. Maternal high fructose and low protein consumption during pregnancy and lactation share some but not all effects on early-life growth and metabolic programming of rat offspring. Nutr Res 2016; 36:937-946. [PMID: 27632913 DOI: 10.1016/j.nutres.2016.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/21/2022]
Abstract
Maternal nutritional stress during pregnancy acts to program offspring metabolism. We hypothesized that the nutritional stress caused by maternal fructose or low protein intake during pregnancy would program the offspring to develop metabolic aberrations that would be exacerbated by a diet rich in fructose or fat during adult life. The objective of this study was to characterize and compare the fetal programming effects of maternal fructose with the established programming model of a low-protein diet on offspring. Male offspring from Sprague-Dawley dams fed a 60% starch control diet, a 60% fructose diet, or a low-protein diet throughout pregnancy and lactation were weaned onto either a 60% starch control diet, 60% fructose diet, or a 30% fat diet for 15 weeks. Offspring from low-protein and fructose-fed dam showed retarded growth (P<.05) at weaning (50.3, 29.6 vs 59.1±0.8 g) and at 18 weeks of age (420, 369 vs 464±10.9 g). At 18 weeks of age, offspring from fructose dams expressed greater quantities (P<.05) of intestinal Pgc1a messenger RNA compared with offspring from control or low-protein dams (1.31 vs 0.89, 0.85; confidence interval, 0.78-1.04). Similarly, maternal fructose (P=.09) and low-protein (P<.05) consumption increased expression of Pgc1a in offspring liver (7.24, 2.22 vs 1.22; confidence interval, 2.11-3.45). These data indicate that maternal fructose feeding is a programming model that shares some features of maternal protein restriction such as retarded growth, but is unique in programming of selected hepatic and intestinal transcripts.
Collapse
Affiliation(s)
| | - Mi Zou
- Interdepartmental Nutrition Program, Purdue University, West Lafayette, IN, USA
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Shawn S Donkin
- Department of Animal Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
18
|
Fechine MF, Borba TK, Cabral-Filho JE, Bolaños-Jiménez F, Lopes-de-Souza S, Manhães-de-Castro R. Can early protein restriction induce the development of binge eating? Behav Processes 2016; 125:19-25. [PMID: 26836391 DOI: 10.1016/j.beproc.2016.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 12/30/2015] [Accepted: 01/01/2016] [Indexed: 11/29/2022]
Abstract
We tested the hypothesis that perinatal undernourishment is a factor for binge eating. At 52 days rats born from dams fed on 17% protein (Control) or 8% protein (Undernourished) were distributed into four groups, two of which continued to be fed ad libitum chow and two were submitted to three consecutive Restricted/Refeeding (R/R) cycles. According to the following schedule: Control Naïve (from mothers fed 17% protein/no restriction phase); Control Restricted (from mothers fed 17% protein/restriction phase); Undernourished Naïve (from mothers fed 8% protein/no restriction phase); and Undernourished Restricted (from mothers fed 8% protein/restriction phase). Each cycle consisted of a restriction phase (in the first four days 40% of the mean daily individual chow intake was offered for consumption), followed by a refeeding phase (4 days of chow ad libitum). After the three cycles, all animals were subjected to a feeding test (chow diet and palatable food ad libitum for 24h). During the feeding test, the Undernourished Restricted demonstrated rebound hyperphagia during 2, 4 and 6h. These results suggest the perinatal undernourishment cannot contribute to a binge eating phenotype.
Collapse
Affiliation(s)
- Madge Farias Fechine
- Post-Graduation in Neuropsychiatry and Behavioral Sciences, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Tássia Karin Borba
- Post-Graduation in Neuropsychiatry and Behavioral Sciences, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | | | | | - Sandra Lopes-de-Souza
- Department of Anatomy, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Raul Manhães-de-Castro
- Department of Nutrition, Health Sciences Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco CEP: 50670901, Brazil.
| |
Collapse
|
19
|
da Silva AAM, Oliveira MM, Cavalcante TCF, do Amaral Almeida LC, de Souza JA, da Silva MC, de Souza SL. Low protein diet during gestation and lactation increases food reward seeking but does not modify sucrose taste reactivity in adult female rats. Int J Dev Neurosci 2016; 49:50-9. [PMID: 26805766 DOI: 10.1016/j.ijdevneu.2016.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 12/25/2015] [Accepted: 01/12/2016] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Nutritional deficiencies during neural development may lead to irreversible changes, even after nutritional rehabilitation, promoting morphological and functional adaptations of structures involved with various behaviours including feeding behaviour. However, the ability of the exposure low protein diet during gestation and lactation to affect the hedonic component of food intake is still poorly understood, especially in females. METHODS Wistar rats were divided into two groups according to the diet offered to the dams during pregnancy and lactation: control female (CF; diet with 17% protein, n=7) and low protein female (LPF; diet with 8% protein, n=7). The following parameters were evaluated: (a) body weight during weaning, 30, 45, 60, 75, 90 days of life; (b) standard diet intake from 110 to 132 days of life; (c) fat diet and consumption of simple carbohydrates (HFHS) for 1h at 145 days of life; (d) incentive runway task 60 days after 82 days of life; (e) taste reactivity at 90 days of life; and (f) neuronal activation in the caudate putamen, amygdala, paraventricular nucleus of the hypothalamus under stimulus HFHS at 145 days of life. RESULTS The exposure, a low protein diet during gestation and lactation, decreased the body weight throughout the study period from weaning to 90 days of life. However, there was no significant change in the body weight of low protein females from 110 to 132 days of life compared with the control females. There was an increase in the rate of the search for reward and reduced the latency of the perception of bitter taste. The exposure, a low protein diet during gestation and lactation, also promoted hypophagy in adult females compared with control animals. The low protein female had increased HFHS diet consumption compared with the control. Undernutrition increased neuronal activation in response to HFHS diet consumption compared with female controls in the amygdala and in the caudate putamen. CONCLUSION Females subjected to the exposure, a low protein diet during gestation and lactation, exhibit hypophagy on a standard diet but a higher consumption of a diet rich in lipids and simple carbohydrates. And also were more motivated by the pursuit of reward and reduced latency of the bitter taste reactivity, and increased the number of immunoreactive cells c-fos protein activated in the caudate putamen, amygdala and paraventricular nucleus.
Collapse
Affiliation(s)
- Amanda Alves Marcelino da Silva
- Nursing College-Universidade de Pernambuco-Campus Petrolina-UPE, Recife, PE, Brazil; Postgraduate Neuropsychiatry and Behavioral Sciences, Universidade Federal Pernambuco-UFPE, Recife, PE, Brazil
| | | | - Taisy Cinthia Ferro Cavalcante
- Postgraduate Nutrition, Universidade Federal Pernambuco-UFPE, Recife, PE, Brazil; Nutrition College-Universidade de Pernambuco-Campus Petrolina-UPE, Recife, PE, Brazil
| | | | | | - Matilde Cesiana da Silva
- Nutrition College-Universidade Federal de Pernambuco, Centro Acadêmico de Vitória-UFPE-CAV, Vitória de Santo Antão, PE, Brazil
| | - Sandra Lopes de Souza
- Postgraduate Neuropsychiatry and Behavioral Sciences, Universidade Federal Pernambuco-UFPE, Recife, PE, Brazil; Department of Anatomy, Universidade Federal de Pernambuco-UFPE, Recife, PE, Brazil.
| |
Collapse
|
20
|
Johnson JS, Abuajamieh M, Victoria Sanz Fernandez M, Seibert JT, Stoakes SK, Keating AF, Ross JW, Selsby JT, Rhoads RP, Baumgard LH. The impact of in utero heat stress and nutrient restriction on progeny body composition. J Therm Biol 2015; 53:143-50. [PMID: 26590467 DOI: 10.1016/j.jtherbio.2015.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 01/03/2023]
Abstract
We recently demonstrated that in utero heat stress (IUHS) alters future tissue accretion in pigs, but whether this is a conserved response among species, is due to the direct effects of heat stress (HS) or mediated by reduced maternal feed intake (FI) is not clear. Study objectives were to compare the quantity and rate of tissue accretion in rats exposed to differing in utero thermal environments while eliminating the confounding effect of dissimilar maternal FI. On d3 of gestation, pregnant Sprague-Dawley rats (189.0±5.9g BW) were exposed to thermoneutral (TN; 22.2±0.1°C; n=8), or HS conditions (cyclical 30 to 34°C; n=8) until d18 of gestation. A third group was pair-fed to HS dams in TN conditions (PFTN; 22.2±0.1°C; n=8) from d4 to d19 of gestation. HS increased dam rectal temperature (p=0.01; 1.3°C) compared to TN and PFTN mothers, and reduced FI (p=0.01; 33%) compared to TN ad libitum fed controls. Although litter size was similar (p=0.97; 10.9 pups/litter), pup birth weight was reduced (p=0.03; 15.4%) in HS compared to PFTN and TN dams. Two male pups per dam [n=8 in utero TN (IUTN); n=8 IUHS; n=8 in utero PFTN (IUPFTN)] were selected from four dams per treatment based on similar gestation length, and body composition was determined using dual-energy x-ray absorptiometry (DXA) on d26, d46, and d66 of postnatal life. Whole-body fat content increased (p=0.01; 11.2%), and whole-body lean tissue decreased (p=0.01; 2.6%) in IUPFTN versus IUTN and IUHS offspring. Whole-body composition was similar between IUHS and IUTN offspring. Epididymal fat pad weight increased (p=0.03; 21.6%) in IUPFTN versus IUHS offspring. In summary and in contrast to pigs, IUHS did not impact rodent body composition during this stage of growth; however, IUPFTN altered the future hierarchy of tissue accretion.
Collapse
Affiliation(s)
- Jay S Johnson
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | - Mohannad Abuajamieh
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | | | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | - Sara K Stoakes
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech University, Blacksburg, VA, 24061 United States
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States.
| |
Collapse
|
21
|
The fetal programming of food preferences: current clinical and experimental evidence. J Dev Orig Health Dis 2015; 7:222-230. [PMID: 26412563 DOI: 10.1017/s2040174415007187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Increased energy consumption is one of the major factors implicated in the epidemic of obesity. There is compelling evidence, both clinical and experimental, that fetal paucity of nutrients may have programming effects on feeding preferences and behaviors that can contribute to the development of diseases. Clinical studies in different age groups show that individuals born small for their gestational age (SGA) have preferences towards highly caloric foods such as carbohydrates and fats. Some studies have also shown altered eating behaviors in SGA children. Despite an apparent discrepancy in different age groups, all studies seem to converge to an increased intake of palatable foods in SGA individuals. Small nutrient imbalances across lifespan increase the risk of noncommunicable diseases in adult life. Homeostatic factors such as altered responses to leptin and insulin and alterations in neuropeptides associated with appetite and satiety are likely involved. Imbalances between homeostatic and hedonic signaling are another proposed mechanism, with the mesocorticolimbic dopaminergic pathway having differential reward and pleasure responses when facing palatable foods. Early exposure to undernutrition also programs hypothalamic-pituitary-adrenal axis, with SGA having higher levels of cortisol in different ages, leading to chronic hyperactivity of this neuroendocrine axis. This review summarizes the clinical and experimental evidence related to fetal programming of feeding preferences by SGA.
Collapse
|
22
|
de Melo Martimiano PH, da Silva GR, Coimbra VFDSA, Matos RJB, de Souza BFP, da Silva AAM, de Melo DDCB, de Souza SL, de Freitas MFL. Perinatal malnutrition stimulates motivation through reward and enhances drd(1a) receptor expression in the ventral striatum of adult mice. Pharmacol Biochem Behav 2015; 134:106-14. [PMID: 25933794 DOI: 10.1016/j.pbb.2015.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 01/06/2023]
Abstract
AIM The aim of this study was to analyze the effects of protein perinatal malnutrition on the function of dopamine DRD1 and DRD2 receptors in regards to motivation and food consumption in adult mice. The study also analyzed the effect of protein perinatal malnutrition on the gene expression of these receptors in the ventral striatum. METHODS Wistar lineage mice were divided into two groups according to maternal diet: control (17% casein), n=30 and low protein (8% casein), n=30. Between 30 and 120days of life, the following factors were measured: body weight; the effect of dopamine D1 and D2 agonists on the ingestion of palatable food; the motivational aspect under the action of the D1 (SKF 38393) and D2 Quinpirole dopaminergic agonists; and the gene expression of DRD1 and DRD2 receptors in the ventral striatum. RESULTS The body weights of the malnourished animals remained significantly lower than those of the control group from 30 to 120days of life. Malnourished animals ingested a greater quantity of palatable food. There was a decrease in palatable diet consumption in both the control and malnourished groups after the application of D1 and D2 agonists; however, the anorexic effect of the D1 agonist was understated in malnourished animals. Perinatal malnutrition increases the motivational behavior of the animal when food reward is used. There was an increase in gene expression of the DRD1a receptor in the ventral striatum of malnourished animals, and there were no significant changes concerning the DRD2 receptor. CONCLUSIONS Perinatal protein malnutrition stimulates hedonic control of eating behavior by promoting increased intake of palatable foods, possibly due to increased expression of dopamine receptor DRD1a in the ventral striatum.
Collapse
Affiliation(s)
| | | | | | - Rhowena Jane Barbosa Matos
- Center for Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antao, PE, Brazil
| | - Bruno Fernando Pereira de Souza
- Anatomy Department, Biological Sciences Centre, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil
| | - Amanda Alves Marcelino da Silva
- PPG - Neuropsychiatry and Behaviour Sciences, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil
| | | | - Sandra Lopes de Souza
- PPG - Neuropsychiatry and Behaviour Sciences, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil; PPG - Nutrition, Health Sciences Centre, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil; Anatomy Department, Biological Sciences Centre, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil
| | - Manuela Figueiroa Lyra de Freitas
- PPG - Pathology, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil; Anatomy Department, Biological Sciences Centre, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil.
| |
Collapse
|
23
|
Increased palatable food intake and response to food cues in intrauterine growth-restricted rats are related to tyrosine hydroxylase content in the orbitofrontal cortex and nucleus accumbens. Behav Brain Res 2015; 287:73-81. [PMID: 25796489 DOI: 10.1016/j.bbr.2015.03.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 11/23/2022]
Abstract
Intrauterine growth restriction (IUGR) is associated with altered food preferences, which may contribute to increased risk of obesity. We evaluated the effects of IUGR on attention to a palatable food cue, as well as tyrosine hydroxylase (TH) content in the orbitofrontal cortex (OFC) and nucleus accumbens (NAcc) in response to sweet food intake. From day 10 of gestation and through lactation, Sprague-Dawley rats received either an ad libitum (Adlib) or a 50% food-restricted (FR) diet. At birth, pups were cross-fostered, generating four groups (gestation/lactation): Adlib/Adlib (control), FR/Adlib (intrauterine growth-restricted), Adlib/FR, and FR/FR. Adult attention to palatable food cues was measured using the Attentional Set-Shifting Task (ASST), which uses a sweet pellet as reward. TH content in the OFC and NAcc was measured at baseline and in response to palatable food intake. At 90 days of age, FR/Adlib males ate more sweet food than controls, without differences in females. However, when compared to Controls, FR/Adlib females needed fewer trials to reach criterion in the ASST (p=0.04) and exhibited increased TH content in the OFC in response to sweet food (p=0.03). In the NAcc, there was a differential response of TH content after sweet food intake in both FR/Adlib males and females (p<0.05). Fetal programming of adult food preferences involves the central response to palatable food cues and intake, affecting dopamine release in select structures of the brain reward system.
Collapse
|
24
|
Keating E, Correia-Branco A, Araújo JR, Meireles M, Fernandes R, Guardão L, Guimarães JT, Martel F, Calhau C. Excess perigestational folic acid exposure induces metabolic dysfunction in post-natal life. J Endocrinol 2015; 224:245-59. [PMID: 25663705 DOI: 10.1530/joe-14-0448] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to understand whether high folic acid (HFA) exposure during the perigestational period induces metabolic dysfunction in the offspring, later in life. To do this, female Sprague-Dawley rats (G0) were administered a dose of folic acid (FA) recommended for pregnancy (control, C, 2 mg FA/kg of diet, n=5) or a high dose of FA (HFA, 40 mg FA/kg of diet, n=5). Supplementation began at mating and lasted throughout pregnancy and lactation. Body weight and food and fluid intake were monitored in G0 and their offspring (G1) till G1 were 13 months of age. Metabolic blood profiles were assessed in G1 at 3 and 13 months of age (3M and 13M respectively). Both G0 and G1 HFA females had increased body weight gain when compared with controls, particularly 22 (G0) and 10 (G1) weeks after FA supplementation had been stopped. G1 female offspring of HFA mothers had increased glycemia at 3M, and both female and male G1 offspring of HFA mothers had decreased glucose tolerance at 13M, when compared with matched controls. At 13M, G1 female offspring of HFA mothers had increased insulin and decreased adiponectin levels, and G1 male offspring of HFA mothers had increased levels of leptin, when compared with matched controls. In addition, feeding of fructose to adult offspring revealed that perigestational exposure to HFA renders female progeny more susceptible to developing metabolic unbalance upon such a challenge. The results of this work indicate that perigestational HFA exposure the affects long-term metabolic phenotype of the offspring, predisposing them to an insulin-resistant state.
Collapse
Affiliation(s)
- Elisa Keating
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - Ana Correia-Branco
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - João R Araújo
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - Manuela Meireles
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - Rita Fernandes
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - Luísa Guardão
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - João T Guimarães
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 420
| | - Fátima Martel
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - Conceição Calhau
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
25
|
Body composition and behaviour in adult rats are influenced by maternal diet, maternal age and high-fat feeding. J Nutr Sci 2015; 4:e3. [PMID: 26090100 PMCID: PMC4463023 DOI: 10.1017/jns.2014.64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 10/14/2014] [Accepted: 11/04/2014] [Indexed: 01/23/2023] Open
Abstract
Fetal exposure to maternal undernutrition has lifelong consequences for physiological and
metabolic function. Maternal low-protein diet is associated with an age-related phenotype
in rats, characterised by a period of resistance to development of obesity in early
adulthood, giving way to an obesity-prone, insulin-resistant state in later adulthood.
Offspring of rats fed a control (18 % casein) or low-protein (9 % casein; LP) diet in
pregnancy were challenged with a high-fat diet at 9 months of age. To assess whether other
maternal factors modulated the programming effects of nutrition, offspring were studied
from young (2–4 months old) and older (6–9 months old) mothers. Weight gain with a
high-fat diet was attenuated in male offspring of older mothers fed LP (interaction of
maternal age and diet; P = 0·011) and adipose tissue deposition was lower
with LP feeding in both males and females (P < 0·05). Although the
resistance to weight gain and adiposity was partially explained by lower energy intake in
offspring of LP mothers (P < 0·001 males only), it was apparent
that energy expenditure must be influenced by maternal diet and age. Assessment of
locomotor activity indicated that energy expenditure associated with physical activity was
unlikely to explain resistance to weight gain, but showed that offspring of older mothers
were more anxious than those of younger mothers, with more rearing observed in a novel
environment and on the elevated plus-maze. The data showed that in addition to maternal
undernutrition, greater maternal age may influence development and long-term body
composition in the rat.
Collapse
|
26
|
Effects of aging and maternal protein restriction on the muscle fibers morphology and neuromuscular junctions of rats after nutritional recovery. Micron 2015; 71:7-13. [PMID: 25597842 DOI: 10.1016/j.micron.2014.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 11/24/2022]
Abstract
Changes in the nutritional status of mothers may predispose their offspring to neuromuscular disorders in the long term. This study evaluated the effects of maternal protein restriction during pregnancy and lactation on the muscle fibers and neuromuscular junctions (NMJs) of the soleus muscle in the offspring of rats at 365 days of age that had undergone nutritional recovery. Wistar rats were divided into two groups: control (CG)--the offspring of mothers fed a normal protein diet (17%) and restricted (RG)--offspring of mothers fed a low protein diet (6%). After lactation, the male pups received standard chow ad libitum. At 365 days, samples of soleus muscle were collected for muscle fiber analysis (HE staining, NADH-TR reaction and ultrastructure), intramuscular collagen quantification (picrosirius red staining) and NMJs analysis (non-specific esterase technique). The cross-sectional area of type I fibers was reduced by 20% and type IIa fibers by 5% while type IIb fibers increased by 5% in the RG compared to the CG. The percentage of intramuscular collagen was 19% lower in the RG. Disorganization of the myofibrils and Z line was observed, with the presence of clusters of mitochondria in both groups. Regarding the NMJs, in the RG there was a reduction of 10% in the area and 17% in the small diameter and an increase of 7% in the large diameter. The results indicate that the effects of maternal protein restriction on muscle fibers and NMJs seem to be long-lasting and irreversible.
Collapse
|
27
|
Abstract
The fetal or early origins of adult disease hypothesis states that environmental factors, particularly nutrition, act in early life to program the risks for chronic diseases in adult life. As eating habits can be linked to the development of several diseases including obesity, diabetes and cardiovascular disease, it could be proposed that persistent food preferences across the life-span in people who were exposed to an adverse fetal environment may partially explain their increased risk to develop metabolic disease later in life. In this paper, we grouped the clinical and experimental evidence demonstrating that the fetal environment may impact the individual's food preferences. In addition, we review the feeding preferences development and regulation (homeostatic and hedonic pathways, the role of taste/olfaction and the reward/pleasure), as well as propose mechanisms linking early life conditions to food preferences later in life. We review the evidence suggesting that in utero conditions are associated with the development of specific food preferences, which may be involved in the risk for later disease. This may have implications in terms of public health and primary prevention during early ages.
Collapse
|
28
|
Maternal protein restriction impairs the transcriptional metabolic flexibility of skeletal muscle in adult rat offspring. Br J Nutr 2014; 112:328-37. [DOI: 10.1017/s0007114514000865] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Skeletal muscle exhibits a remarkable flexibility in the usage of fuel in response to the nutrient intake and energy demands of the organism. In fact, increased physical activity and fasting trigger a transcriptional programme in skeletal muscle cells leading to a switch from carbohydrate to lipid oxidation. Impaired metabolic flexibility has been reported to be associated with obesity and type 2 diabetes, but it is not known whether the disability to adapt to metabolic demands is a cause or a consequence of these pathological conditions. Inasmuch as a poor nutritional environment during early life is a predisposing factor for the development of metabolic diseases in adulthood, in the present study, we aimed to determine the long-term effects of maternal malnutrition on the metabolic flexibility of offspring skeletal muscle. To this end, the transcriptional responses of the soleus and extensor digitorum longus muscles to fasting were evaluated in adult rats born to dams fed a control (17 % protein) or a low-protein (8 % protein, protein restricted (PR)) diet throughout pregnancy and lactation. With the exception of reduced body weight and reduced plasma concentrations of TAG, PR rats exhibited a metabolic profile that was the same as that of the control rats. In the fed state, PR rats exhibited an enhanced expression of key regulatory genes of fatty acid oxidation including CPT1a, PGC-1α, UCP3 and PPARα and an impaired expression of genes that increase the capacity for fat oxidation in response to fasting. These results suggest that impaired metabolic inflexibility precedes and may contribute to the development of metabolic disorders associated with early malnutrition.
Collapse
|
29
|
Prenatal programming in an obese swine model: sex-related effects of maternal energy restriction on morphology, metabolism and hypothalamic gene expression. Br J Nutr 2014; 111:735-46. [PMID: 24528940 DOI: 10.1017/s0007114513002948] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Maternal energy restriction during pregnancy predisposes to metabolic alterations in the offspring. The present study was designed to evaluate phenotypic and metabolic consequences following maternal undernutrition in an obese pig model and to define the potential role of hypothalamic gene expression in programming effects. Iberian sows were fed a control or a 50 % restricted diet for the last two-thirds of gestation. Newborns were assessed for body and organ weights, hormonal and metabolic status, and hypothalamic expression of genes implicated in energy homeostasis, glucocorticoid function and methylation. Weight and adiposity were measured in adult littermates. Newborns of the restricted sows were lighter (P <0·01), but brain growth was spared. The plasma concentration of TAG was lower in the restricted newborns than in the control newborns of both the sexes (P <0·01), while the concentration of cortisol was higher in females born to the restricted sows (P <0·04), reflecting a situation of metabolic stress by nutrient insufficiency. A lower hypothalamic expression of anorexigenic peptides (LEPR and POMC, P <0·01 and P <0·04, respectively) was observed in females born to the restricted sows, but no effect was observed in the males. The expression of HSD11B1 gene was down-regulated in the restricted animals (P <0·05), suggesting an adaptive mechanism for reducing the harmful effects of elevated concentrations of cortisol. At 4 and 7 months of age, the restricted females were heavier and fatter than the controls (P< 0·01). Maternal feed restriction induces asymmetrical growth retardation and metabolic alterations in the offspring. Differences in gene expression at birth and higher growth and adiposity in adulthood suggest a female-specific programming effect for a positive energy balance, possibly due to overexposure to endogenous stress-induced glucocorticoids.
Collapse
|
30
|
Lagisz M, Blair H, Kenyon P, Uller T, Raubenheimer D, Nakagawa S. Transgenerational effects of caloric restriction on appetite: a meta-analysis. Obes Rev 2014; 15:294-309. [PMID: 24387308 DOI: 10.1111/obr.12138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/07/2013] [Accepted: 11/27/2013] [Indexed: 01/21/2023]
Abstract
Maternal undernutrition can result in significant alterations to the post-natal offspring phenotype, including body size and behaviour. For example, maternal food restriction has been implicated in offspring hyperphagia, potentially causing increased weight gain and fat accumulation. This could result in obesity and other adverse long-term health effects in offspring. We investigated the link between maternal caloric restriction during gestation and offspring appetite by conducting the first meta-analysis on this topic using experimental data from mammalian laboratory models (i.e. rats and mice). We collected 89 effect sizes from 35 studies, together with relevant moderators. Our analysis revealed weak and statistically non-significant overall effect on offspring's appetite. However, we found that lower protein content of restricted diets is associated with higher food intake in female offspring. Importantly, we show that a main source of variation among studies arises from whether, and how, food intake was adjusted for body mass. This probably explains many of the contradictory results in the field. Based on our results, we recommend using allometric scaling of food intake to body mass in future studies.
Collapse
Affiliation(s)
- M Lagisz
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
31
|
Guzmán-Quevedo O, Da Silva Aragão R, Pérez García G, Matos RJB, de Sa Braga Oliveira A, de Castro RM, Bolaños-Jiménez F. Impaired hypothalamic mTOR activation in the adult rat offspring born to mothers fed a low-protein diet. PLoS One 2013; 8:e74990. [PMID: 24040371 PMCID: PMC3767644 DOI: 10.1371/journal.pone.0074990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 08/08/2013] [Indexed: 12/23/2022] Open
Abstract
Several epidemiological and experimental studies have clearly established that maternal malnutrition induces a high risk of developing obesity and related metabolic diseases in the offspring. To determine if altered nutrient sensing might underlie this enhanced disease susceptibility, here we examined the effects of perinatal protein restriction on the activation of the nutrient sensor mTOR in response to acute variations in the nutritional status of the organism. Female Wistar rats were fed isocaloric diets containing either 17% protein (control) or 8% protein (PR) throughout pregnancy and lactation. At weaning offspring received standard chow and at 4 months of age the effects of fasting or fasting plus re-feeding on the phosphorylation levels of mTOR and its downstream target S6 ribosomal protein (rpS6) in the hypothalamus were assessed by immuno-fluorescence and western blot. Under ad libitum feeding conditions, PR rats exhibited decreased mTOR and rpS6 phosphorylation in the arcuate (ARC) and ventromedial (VMH) hypothalamic nuclei. Moreover, the phosphorylation of mTOR and rpS6 in these hypothalamic nuclei decreased with fasting in control but not in PR animals. Conversely, PR animals exhibited enhanced number of pmTOR imunostained cells in the paraventricular nucleus (PVN) and fasting decreased the activation of mTOR in the PVN of malnourished but not of control rats. These alterations occurred at a developmental stage at which perinatally-undernourished animals do not show yet obesity or glucose intolerance. Collectively, our observations suggest that altered hypothalamic nutrient sensing in response to an inadequate foetal and neonatal energetic environment is one of the basic mechanisms of the developmental programming of metabolic disorders and might play a causing role in the development of the metabolic syndrome induced by malnutrition during early life.
Collapse
Affiliation(s)
- Omar Guzmán-Quevedo
- Unité Mixte de recherche 1280 Physiologie des Adaptations Nutritionnelles, Institut National de la Recherche Agronomique, Nantes, France
- Université de Nantes, Nantes Atlantique Université, Nantes, France
| | - Raquel Da Silva Aragão
- Unité Mixte de recherche 1280 Physiologie des Adaptations Nutritionnelles, Institut National de la Recherche Agronomique, Nantes, France
- Université de Nantes, Nantes Atlantique Université, Nantes, France
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Georgina Pérez García
- Unité Mixte de recherche 1280 Physiologie des Adaptations Nutritionnelles, Institut National de la Recherche Agronomique, Nantes, France
- Université de Nantes, Nantes Atlantique Université, Nantes, France
| | - Rhowena J. B. Matos
- Núcleo de Educação Física e Ciências do Esporte, Universidade Federal de Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil
| | - André de Sa Braga Oliveira
- Unité Mixte de recherche 1280 Physiologie des Adaptations Nutritionnelles, Institut National de la Recherche Agronomique, Nantes, France
- Université de Nantes, Nantes Atlantique Université, Nantes, France
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Manhães de Castro
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Francisco Bolaños-Jiménez
- Unité Mixte de recherche 1280 Physiologie des Adaptations Nutritionnelles, Institut National de la Recherche Agronomique, Nantes, France
- Université de Nantes, Nantes Atlantique Université, Nantes, France
- * E-mail:
| |
Collapse
|
32
|
Spencer SJ. Perinatal nutrition programs neuroimmune function long-term: mechanisms and implications. Front Neurosci 2013; 7:144. [PMID: 23964195 PMCID: PMC3740243 DOI: 10.3389/fnins.2013.00144] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022] Open
Abstract
Our early life nutritional environment can influence several aspects of physiology, including our propensity to become obese. There is now evidence to suggest perinatal diet can also independently influence development of our innate immune system. This review will address three not-necessarily-exclusive mechanisms by which perinatal nutrition can program neuroimmune function long-term: by predisposing the individual to obesity, by altering the gut microbiota, and by inducing epigenetic modifications that alter gene transcription throughout life.
Collapse
Affiliation(s)
- Sarah J Spencer
- School of Health Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
33
|
Spencer SJ. Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress. Front Neurosci 2013; 7:109. [PMID: 23785312 PMCID: PMC3683620 DOI: 10.3389/fnins.2013.00109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/31/2013] [Indexed: 01/24/2023] Open
Abstract
Feeding behavior is closely regulated by neuroendocrine mechanisms that can be influenced by stressful life events. However, the feeding response to stress varies among individuals with some increasing and others decreasing food intake after stress. In addition to the impact of acute lifestyle and genetic backgrounds, the early life environment can have a life-long influence on neuroendocrine mechanisms connecting stress to feeding behavior and may partially explain these opposing feeding responses to stress. In this review I will discuss the perinatal programming of adult hypothalamic stress and feeding circuitry. Specifically I will address how early life (prenatal and postnatal) nutrition, early life stress, and the early life hormonal profile can program the hypothalamic-pituitary-adrenal (HPA) axis, the endocrine arm of the body's response to stress long-term and how these changes can, in turn, influence the hypothalamic circuitry responsible for regulating feeding behavior. Thus, over- or under-feeding and/or stressful events during critical windows of early development can alter glucocorticoid (GC) regulation of the HPA axis, leading to changes in the GC influence on energy storage and changes in GC negative feedback on HPA axis-derived satiety signals such as corticotropin-releasing-hormone. Furthermore, peripheral hormones controlling satiety, such as leptin and insulin are altered by early life events, and can be influenced, in early life and adulthood, by stress. Importantly, these neuroendocrine signals act as trophic factors during development to stimulate connectivity throughout the hypothalamus. The interplay between these neuroendocrine signals, the perinatal environment, and activation of the stress circuitry in adulthood thus strongly influences feeding behavior and may explain why individuals have unique feeding responses to similar stressors.
Collapse
Affiliation(s)
- Sarah J Spencer
- School of Health Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
34
|
da Silva AAM, Borba TKF, de Almeida Lira L, Cavalcante TCF, de Freitas MFL, Leandro CG, do Nascimento E, de Souza SL. Perinatal undernutrition stimulates seeking food reward. Int J Dev Neurosci 2013; 31:334-41. [PMID: 23669181 DOI: 10.1016/j.ijdevneu.2013.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 04/06/2013] [Accepted: 05/02/2013] [Indexed: 01/07/2023] Open
Abstract
Experiments in animals have revealed that perinatal nutritional restriction, which manifests in adulthood, increases food intake and preference for palatable foods. Considering this, we aimed to evaluate the effects of perinatal malnutrition on hedonic control of feeding behavior. In this study, we divided Wistar rats into two groups according to the diet provided to their mothers during pregnancy and lactation: the control group (diet with 17% casein) and low-protein group (diet with 8% casein). We assessed the animals' motivational behavior in adulthood by giving them a stimulus of food reward. We also assessed their neuronal activation triggered by the stimulus of palatable food using FOS protein labeling of neurons activated in the caudate putamen, paraventricular, dorsomedial, ventromedial, and lateral hypothalamic nuclei and amygdala. Evaluation of body weight in malnourished animals showed reduction from the 6th day of life until adulthood. Analysis of feeding behavior revealed that these animals were more motivated by food reward, but they had delays during learning of the task. This finding correlated with the number of c-FOS-immunoreactive neurons, which indicated that malnourished animals had an increase in the number of neurons activated in response to the palatable diet, especially in the amygdala and caudate putamen. The study therefore confirmed our hypothesis that early nutritional insults promote changes in encephalic control mechanisms, especially those related to food intake and search for reward.
Collapse
|
35
|
Fetal programming of CVD and renal disease: animal models and mechanistic considerations. Proc Nutr Soc 2013; 72:317-25. [DOI: 10.1017/s0029665112003035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The developmental origins of health and disease hypothesis postulates that exposure to a less than optimal maternal environment during fetal development programmes physiological function, and determines risk of disease in adult life. Much evidence of such programming comes from retrospective epidemiological cohorts, which demonstrate associations between birth anthropometry and non-communicable diseases of adulthood. The assertion that variation in maternal nutrition drives these associations is supported by studies using animal models, which demonstrate that maternal under- or over-nutrition during pregnancy can programme offspring development. Typically, the offspring of animals that are undernourished in pregnancy exhibit a relatively narrow range of physiological phenotypes that includes higher blood pressure, glucose intolerance, renal insufficiency and increased adiposity. The observation that common phenotypes arise from very diverse maternal nutritional insults has led to the proposal that programming is driven by a small number of mechanistic processes. The remodelling of tissues during development as a consequence of maternal nutritional status being signalled by endocrine imbalance or key nutrients limiting processes in the fetus may lead to organs having irreversibly altered structures that may limit their function with ageing. It has been proposed that the maternal diet may impact upon epigenetic marks that determine gene expression in fetal tissues, and this may be an important mechanism connecting maternal nutrient intakes to long-term programming of offspring phenotype. The objective for this review is to provide an overview of the mechanistic basis of fetal programming, demonstrating the critical role of animal models as tools for the investigation of programming phenomena.
Collapse
|
36
|
Cong R, Jia Y, Li R, Ni Y, Yang X, Sun Q, Parvizi N, Zhao R. Maternal low-protein diet causes epigenetic deregulation of HMGCR and CYP7α1 in the liver of weaning piglets. J Nutr Biochem 2012; 23:1647-54. [DOI: 10.1016/j.jnutbio.2011.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 12/30/2022]
|
37
|
Perälä MM, Männistö S, Kaartinen NE, Kajantie E, Osmond C, Barker DJP, Valsta LM, Eriksson JG. Body size at birth is associated with food and nutrient intake in adulthood. PLoS One 2012; 7:e46139. [PMID: 23049962 PMCID: PMC3458835 DOI: 10.1371/journal.pone.0046139] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/28/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Small body size at birth is associated with an increased risk of cardiovascular disease and type 2 diabetes. Dietary habits are tightly linked with these disorders, but the association between body size at birth and adult diet has been little studied. We examined the association between body size at birth and intake of foods and macronutrients in adulthood. METHODOLOGY/PRINCIPAL FINDINGS We studied 1797 participants, aged 56 to 70, of the Helsinki Birth Cohort Study, whose birth weight and length were recorded. Preterm births were excluded. During a clinical study, diet was assessed with a validated food-frequency questionnaire. A linear regression model adjusted for potential confounders was used to assess the associations. Intake of fruits and berries was 13.26 g (95% confidence interval [CI]: 0.56, 25.96) higher per 1 kg/m(3) increase in ponderal index (PI) at birth, and 83.16 g (95% CI: 17.76, 148.56) higher per 1 kg higher birth weight. One unit higher PI at birth was associated with 0.14% of energy (E%) lower intake of fat (95% CI: -0.26, -0.03) and 0.18 E% higher intake of carbohydrates (95% CI: 0.04, 0.32) as well as 0.08 E% higher sucrose (95% CI: 0.00, 0.15), 0.05 E% higher fructose (95% CI: 0.01, 0.09), and 0.18 g higher fiber (95% CI: 0.02, 0.34) intake in adulthood. Similar associations were observed between birth weight and macronutrient intake. CONCLUSIONS Prenatal growth may modify later life food and macronutrient intake. Altered dietary habits could potentially explain an increased risk of chronic disease in individuals born with small body size.
Collapse
Affiliation(s)
- Mia-Maria Perälä
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
George LA, Zhang L, Tuersunjiang N, Ma Y, Long NM, Uthlaut AB, Smith DT, Nathanielsz PW, Ford SP. Early maternal undernutrition programs increased feed intake, altered glucose metabolism and insulin secretion, and liver function in aged female offspring. Am J Physiol Regul Integr Comp Physiol 2012; 302:R795-804. [PMID: 22277936 DOI: 10.1152/ajpregu.00241.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Insulin resistance and obesity are components of the metabolic syndrome that includes development of cardiovascular disease and diabetes with advancing age. The thrifty phenotype hypothesis suggests that offspring of poorly nourished mothers are predisposed to the various components of the metabolic syndrome due to adaptations made during fetal development. We assessed the effects of maternal nutrient restriction in early gestation on feeding behavior, insulin and glucose dynamics, body composition, and liver function in aged female offspring of ewes fed either a nutrient-restricted [NR 50% National Research Council (NRC) recommendations] or control (C: 100% NRC) diet from 28 to 78 days of gestation, after which both groups were fed at 100% of NRC from day 79 to lambing and through lactation. Female lambs born to NR and C dams were reared as a single group from weaning, and thereafter, they were fed 100% NRC recommendations until assigned to this study at 6 yr of age. These female offspring were evaluated by a frequently sampled intravenous glucose tolerance test, followed by dual-energy X-ray absorptiometry for body composition analysis prior to and after ad libitum feeding of a highly palatable pelleted diet for 11 wk with automated monitoring of feed intake (GrowSafe Systems). Aged female offspring born to NR ewes demonstrated greater and more rapid feed intake, greater body weight gain, and efficiency of gain, lower insulin sensitivity, higher insulin secretion, and greater hepatic lipid and glycogen content than offspring from C ewes. These data confirm an increased metabolic "thriftiness" of offspring born to NR mothers, which continues into advanced age, possibly predisposing these offspring to metabolic disease.
Collapse
Affiliation(s)
- Lindsey A George
- Center for the Study of Fetal Programming, Dept. of Animal Science, Univ. of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Król E, Krejpcio Z, Chmurzynska A. Folic acid and protein content in maternal diet and postnatal high-fat feeding affect the tissue levels of iron, zinc, and copper in the rat. Biol Trace Elem Res 2011; 144:885-93. [PMID: 21484405 PMCID: PMC3241920 DOI: 10.1007/s12011-011-9048-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/23/2011] [Indexed: 02/05/2023]
Abstract
Although maternal, fetal, and placental mechanisms compensate for disturbances in the fetal environment, any nutritional inadequacies present during pregnancy may affect fetal metabolism, and their consequences may appear in later life. The aim of the present study is to investigate the influence of maternal diet during gestation on Fe, Zn, and Cu levels in the livers and kidneys of adult rats. The study was carried out on the offspring (n = 48) of mothers fed either a protein-balanced or a protein-restricted diet (18% vs. 9% casein) during pregnancy, with or without folic acid supplementation (0.005- vs. 0.002-g folic acid/kg diet). At 10 weeks of age, the offspring of each maternal group were randomly assigned to groups fed either the AIN-93G diet or a high-fat diet for 6 weeks, until the end of the experiment. The levels of Fe, Zn, and Cu in the livers and kidneys were determined by the F-AAS method. It was found that postnatal exposure to the high-fat diet was associated with increased hepatic Fe levels (p < 0.001), and with decreased liver Zn and Cu contents (p < 0.01 and p < 0.05, respectively), as well as with decreased renal Cu contents (p < 0.001). Moreover, the offspring's tissue mineral levels were also affected by protein and folic acid content in the maternal diet. Both prenatal protein restriction and folic acid supplementation increased the liver Zn content (p < 0.05) and the kidney Zn content (p < 0.001; p < 0.05, respectively), while folic acid supplementation resulted in a reduction in renal Cu level (p < 0.05). Summarizing, the results of this study show that maternal dietary folic acid and protein intake during pregnancy, as well as the type of postweaning diet, affect Fe, Zn, and Cu levels in the offspring of the rat. However, the mechanisms responsible for this phenomenon are unclear, and warrant further investigation.
Collapse
Affiliation(s)
- Ewelina Król
- Department of Human Nutrition and Hygiene, Poznań University of Life Sciences, Wojska Polskiego 31, 60–624 Poznań, Poland
| | - Zbigniew Krejpcio
- Department of Human Nutrition and Hygiene, Poznań University of Life Sciences, Wojska Polskiego 31, 60–624 Poznań, Poland
| | - Agata Chmurzynska
- Department of Human Nutrition and Hygiene, Poznań University of Life Sciences, Wojska Polskiego 31, 60–624 Poznań, Poland
| |
Collapse
|
40
|
Chmurzynska A, Stachowiak M, Pruszynska-Oszmalek E. Maternal protein and folic acid intake during gestation does not program leptin transcription or serum concentration in rat progeny. GENES AND NUTRITION 2011; 7:217-22. [PMID: 21735287 PMCID: PMC3316755 DOI: 10.1007/s12263-011-0239-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/25/2011] [Indexed: 12/19/2022]
Abstract
Maternal nutrition during gestation influences the development of the fetus, thereby determining its phenotype, including nutrient metabolism, appetite, and feeding behavior. The control of appetite is a very complex process and can be modulated by orexigenic and anorexigenic mediators such as leptin, which is involved in the regulation of energy homeostasis by controlling food intake and energy expenditure. Leptin transcription and secretion are regulated by numerous factors, nutrition being one of them. The present study was designed to test whether maternal nutrition can permanently affect leptin gene transcription and leptin serum concentration in rat progeny. Moreover, we analyzed whether leptin expression and secretion in response to high-fat postweaning feeding depends on the maternal diet during gestation. Pregnant rats were fed either a normal protein, normal folic acid diet (the AIN-93 diet); a protein-restricted, normal folic acid diet; a protein-restricted, folic acid-supplemented diet; or a normal protein, folic acid-supplemented diet. After weaning, the progeny was fed either the AIN-93 diet or a high-fat diet. Neither maternal nutrition nor the postweaning diet significantly affected Lep transcription. High-fat feeding after weaning was associated with higher serum leptin concentration, but the reaction of an organism to the fat content of the diet was not determined by maternal nutrition during gestation. There was no correlation between Lep mRNA level and serum leptin concentration. Global DNA methylation in adipose tissue was about 30% higher in rats fed postnatally the high-fat diet (P < 0.01). Our study showed that the protein and folic acid content in the maternal diet had no significant programming effect on Lep transcription and serum leptin concentration in the rats.
Collapse
Affiliation(s)
- Agata Chmurzynska
- Department of Human Nutrition and Hygiene, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland,
| | | | | |
Collapse
|
41
|
Laporte-Broux B, Roussel S, Ponter AA, Perault J, Chavatte-Palmer P, Duvaux-Ponter C. Short-term effects of maternal feed restriction during pregnancy on goat kid morphology, metabolism, and behavior1. J Anim Sci 2011; 89:2154-63. [DOI: 10.2527/jas.2010-3374] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
42
|
Developmental origins of health and disease: experimental and human evidence of fetal programming for metabolic syndrome. J Hum Hypertens 2011; 26:405-19. [PMID: 21697895 DOI: 10.1038/jhh.2011.61] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The concept of developmental origins of health and disease has been defined as the process through which the environment encountered before birth, or in infancy, shapes the long-term control of tissue physiology and homeostasis. The evidence for programming derives from a large number of experimental and epidemiological observations. Several nutritional interventions during diverse phases of pregnancy and lactation in rodents are associated with fetal and neonatal programming for metabolic syndrome. In this paper, recent experimental models and human epidemiological studies providing evidence for the fetal programming associated with the development of metabolic syndrome and related diseases are revisited.
Collapse
|
43
|
Suzuki M, Shibanuma M, Kimura S. Effect of severe maternal dietary restriction on growth and intra-abdominal adipose tissue weights in offspring rats. J Nutr Sci Vitaminol (Tokyo) 2011; 56:293-8. [PMID: 21228499 DOI: 10.3177/jnsv.56.293] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Japan, the number of low weight birth babies is increasing. The increase in the number of slim young women is considered to be associated with the rising number of low birth weight babies in Japan. In 1993, Barker et al. published highly influential findings indicating a relationship between low birth weight and increased risk of developing symptoms of metabolic syndrome. Here, we report on results that occur when dietary restriction is applied during all periods of pregnancy. It was shown that, at 5 d, the mean weight of pups in the dietary restriction group was lower than the mean weight of pups in the control group. Catch-up growth began when milk yields of the dietary restriction group pups attained the same levels as those of the control group pups. Intra-abdominal adipose tissue weights of the dietary restricted group were significantly higher than those of the control group in males at 280 d after birth. Intra-abdominal adipose tissue weights of the dietary restricted group had a tendency to be higher than those of the control group for female rats. In male rats, it is considered that increase in intra-abdominal adipose tissue is related to lean body mass but it is not related to the function of brown adipose tissue (BAT). In female rats, it is considered that the increase in intra-abdominal adipose tissue is related to the function of BAT and lean body mass.
Collapse
Affiliation(s)
- Mikiko Suzuki
- Showa Women's University Graduate School of Human Life Science, Tokyo, Japan.
| | | | | |
Collapse
|
44
|
Agoudemos M, Reinking BE, Koppenhafer SL, Segar JL, Scholz TD. Programming of adult cardiovascular disease following exposure to late-gestation hyperglycemia. Neonatology 2011; 100:198-205. [PMID: 21455011 PMCID: PMC3085032 DOI: 10.1159/000324863] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 02/03/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND In utero exposure to hyperglycemia is becoming increasingly prevalent as the number of women entering pregnancy with type II diabetes, or developing gestational diabetes, increases. Both animal studies and epidemiologic investigations have found cardiovascular abnormalities in adult offspring of hyperglycemic mothers (OHM). OBJECTIVE We hypothesized that adult OHM would have abnormal cardiac function in vivo and increased susceptibility to ischemia. METHODS Pregnant rats were made diabetic on day 12 of gestation. Serum glucose was monitored twice daily and insulin provided to maintain serum glucose at 200-400 mg/dl. Offspring were fostered to normal mothers after birth. Adult OHM were studied at 8-10 months of age with echocardiography to assess in vivo cardiac function and isolated hearts to determine the response to ischemia. RESULTS Echocardiography found significant diastolic dysfunction in male OHM compared to male controls. In isolated hearts, baseline cardiac function and left ventricular compliance was significantly diminished in male OHM compared to controls. Ischemia caused a significant decline in heart function in controls and female OHM, while function in male OHM remained unchanged. CONCLUSIONS Adult male OHM demonstrate programmed cardiac dysfunction. Given the growing number of pregnancies complicated by hyperglycemia, additional assessment of cardiac function of adults born to diabetic mothers may be warranted.
Collapse
Affiliation(s)
- Melissa Agoudemos
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242-1083, USA
| | | | | | | | | |
Collapse
|
45
|
Orozco-Solís R, Matos RJB, Guzmán-Quevedo O, Lopes de Souza S, Bihouée A, Houlgatte R, Manhães de Castro R, Bolaños-Jiménez F. Nutritional programming in the rat is linked to long-lasting changes in nutrient sensing and energy homeostasis in the hypothalamus. PLoS One 2010; 5:e13537. [PMID: 20975839 PMCID: PMC2958833 DOI: 10.1371/journal.pone.0013537] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 09/14/2010] [Indexed: 12/24/2022] Open
Abstract
Background Nutrient deficiency during perinatal development is associated with an increased risk to develop obesity, diabetes and hypertension in the adulthood. However, the molecular mechanisms underlying the developmental programming of the metabolic syndrome remain largely unknown. Methodology/Principal Findings Given the essential role of the hypothalamus in the integration of nutritional, endocrine and neuronal cues, here we have analyzed the profile of the hypothalamus transcriptome in 180 days-old rats born to dams fed either a control (200 g/kg) or a low-protein (80 g/kg) diet through pregnancy and lactation. From a total of 26 209 examined genes, 688 were up-regulated and 309 down-regulated (P<0.003) by early protein restriction. Further bioinformatic analysis of the data revealed that perinatal protein restriction permanently alters the expression of two gene clusters regulating common cellular processes. The first one includes several gate keeper genes regulating insulin signaling and nutrient sensing. The second cluster encompasses a functional network of nuclear receptors and co-regulators of transcription involved in the detection and use of lipid nutrients as fuel which, in addition, link temporal and nutritional cues to metabolism through their tight interaction with the circadian clock. Conclusions/Significance Collectively, these results indicate that the programming of the hypothalamic circuits regulating energy homeostasis is a key step in the development of obesity associated with malnutrition in early life and provide a valuable resource for further investigating the role of the hypothalamus in the programming of the metabolic syndrome.
Collapse
Affiliation(s)
- Ricardo Orozco-Solís
- INRA, UMR1280 Physiologie des Adaptations Nutritionnelles, Université de Nantes, Nantes Atlantique Université, Nantes, France
| | - Rhowena J. B. Matos
- INRA, UMR1280 Physiologie des Adaptations Nutritionnelles, Université de Nantes, Nantes Atlantique Université, Nantes, France
| | - Omar Guzmán-Quevedo
- INRA, UMR1280 Physiologie des Adaptations Nutritionnelles, Université de Nantes, Nantes Atlantique Université, Nantes, France
| | - Sandra Lopes de Souza
- Departamento de Anatomia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Audrey Bihouée
- INSERM, U915, IFR26, l'institut du Thorax, Nantes, France
| | - Rémi Houlgatte
- INSERM, U915, IFR26, l'institut du Thorax, Nantes, France
| | - Raul Manhães de Castro
- Departamento de Nutriçao, Centro de Ciências da Saude, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Francisco Bolaños-Jiménez
- INRA, UMR1280 Physiologie des Adaptations Nutritionnelles, Université de Nantes, Nantes Atlantique Université, Nantes, France
- * E-mail:
| |
Collapse
|
46
|
Mortensen ELK, Wang T, Malte H, Raubenheimer D, Mayntz D. Maternal preconceptional nutrition leads to variable fat deposition and gut dimensions of adult offspring mice (C57BL/6JBom). Int J Obes (Lond) 2010; 34:1618-24. [PMID: 20548304 DOI: 10.1038/ijo.2010.91] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Maternal nutrition during pregnancy or lactation may affect the chance of offspring becoming obese as adults, but little is known regarding the possible role of maternal nutrition before conception. In this study, we investigate how variable protein and carbohydrate content of the diet consumed before pregnancy affects fat deposition and gut dimensions of offspring mice. METHODS Eight-week-old female mice (C57BL/6JBom) were fed isocaloric low protein (8.4% protein; LP), standard protein (21.5% protein; ST) or high protein (44.2% protein; HP) diets. After 8 weeks of feeding, females were mated and fed a standard laboratory chow diet (22.5% protein) throughout periods of mating, gestation, lactation and weaning. Offspring mice were fed the same standard diet up to 46 days of age. Then offspring were killed and measures of dissected fat deposits and of the digestive system were taken. RESULTS Fat deposition of the offspring was significantly affected by preconceptional maternal nutrition and the effects differed between sexes. Male offspring deposited most fat when mothers were fed the LP diet, whereas female offspring deposited most fat when mothers were fed the ST diet. The mass and length of the digestive organs were affected by preconceptional maternal nutrition. Total gut from pyloric sphincter to anus was significantly shorter and dry mass was heavier in mice whose mothers were fed LP diets compared with offspring of mothers fed ST diets or HP diets. There was no significant effect of maternal nutrition on dry mass of the stomach or ceca. CONCLUSION Our study shows that preconceptional nutrition can have important influence on several body features of offspring in mice, including body composition and dimensions of the digestive system.
Collapse
Affiliation(s)
- E L K Mortensen
- Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
47
|
Abstract
Abundant evidence supports the association between low birth weight (LBW) and renal dysfunction in humans. Anatomic measurements of infants, children, and adults show significant inverse correlation between LBW and nephron number. Nephron numbers are also lower in individuals with hypertension compared with normotension among white and Australian Aboriginal populations. The relationship between nephron number and hypertension among black individuals is still unclear, although the high incidence of LBW predicts low nephron number in this population as well. LBW, a surrogate for low nephron number, also associates with increasing BP from childhood to adulthood and increasing risk for chronic kidney disease in later life. Because nephron numbers can be counted only postmortem, surrogate markers such as birth weight, prematurity, adult height, reduced renal size, and glomerulomegaly are potentially useful for risk stratification, for example, during living-donor assessment. Because early postnatal growth also affects subsequent risk for higher BP or reduced renal function, postnatal nutrition, a potentially modifiable factor, in addition to intrauterine effects, has significant influence on long-term cardiovascular and renal health.
Collapse
Affiliation(s)
- Valerie A Luyckx
- Department of Medicine, HMRC 260, University of Alberta, Edmonton, Canada, T6G 2S2.
| | | |
Collapse
|
48
|
Insulin release, peripheral insulin resistance and muscle function in protein malnutrition: a role of tricarboxylic acid cycle anaplerosis. Br J Nutr 2009; 103:1237-50. [DOI: 10.1017/s0007114509993060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic β-cells and skeletal muscle act in a synergic way in the control of systemic glucose homeostasis. Several pyruvate-dependent and -independent shuttles enhance tricarboxylic acid cycle intermediate (TACI) anaplerosis and increase β-cell ATP:ADP ratio, triggering insulin exocytotic mechanisms. In addition, mitochondrial TACI cataplerosis gives rise to the so-called metabolic coupling factors, which are also related to insulin release. Peripheral insulin resistance seems to be related to skeletal muscle fatty acid (FA) accumulation and oxidation imbalance. In this sense, exercise has been shown to enhance skeletal muscle TACI anaplerosis, increasing FA oxidation and by this manner restores insulin sensitivity. Protein malnutrition reduces β-cell insulin synthesis, release and peripheral sensitivity. Despite little available data concerning mitochondrial metabolism under protein malnutrition, evidence points towards reduced β-cell and skeletal muscle mitochondrial capacity. The observed decrease in insulin synthesis and release may reflect reduced anaplerotic and cataplerotic capacity. Furthermore, insulin release is tightly coupled to ATP:ADP rise which in turn is related to TACI anaplerosis. The effect of protein malnutrition upon peripheral insulin resistance is time-dependent and directly related to FA oxidation capacity. In contrast to β-cells, TACI anaplerosis and cataplerosis pathways in skeletal muscle seem to control FA oxidation and regulate insulin resistance.
Collapse
|
49
|
Supplementation of a maternal low-protein diet in rat pregnancy with folic acid ameliorates programming effects upon feeding behaviour in the absence of disturbances to the methionine-homocysteine cycle. Br J Nutr 2009; 103:996-1007. [PMID: 19941678 DOI: 10.1017/s0007114509992662] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Maternal protein restriction in rat pregnancy is associated with altered feeding behaviour in later life. When allowed to self-select their diet, rats subject to prenatal undernutrition show an increased preference for fatty foods. The main aim of the present study was to evaluate the contribution of folic acid in the maternal diet to programming of appetite, since disturbances of the folate and methionine-homocysteine cycles have been suggested to impact upon epigenetic regulation of gene expression and hence programme long-term physiology and metabolism. Pregnant rats were fed diets containing either 9 or 18 % casein by weight, with folate provided at either 1 or 5 mg/kg diet. Adult male animals exposed to low protein (LP) in fetal life exhibited increased preference for high-fat food. Providing the higher level of folate in the maternal diet prevented this effect of LP, but offspring of rats fed 18 % casein diet with additional folate behaved in a similar manner to LP-exposed animals. Among day 20 gestation fetuses, it was apparent that both protein restriction and maternal folate supplementation could have adverse effects upon placental growth. Examination of methionine-homocysteine and folate cycle intermediates, tissue glutathione concentrations and expression of mRNA for methionine synthase, DNA methyltransferase 1 and methyltetrahydrofolate reductase revealed no gross disturbances of folate and one-carbon metabolism in either maternal or fetal tissue. The present findings indicated that any role for DNA methylation in programming of physiology is not related to major perturbations of folate metabolism, and is likely to be gene-specific rather than genome-wide.
Collapse
|
50
|
Armelagos GJ, Goodman AH, Harper KN, Blakey ML. Enamel hypoplasia and early mortality: Bioarcheological support for the Barker hypothesis. Evol Anthropol 2009. [DOI: 10.1002/evan.20239] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|