1
|
Wan TCR, Wei L, Cheng LH, Chin WC, Shen J, Chan FF, Kuang Z, Wang C, Wong CCL, Wong CM. Genome-wide CRISPR Screening Identifies NFκB and c-MET as Druggable Targets to Sensitize Lenvatinib Treatment in Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2025; 19:101502. [PMID: 40120675 DOI: 10.1016/j.jcmgh.2025.101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC), the dominant form of liver cancer, is a leading cause of cancer death worldwide. Sorafenib and lenvatinib have long been the 2 limited options of first-line treatments for patients with unresectable advanced HCC. However, the single-drug treatment strategy only shows modest survival benefit, mostly because of the survival ability of cancer cells to activate alternative pathways for compensation. In this study, we aim to identify druggable targets contributing to lenvatinib resistance and evaluate the efficacy of combining respective inhibitors and lenvatinib on HCC. METHODS Genome-scale clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 knockout library screening was applied on the vehicle group and lenvatinib treatment group. Identified druggable candidates were validated individually on HCC cell models. Therapeutic effects of the combined treatment of inhibitors of candidate genes and lenvatinib were evaluated in vitro and in vivo. RESULTS We successfully identified NFKB1 and MET as critical drivers for the development of lenvatinib resistance in HCC cells. By perturbing the 2 genes with either CRISPR knockout or RNA interference approaches, lenvatinib treatments were significantly sensitized. Moreover, using small molecules QNZ and cabozantinib to target NFKB1 and MET, respectively, this together with lenvatinib could synergistically induce apoptosis and suppress HCC growth in vitro and in vivo. CONCLUSION Our results demonstrated that genome-wide CRISPR/Cas9 screening is a powerful tool for the design of rational combinational cancer therapy and provided candidate genes possible for combined treatments with lenvatinib to improve therapy efficacy.
Collapse
Affiliation(s)
- Ting-Chi Rebecca Wan
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Lai Wei
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Lai-Hung Cheng
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Wai-Ching Chin
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Jialing Shen
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - For-Fan Chan
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Zhijian Kuang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Carmen Chak-Lui Wong
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Chun-Ming Wong
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Jiang S, Xia N, Buonfiglio F, Böhm EW, Tang Q, Pfeiffer N, Olinger D, Li H, Gericke A. High-fat diet causes endothelial dysfunction in the mouse ophthalmic artery. Exp Eye Res 2024; 238:109727. [PMID: 37972749 DOI: 10.1016/j.exer.2023.109727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Obesity is a significant health concern that leads to impaired vascular function and subsequent abnormalities in various organs. The impact of obesity on ocular blood vessels, however, remains largely unclear. In this study, we examined the hypothesis that obesity induced by high-fat diet produces vascular endothelial dysfunction in the ophthalmic artery. Mice were subjected to a high-fat diet for 20 weeks, while age-matched controls were maintained on a standard diet. Reactivity of isolated ophthalmic artery segments was assessed in vitro. Reactive oxygen species (ROS) were quantified in cryosections by dihydroethidium (DHE) staining. Redox gene expression was determined in ophthalmic artery explants by real-time PCR. Furthermore, the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), the receptor for advanced glycation end products (RAGE), and of the lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) was determined in cryosections using immunofluorescence microscopy. Ophthalmic artery segments from mice on a high-fat diet exhibited impaired vasodilation responses to the endothelium-dependent vasodilator acetylcholine, while endothelium-independent responses to nitroprusside remained preserved. DHE staining intensity in the vascular wall was notably stronger in mice on a high-fat diet. Messenger RNA expression for NOX2 was elevated in the ophthalmic artery of mice subjected to high fat diet. Likewise, immunostainings revealed increased expression of NOX2 and of RAGE, but not of LOX-1. These findings suggest that a high-fat diet triggers endothelial dysfunction by inducing oxidative stress in the ophthalmic artery via involvement of RAGE and NOX2.
Collapse
Affiliation(s)
- Subao Jiang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Elsa W Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Qi Tang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Dominik Olinger
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
3
|
Zhang J, Han H, Wang L, Wang W, Yang M, Qin Y. Overcoming the therapeutic resistance of hepatomas by targeting the tumor microenvironment. Front Oncol 2022; 12:988956. [PMID: 36457492 PMCID: PMC9705776 DOI: 10.3389/fonc.2022.988956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/01/2022] [Indexed: 06/06/2025] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers and is the third leading cause of cancer-related mortality worldwide. Multifactorial drug resistance is regarded as the major cause of treatment failure in HCC. Accumulating evidence shows that the constituents of the tumor microenvironment (TME), including cancer-associated fibroblasts, tumor vasculature, immune cells, physical factors, cytokines, and exosomes may explain the therapeutic resistance mechanisms in HCC. In recent years, anti-angiogenic drugs and immune checkpoint inhibitors have shown satisfactory results in HCC patients. However, due to enhanced communication between the tumor and TME, the effect of heterogeneity of the microenvironment on therapeutic resistance is particularly complicated, which suggests a more challenging research direction. In addition, it has been reported that the three-dimensional (3D) organoid model derived from patient biopsies is more intuitive to fully understand the role of the TME in acquired resistance. Therefore, in this review, we have focused not only on the mechanisms and targets of therapeutic resistance related to the contents of the TME in HCC but also provide a comprehensive description of 3D models and how they contribute to the exploration of HCC therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanru Qin
- Department of Oncology, The First Affiliated Hospfigital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Wysmołek ME, Długosz E, Wiśniewski M. The Immunological Role of Vascular and Lymphatic Endothelial Cells in Filarial Infections. Animals (Basel) 2022; 12:ani12040426. [PMID: 35203133 PMCID: PMC8868237 DOI: 10.3390/ani12040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary The endothelium is a monolayer of cells forming a thin membrane that lines the inside of blood vessels. These cells release molecules that regulate vascular relaxation, contraction, and can control blood clotting and the immune response. During infections with filarial nematodes, common parasites of humans and animals, the endothelium is believed to play a key role in the communication between the host and the parasite, since the embryonic stage of filaroids is distributed in the bloodstream. Therefore, this review aims to gather research from different scientists in order to better understand the host immune response in infections with filarial nematodes. Abstract The embryonic stage of filarial nematodes, or microfilariae (Mf), shows daily and seasonal periodicity that requires their migration through blood vessels into the lungs, where they are sequestered when not circulating in the peripheral blood. Therefore, Mf and the host endothelium are likely in a permanent state of hide and seek. Interestingly, filarial nematodes co-cultured in media with a murine endothelial cell line survive eight times longer than those cultured in media alone. This suggests that the endothelium is an important element of the immune response in filarial nematodes, perversely promoting their survival in the host. In this review, we will focus on potential pathways involved in the relationship between filarial nematodes and the host endothelium, including the role of endothelial ICAM/VCAM/PECAM adhesion molecules, surface markers involved in the passage of Mf through host tissue, anti-thrombolic effects caused by the presence of filarial nematodes (including plasmins), endothelial cell proliferation (VEGF), and other aspects of the immune activation of the endothelium. The aim of this review is to merge the knowledge about the cross-talk between Mf of different filarial nematode species and endothelial cells (EC), thus allowing a better understanding of the mechanism of these parasitic infections.
Collapse
|
5
|
Lin E, Liu X, Liu Y, Zhang Z, Xie L, Tian K, Liu J, Yu Y. Roles of the Dynamic Tumor Immune Microenvironment in the Individualized Treatment of Advanced Clear Cell Renal Cell Carcinoma. Front Immunol 2021; 12:653358. [PMID: 33746989 PMCID: PMC7970116 DOI: 10.3389/fimmu.2021.653358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are currently a first-line treatment option for clear cell renal cell carcinoma (ccRCC). However, recent clinical studies have shown that a large number of patients do not respond to ICIs. Moreover, only a few patients achieve a stable and durable response even with combination therapy based on ICIs. Available studies have concluded that the response to immunotherapy and targeted therapy in patients with ccRCC is affected by the tumor immune microenvironment (TIME), which can be manipulated by targeted therapy and tumor genomic characteristics. Therefore, an in-depth understanding of the dynamic nature of the TIME is important for improving the efficacy of immunotherapy or combination therapy in patients with advanced ccRCC. Here, we explore the possible mechanisms by which the TIME affects the efficacy of immunotherapy and targeted therapy, as well as the factors that drive dynamic changes in the TIME in ccRCC, including the immunomodulatory effect of targeted therapy and genomic changes. We also describe the progress on novel therapeutic modalities for advanced ccRCC based on the TIME. Overall, this review provides valuable information on the optimization of combination therapy and development of individualized therapy for advanced ccRCC.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/mortality
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/mortality
- Molecular Targeted Therapy/methods
- Precision Medicine/methods
- Progression-Free Survival
- Randomized Controlled Trials as Topic
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Enyu Lin
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Xuechao Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zedan Zhang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Lu Xie
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
6
|
Liver fatty acid-binding protein (L-FABP) promotes cellular angiogenesis and migration in hepatocellular carcinoma. Oncotarget 2017; 7:18229-46. [PMID: 26919097 PMCID: PMC4951284 DOI: 10.18632/oncotarget.7571] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/29/2016] [Indexed: 01/18/2023] Open
Abstract
Liver fatty acid-binding protein (L-FABP) is abundant in hepatocytes and known to be involved in lipid metabolism. Overexpression of L-FABP has been reported in various cancers; however, its role in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigated L-FABP and its association with vascular endothelial growth factors (VEGFs) in 90 HCC patients. We found that L-FABP was highly expressed in their HCC tissues, and that this expression was positively correlated with that of VEGF-A. Additionally, L-FABP significantly promoted tumor growth and metastasis in a xenograft mouse model. We also assessed the mechanisms of L-FABP activity in tumorigenesis; L-FABP was found to associate with VEGFR2 on membrane rafts and subsequently activate the Akt/mTOR/P70S6K/4EBP1 and Src/FAK/cdc42 pathways, which resulted in up-regulation of VEGF-A accompanied by an increase in both angiogenic potential and migration activity. Our results thus suggest that L-FABP could be a potential target for HCC chemotherapy.
Collapse
|
7
|
Yoshiji H, Noguchi R, Namisaki T, Moriya K, Kitade M, Aihara Y, Douhara A, Kawaratani H, Nishimura N, Fukui H. Combination of sorafenib and angiotensin-II receptor blocker attenuates preneoplastic lesion development in a non-diabetic rat model of steatohepatitis. J Gastroenterol 2014; 49:1421-1429. [PMID: 24197250 DOI: 10.1007/s00535-013-0906-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/21/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Given the well-documented adverse side effects of sorafenib, many sorafenib-treated patients may need the reduced initial dose of the compound, and an alternative sorafenib-based therapy, which exerts similar clinical benefit, is anticipated. An angiostatic therapy with sorafenib is considered one of the promising approaches for chemoprevention of hepatocellular carcinoma. The aim of the current study was to elucidate the combination effect of low dose of sorafenib and angiotensin-II receptor blocker (ARB) on hepatocarcinogenesis, especially in conjunction with angiogenesis. METHODS The chemopreventive effect on the development of liver preneoplastic lesions, angiogenesis, and several indices was elucidated in rats. We also performed several sets of in vitro experiments to examine the mechanisms involved. RESULTS Using a non-diabetic rat model of steatohepatitis with choline deficient L-amino acid-defined diet, sorafenib demonstrated marked inhibition of preneoplastic lesions in a dose dependent manner. Combined treatment with ARB (losartan) at a clinically comparable dose and half dose of sorafenib resulted in the inhibitory effect equivalent to that of common dose of sorafenib along with suppression of hepatic neovascularization and potent angiogenic factor, vascular endothelial growth factor. Furthermore, similar combined inhibitory outcomes were observed in several sets of in vitro studies. CONCLUSION Since the combinatorial treatment using low doses of sorafenib and ARB could sufficiently induce inhibitory effect on the development of preneoplastic lesions at the magnitude similar to the conventional dose of sorafenib, this regimen may provide new strategy for patients intolerant of the usual dose of sorafenib in the future.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/therapeutic use
- Animals
- Anticarcinogenic Agents/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/prevention & control
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical/methods
- Hep G2 Cells
- Humans
- Liver Neoplasms, Experimental/etiology
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/prevention & control
- Losartan/administration & dosage
- Male
- Neovascularization, Pathologic/pathology
- Niacinamide/administration & dosage
- Niacinamide/analogs & derivatives
- Non-alcoholic Fatty Liver Disease/complications
- Non-alcoholic Fatty Liver Disease/pathology
- Phenylurea Compounds/administration & dosage
- Precancerous Conditions/etiology
- Precancerous Conditions/pathology
- Precancerous Conditions/prevention & control
- Rats, Inbred F344
- Sorafenib
Collapse
Affiliation(s)
- Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Jean-François Dufour
- Institute of Clinical Pharmacology and Visceral Research, University of Berne, Berne, Switzerland.
| |
Collapse
|
9
|
Oseini AM, Roberts LR. PDGFRalpha: a new therapeutic target in the treatment of hepatocellular carcinoma? Expert Opin Ther Targets 2009; 13:443-54. [PMID: 19335066 DOI: 10.1517/14728220902719233] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) develops most often in a background of chronic inflammatory liver injury from viral infection or alcohol use. Most HCCs are diagnosed at a stage at which surgical resection is not feasible. Even in patients receiving surgery rates of recurrence and metastasis remain high. There are few effective HCC therapies and hence a need for novel, rational approaches to treatment. Platelet derived growth factor receptor-alpha (PDGFR-alpha) is involved in tumor angiogenesis and maintenance of the tumor microenvironment and has been implicated in development and metastasis of HCC. OBJECTIVE To examine PDGFR-alpha as a target for therapy of HCC and explore opportunities and strategies for PDGFR-alpha inhibition. METHODS A review of relevant literature. RESULTS/CONCLUSIONS Targeted inhibition of PDGFR-alpha is a rational strategy for prevention and therapy of HCC.
Collapse
Affiliation(s)
- Abdul M Oseini
- Miles and Shirley Fiterman Center for Digestive Diseases College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
10
|
Yao DF, Gu WJ, Li YM. Expression and dynamic alteration of hepatoma-related growth factors during malignant transformation of hepatocytes. Shijie Huaren Xiaohua Zazhi 2008; 16:2570-2575. [DOI: 10.11569/wcjd.v16.i23.2570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common hepatic malignancy worldwide. Its nature of rapid growth results in a grave prognosis. Its treatment is challenging because the mechanisms underlying tumor progression are still largely unknown. Recently, new molecular targets have been confirmed and various targeted agents are now being investigated for the treatment of HCC. The progression of HCC is closely associated with expression of hepatic growth factors that may be molecular targets for HCC treatment. This paper concludes the expression characters and dynamic changes of several hepatoma-related growth factors such as IGF-Ⅱ, VEGF, TGF-β1 and HGF.
Collapse
|