1
|
Ronasi S, Mahdavi AH, Varnosfaderani SR, Kowsar R, Jafarpour F, Nasr-Esfahani MH. Punicic acid alleviates methylglyoxal-induced oocyte dysfunction during in vitro maturation in mouse species. PLoS One 2025; 20:e0314602. [PMID: 40131868 PMCID: PMC11936299 DOI: 10.1371/journal.pone.0314602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 03/27/2025] Open
Abstract
Dicarbonyl stress, characterized by the abnormal accumulation of reactive dicarbonyl metabolites and advanced glycation end-products (AGEs), is implicated in various pathological conditions, including obesity, diabetes, and reproductive disorders. Methylglyoxal (MGO), a highly reactive dicarbonyl metabolite, has been shown to compromise oocyte quality and developmental competence. In this study, we investigated the protective role of punicic acid (PA), a potent antioxidant found in pomegranate seed oil, against MGO-induced oocyte dysfunction. Our findings revealed that 75 µM MGO exposure during in vitro oocyte maturation significantly reduced the maturation rate and impaired subsequent embryonic development, characterized by decreased pronucleus formation and blastocyst rates. Interestingly, PA supplementation partially ameliorated these adverse effects of MGO, highlighting its potential as a protective agent against dicarbonyl-induced oocyte dysfunction. Co-treatment with PA restored the imbalanced redox state induced by MGO, leading to reduction in ROS levels and an increase in GSH levels in matured oocytes. Additionally, co-supplementation with PA preserved mitochondrial distribution in oocytes challenged with MGO, further contributing to improved oocyte quality. At the molecular level, PA co-treatment modulated the expression of genes involved in dicarbonyl stress and oxidative responses, including Glo1, Rage, Nrf2, and Nf-κB, potentially regulating the detoxification of MGO and mitigating its harmful effects. Lastly, PA supplementation improved cell lineage allocation in blastocysts developed from MGO-challenged oocytes, emphasizing its role in enhancing the quality of preimplantation embryos. In conclusion, our study provides novel insights into the protective effects of punicic acid as an antioxidant against MGO-induced oocyte dysfunction, suggesting its potential as a dietary intervention to enhance reproductive health, particularly in individuals facing dicarbonyl stress-associated conditions such as obesity and diabetes.
Collapse
Affiliation(s)
- Shahrzad Ronasi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Shiva Rouhollahi Varnosfaderani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Rasoul Kowsar
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
2
|
Huang Y, Zhang G, Li S, Feng J, Zhang Z. Innate and adaptive immunity in neurodegenerative disease. Cell Mol Life Sci 2025; 82:68. [PMID: 39894884 PMCID: PMC11788272 DOI: 10.1007/s00018-024-05533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025]
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive loss of selected neurons. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs. Pathologically, NDs are characterized by progressive failure of neural interactions and aberrant protein fibril aggregation and deposition, which lead to neuron loss and cognitive and behavioral impairments. Great efforts have been made to delineate the underlying mechanism of NDs. However, the very first trigger of these disorders and the state of the illness are still vague. Existing therapeutic strategies can relieve symptoms but cannot cure these diseases. The human immune system is a complex and intricate network comprising various components that work together to protect the body against pathogens and maintain overall health. They can be broadly divided into two main types: innate immunity, the first line of defense against pathogens, which acts nonspecifically, and adaptive immunity, which follows a defense process that acts more specifically and is targeted. The significance of brain immunity in maintaining the homeostatic environment of the brain, and its direct implications in NDs, has increasingly come into focus. Some components of the immune system have beneficial regulatory effects, whereas others may have detrimental effects on neurons. The intricate interplay and underlying mechanisms remain an area of active research. This review focuses on the effects of both innate and adaptive immunity on AD and PD, offering a comprehensive understanding of the initiation and regulation of brain immunity, as well as the interplay between innate and adaptive immunity in influencing the progression of NDs.
Collapse
Affiliation(s)
- Yeyu Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sheng Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jin Feng
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Li W, Chen Q, Peng C, Yang D, Liu S, Lv Y, Jiang L, Xu S, Huang L. Roles of the Receptor for Advanced Glycation End Products and Its Ligands in the Pathogenesis of Alzheimer's Disease. Int J Mol Sci 2025; 26:403. [PMID: 39796257 PMCID: PMC11721675 DOI: 10.3390/ijms26010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
The Receptor for Advanced Glycation End Products (RAGE), part of the immunoglobulin superfamily, plays a significant role in various essential functions under both normal and pathological conditions, especially in the progression of Alzheimer's disease (AD). RAGE engages with several damage-associated molecular patterns (DAMPs), including advanced glycation end products (AGEs), beta-amyloid peptide (Aβ), high mobility group box 1 (HMGB1), and S100 calcium-binding proteins. This interaction impairs the brain's ability to clear Aβ, resulting in increased Aβ accumulation, neuronal injury, and mitochondrial dysfunction. This further promotes inflammatory responses and oxidative stress, ultimately leading to a range of age-related diseases. Given RAGE's significant role in AD, inhibitors that target RAGE and its ligands hold promise as new strategies for treating AD, offering new possibilities for alleviating and treating this serious neurodegenerative disease. This article reviews the various pathogenic mechanisms of AD and summarizes the literature on the interaction between RAGE and its ligands in various AD-related pathological processes, with a particular focus on the evidence and mechanisms by which RAGE interactions with AGEs, HMGB1, Aβ, and S100 proteins induce cognitive impairment in AD. Furthermore, the article discusses the principles of action of RAGE inhibitors and inhibitors targeting RAGE-ligand interactions, along with relevant clinical trials.
Collapse
Affiliation(s)
- Wen Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Qiuping Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Chengjie Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Dan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Si Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Yanwen Lv
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Langqi Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihua Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
4
|
Xu HH, Hao SX, Sun HY, Dong XX, Lin Y, Lou H, Zhao LM, Tang PP, Dou ZJ, Han JJ, Du MH, Chen ZX, Kopylov P, Shchekochikhin D, Liu X, Zhang Y. THBru attenuates diabetic cardiomyopathy by inhibiting RAGE-dependent inflammation. Acta Pharmacol Sin 2024; 45:2107-2118. [PMID: 38862818 PMCID: PMC11420355 DOI: 10.1038/s41401-024-01307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus characterized by heart failure and cardiac remodeling. Previous studies show that tetrahydroberberrubine (THBru) retrogrades cardiac aging by promoting PHB2-mediated mitochondrial autophagy and prevents peritoneal adhesion by suppressing inflammation. In this study we investigated whether THBru exerted protective effect against DCM in db/db mice and potential mechanisms. Eight-week-old male db/db mice were administered THBru (25, 50 mg·kg-1·d-1, i.g.) for 12 weeks. Cardiac function was assessed using echocardiography. We showed that THBru administration significantly improved both cardiac systolic and diastolic function, as well as attenuated cardiac remodeling in db/db mice. In primary neonatal mouse cardiomyocytes (NMCMs), THBru (20, 40 μM) dose-dependently ameliorated high glucose (HG)-induced cell damage, hypertrophy, inflammatory cytokines release, and reactive oxygen species (ROS) production. Using Autodock, surface plasmon resonance (SPR) and DARTS analyses, we revealed that THBru bound to the domain of the receptor for advanced glycosylation end products (RAGE), subsequently leading to inactivation of the PI3K/AKT/NF-κB pathway. Importantly, overexpression of RAGE in NMCMs reversed HG-induced inactivation of the PI3K/AKT/NF-κB pathway and subsequently counteracted the beneficial effects mediated by THBru. We conclude that THBru acts as an inhibitor of RAGE, leading to inactivation of the PI3K/AKT/NF-κB pathway. This action effectively alleviates the inflammatory responses and oxidative stress in cardiomyocytes, ultimately leading to ameliorated DCM.
Collapse
Affiliation(s)
- Heng-Hui Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150000, China
- State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150000, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150000, China
| | - Sheng-Xin Hao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150000, China
- State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150000, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150000, China
| | - He-Yang Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150000, China
- State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150000, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150000, China
| | - Xin-Xin Dong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150000, China
- State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150000, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150000, China
| | - Yuan Lin
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150000, China
- State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150000, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150000, China
| | - Han Lou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150000, China
- State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150000, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150000, China
| | - Li-Min Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150000, China
- State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150000, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150000, China
| | - Ping-Ping Tang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150000, China
- State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150000, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150000, China
| | - Zi-Jia Dou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150000, China
- State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150000, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150000, China
| | - Jing-Jing Han
- Department of Pharmacy, Caoxian People's Hospital, Heze, 274400, China
| | - Meng-Han Du
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150000, China
- State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150000, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150000, China
| | - Zhou-Xiu Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150000, China
- State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150000, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150000, China
| | - Philipp Kopylov
- Department of Preventive and Emergency Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Dmitry Shchekochikhin
- Department of Preventive and Emergency Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150000, China.
- State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150000, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150000, China.
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150000, China.
- State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150000, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150000, China.
| |
Collapse
|
5
|
Nameni G, Jazayeri S, Fatahi S, Jamshidi S, Zaroudi M. Soluble receptor of advanced glycation end product as a biomarker in neurocognitive and neuropsychiatric disorders: A meta-analysis of controlled studies. Eur J Clin Invest 2024; 54:e14232. [PMID: 38700073 DOI: 10.1111/eci.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND & OBJECTIVES Currently, there is a significant focus on the decrease of soluble receptor of advanced glycation end products (sRAGE) in neurocognitive and neuropsychiatric disorders. sRAGE plays a decoy role against the inflammatory response of advanced glycation end products (AGE), which has led to increased interest in its role in these disorders. This meta-analysis aimed to investigate the significant differences in sRAGE levels between neurocognitive and neuropsychiatric disorders compared to control groups. METHOD A systematic review was conducted using the PUBMED, Scopus and Embase databases up to October 2023. Two reviewers assessed agreement for selecting papers based on titles and abstracts, with kappa used to measure agreement and finally publications were scanned according to controlled studies. Effect sizes were calculated as weighted mean differences (WMD) and pooled using a random effects model. Heterogeneity was assessed using I2, followed by subgroup analysis and meta-regression tests. Quality assessment was performed using the Newcastle-Ottawa Quality Assessment Scale. RESULTS In total, 16 studies were included in the present meta-analysis. Subjects with neurocognitive (n = 1444) and neuropsychiatric (n = 444) disorders had lower sRAGE levels in case-control (WMD: -0.21, 95% CI: -0.33, -0.10; p <.001) and cross-sectional (WMD: -0.29, 95% CI = -0.44, -0.13, p <.001) studies with high heterogeneity and no publication bias. In subgroup analysis, subjects with cognitive impairment (WMD: -0.87, 95% CI: -1.61, -0.13, p =.000), and age >50 years (WMD: -0.39, 95% CI: -0.74, -0.05, p =.000), had lower sRAGE levels in case-control studies. Also, dementia patients (WMD: -0.41, 95% CI: -0.72, -0.10, p =.014) with age >50 years (WMD: -0.33, 95% CI: -0.54, -0.13, p = 0.000) and in Asian countries (WMD: -0.28, 95% CI: -0.42, -0.13, p =.141) had lower sRAGE levels in cross-sectional studies. CONCLUSION This meta-analysis revealed a significant reduction in sRAGE in neurocognitive and neuropsychiatric disorders particularly in Asians and moderate age.
Collapse
Affiliation(s)
- Ghazaleh Nameni
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Fatahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Jamshidi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Marsa Zaroudi
- Student Research Committee, Department of Nutrition, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhou M, Zhang Y, Shi L, Li L, Zhang D, Gong Z, Wu Q. Activation and modulation of the AGEs-RAGE axis: Implications for inflammatory pathologies and therapeutic interventions - A review. Pharmacol Res 2024; 206:107282. [PMID: 38914383 DOI: 10.1016/j.phrs.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Chronic inflammation is a common foundation for the development of many non-communicable diseases, particularly diabetes, atherosclerosis, and tumors. The activation of the axis involving Advanced Glycation End products (AGEs) and their receptor RAGE is a key promotive factor in the chronic inflammation process, influencing the pathological progression of these diseases. The accumulation of AGEs in the body results from an increase in glycation reactions and oxidative stress, especially pronounced in individuals with diabetes. By binding to RAGE, AGEs activate signaling pathways such as NF-κB, promoting the release of inflammatory factors, exacerbating cell damage and inflammation, and further advancing the formation of atherosclerotic plaques and tumor development. This review will delve into the molecular mechanisms by which the AGEs-RAGE axis activates chronic inflammation in the aforementioned diseases, as well as strategies to inhibit the AGEs-RAGE axis, aiming to slow or halt the progression of chronic inflammation and related diseases. This includes the development of AGEs inhibitors, RAGE antagonists, and interventions targeting upstream and downstream signaling pathways. Additionally, the early detection of AGEs levels and RAGE expression as biomarkers provides new avenues for the prevention and treatment of diabetes, atherosclerosis, and tumors.
Collapse
Affiliation(s)
- Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yuyan Zhang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Lin Shi
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430068, PR China
| | - Liangchao Li
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Duo Zhang
- Hubei Standardization and Quality Institute, Wuhan,Hubei 430068, PR China
| | - Zihao Gong
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Qian Wu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
7
|
Gasparotto J, Somensi N, Girardi CS, Bittencourt RR, de Oliveira LM, Hoefel LP, Scheibel IM, Peixoto DO, Moreira JCF, Outeiro TF, Gelain DP. Is it all the RAGE? Defining the role of the receptor for advanced glycation end products in Parkinson's disease. J Neurochem 2024; 168:1608-1624. [PMID: 37381043 DOI: 10.1111/jnc.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is a transmembrane receptor that belongs to the immunoglobulin superfamily and is extensively associated with chronic inflammation in non-transmissible diseases. As chronic inflammation is consistently present in neurodegenerative diseases, it was largely assumed that RAGE could act as a critical modulator of neuroinflammation in Parkinson's disease (PD), similar to what was reported for Alzheimer's disease (AD), where RAGE is postulated to mediate pro-inflammatory signaling in microglia by binding to amyloid-β peptide. However, accumulating evidence from studies of RAGE in PD models suggests a less obvious scenario. Here, we review physiological aspects of RAGE and address the current questions about the potential involvement of this receptor in the cellular events that may be critical for the development and progression of PD, exploring possible mechanisms beyond the classical view of the microglial activation/neuroinflammation/neurodegeneration axis that is widely assumed to be the general mechanism of RAGE action in the adult brain.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Nauana Somensi
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carolina Saibro Girardi
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Reykla Ramon Bittencourt
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Martinewski de Oliveira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Piloneto Hoefel
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ingrid Matsubara Scheibel
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Oppermann Peixoto
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Daniel Pens Gelain
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Lian W, Wang Z, Zhou F, Yuan X, Xia C, Wang W, Yan Y, Cheng Y, Yang H, Xu J, He J, Zhang W. Cornuside ameliorates cognitive impairments via RAGE/TXNIP/NF-κB signaling in Aβ 1-42 induced Alzheimer's disease mice. J Neuroimmune Pharmacol 2024; 19:24. [PMID: 38780885 DOI: 10.1007/s11481-024-10120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/21/2024] [Indexed: 05/25/2024]
Abstract
Cornuside has been discovered to improve learning and memory in AD mice, however, its underlying mechanism was not fully understood. In the present study, we established an AD mice model by intracerebroventricular injection of Aβ1-42, which were treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated cognitive function of AD mice in series of behavioral tests, including Morris water maze test, nest building test, novel object recognition test and step-down test. Additionally, cornuside could attenuate neuronal injury, and promote cholinergic synaptic transmission by restoring the level of acetylcholine (ACh) via inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as facilitating choline acetyltransferase (ChAT). Furthermore, cornuside inhibited oxidative stress levels amplified as decreased malondialdehyde (MDA), by inhibiting TXNIP expression, improving total anti-oxidative capacity (TAOC), raising activities of superoxide dismutase (SOD) and catalase (CAT). Cornuside also reduced the activation of microglia and astrocytes, decreased the level of proinflammatory factors TNF-α, IL-6, IL-1β, iNOS and COX2 via interfering RAGE-mediated IKK-IκB-NF-κB phosphorylation. Similar anti-oxidative and anti-inflammatory effects were also found in LPS-stimulated BV2 cells via hampering RAGE-mediated TXNIP activation and NF-κB nuclear translocation. Virtual docking revealed that cornuside could interact with the active pocket of RAGE V domain directly. In conclusion, cornuside could bind to the RAGE directly impeding the interaction of Aβ and RAGE, and cut down the expression of TXNIP inhibiting ROS production and oxidative stress, as well as hamper NF-κB p65 mediated the inflammation.
Collapse
Grants
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- 3332023096 Central Universities Fundamental for Basic Scientific Research of Peking Union Medical College
- 2022SLZDCY-001 Yan'an Science and Technology Plan Project
- 2022JZ-49 Key Project Funding for Shaanxi Provincial Natural Science Basic Rearch Program
- 82273809, 82273815, 82073731 National Natural Science Foundation of China
- 82273809, 82273815, 82073731 National Natural Science Foundation of China
- 2023-NHLHCRF-CXYW-01, 2022-NHLHCRF-YNZY-01 National High Level hospital Clinical Research Funding
- 2023-NHLHCRF-CXYW-01, 2022-NHLHCRF-YNZY-01 National High Level hospital Clinical Research Funding
- 2022-JKCS-16 Nonprofit Central Research Institute Fund of Chinese Academy of Medical Science
- CPA-B04-ZC-2021-005 Chinese Pharmaceutical Association-Yiling Biomedical Innovation Fund Project
Collapse
Affiliation(s)
- Wenwen Lian
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Zexing Wang
- School of Life Science, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Fulin Zhou
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Xiaotang Yuan
- School of Life Science, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Congyuan Xia
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wenping Wang
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yunchi Cheng
- Department of Pharmacology, School of Medicine, Yale University, Connecticut, New Haven, USA
| | - Hua Yang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Jiekun Xu
- School of Life Science, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Weiku Zhang
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| |
Collapse
|
9
|
Xin X, Liu H, Zhang S, Li P, Zhao X, Zhang X, Li S, Wu S, Zhao F, Tan J. S100A8/A9 promotes endometrial fibrosis via regulating RAGE/JAK2/STAT3 signaling pathway. Commun Biol 2024; 7:116. [PMID: 38253716 PMCID: PMC10803310 DOI: 10.1038/s42003-024-05814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Intrauterine adhesion (IUA) is characterized by endometrial fibrosis. S100A8/A9 plays an important role in inflammation and fibroblast activation. However, the role of S100A8/A9 in IUA remains unclear. In this study, we collect normal and IUA endometrium to verify the expression of S100A8/A9. Human endometrial stromal cells (hEnSCs) are isolated to evaluate fibrosis progression after S100A8/A9 treatment. A porcine IUA model is established by electrocautery injury to confirm the therapeutic effect of menstrual blood-derived stromal cells (MenSCs) on IUA. Our study reveals increased S100A8/A9 expression in IUA endometrium. S100A8/A9 significantly enhances hEnSCs proliferation and upregulates fibrosis-related and inflammation-associated markers. Furthermore, S100A8/A9 induces hEnSCs fibrosis through the RAGE-JAK2-STAT3 pathway. Transplantation of MenSCs in a porcine IUA model notably enhances angiogenesis, mitigates endometrial fibrosis and downregulates S100A8/A9 expression. In summary, S100A8/A9 induces hEnSCs fibrosis via the RAGE-JAK2-STAT3 pathway, and MenSCs exhibit marked effects on endometrial restoration in the porcine IUA model.
Collapse
Affiliation(s)
- Xing Xin
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Hao Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Minimally Invasive Surgical Robot, Liaoning Province, Shenyang, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Pingping Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Xinyang Zhao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Xudong Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Shuyu Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Fujie Zhao
- Obstetrics and Gynecology Department, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110022, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China.
| |
Collapse
|
10
|
Kim CH, Kang HY, Kim G, Park J, Nam BY, Park JT, Han SH, Kang SW, Yoo TH. Soluble receptors for advanced glycation end-products prevent unilateral ureteral obstruction-induced renal fibrosis. Front Pharmacol 2023; 14:1172269. [PMID: 37261287 PMCID: PMC10227196 DOI: 10.3389/fphar.2023.1172269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: The receptor for advanced glycation end products (RAGE) and its ligands, such as high-mobility group protein box 1 (HMGB1), play an important role in the accumulation of extracellular matrix in chronic kidney diseases with tubulointerstitial fibrosis. Blocking RAGE signaling with soluble RAGE (sRAGE) is a therapeutic candidate for renal fibrosis. Methods: NRK-52E cells were stimulated with or without HMGB1 and incubated with sRAGE in vitro. Sprague-Dawley rats were intraperitoneally treated with sRAGE after unilateral ureteral obstruction (UUO) operation in vivo. Results: HMBG1-stimulated NRK-52E cells showed increased fibronectin expression, type I collagen, α-smooth muscle actin, and connective tissue growth factor, which were attenuated by sRAGE. The mitogen-activated protein kinase (MAPK) pathway and nuclear translocation of nuclear factor kappa B (NF-κB) were enhanced in NRK-52E cells exposed to HMBG1, and sRAGE treatment alleviated the activation of the MAPK and NF-κB pathways. In the UUO rat models, sRAGE significantly ameliorated the increased renal fibronectin, type I collagen, and α-smooth muscle actin expressions. Masson's trichrome staining confirmed the anti-fibrotic effect of sRAGE in the UUO rat model. RAGE also significantly attenuated the activation of the MAPK pathway and NF-κB, as well as the increased number of infiltrated macrophages within the tubulointerstitium in the kidney of the UUO rat models. Conclusion: These findings suggest that RAGE plays a pivotal role in the pathogenesis of renal fibrosis and that its inhibition by sRAGE may be a potential therapeutic approach for renal fibrosis.
Collapse
Affiliation(s)
- Chan Ho Kim
- Department of Internal Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Hye-Young Kang
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Gyuri Kim
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Jimin Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Tong YW, Ko JKY, Lam KSL, Tam S, Lee VCY, Ho PC, Ng EHY, Li RHW. Advanced glycation end-products and its soluble receptor are not independent predictors of incident dysglycaemia or metabolic syndrome in women with polycystic ovary syndrome: a prospective observational study. Reprod Biol Endocrinol 2023; 21:41. [PMID: 37165411 PMCID: PMC10170776 DOI: 10.1186/s12958-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND To evaluate the association of serum advanced glycation end-products (AGEs) and its soluble receptor of AGE (sRAGE) levels with dysglycaemia and metabolic syndrome in women with polycystic ovary syndrome (PCOS). METHODS This was an analysis of a cohort of women with PCOS who were prospectively recruited for a longitudinal observational study on their endocrine and metabolic profile between January 2010 and December 2013. The association of serum AGEs and sRAGE levels with dysglycaemia and metabolic syndrome at the second-year visit (the index visit) and the sixth-year visit (the outcome visit) were determined. Comparisons of continuous variables between groups were made using the Mann-Whitney U-test. Spearman test was used for correlation analysis. Multivariate binary logistic regression analysis was employed to identify the factors independently associated with the outcome events. RESULTS A total of 329 women were analysed at the index visit. Significantly lower serum levels of sRAGE (both p < 0.001), but no significant difference in AGEs, were observed in those with dysglycaemia or metabolic syndrome. At the outcome visit, those with incident metabolic syndrome had a significantly lower initial serum sRAGE levels (p = 0.008). The association of serum sRAGE with dysglycaemia and metabolic syndrome at the index visit was no longer significant in multivariate logistic regression after controlling for body mass index, free androgen index and homeostatic model assessment for insulin resistance (HOMA-IR). sRAGE was also not significantly associated with incident metabolic syndrome at the outcome visit on multivariate logistic regression. CONCLUSIONS Serum sRAGE levels are significantly lower in women with PCOS who have dysglycaemia or metabolic syndrome, and in those developing incident metabolic syndrome in four years. However, it does not have a significant independent association with these outcome measures after adjusting for body mass index, free androgen index and HOMA-IR.
Collapse
Affiliation(s)
- Yu Wing Tong
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Jennifer Ka Yee Ko
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Karen Siu Ling Lam
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Sidney Tam
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Vivian Chi Yan Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Pak Chung Ho
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Ernest Hung Yu Ng
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Raymond Hang Wun Li
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong.
| |
Collapse
|
12
|
Reynaert NL, Vanfleteren LEGW, Perkins TN. The AGE-RAGE Axis and the Pathophysiology of Multimorbidity in COPD. J Clin Med 2023; 12:jcm12103366. [PMID: 37240472 DOI: 10.3390/jcm12103366] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease of the airways and lungs due to an enhanced inflammatory response, commonly caused by cigarette smoking. Patients with COPD are often multimorbid, as they commonly suffer from multiple chronic (inflammatory) conditions. This intensifies the burden of individual diseases, negatively affects quality of life, and complicates disease management. COPD and comorbidities share genetic and lifestyle-related risk factors and pathobiological mechanisms, including chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) is an important driver of chronic inflammation. Advanced glycation end products (AGEs) are RAGE ligands that accumulate due to aging, inflammation, oxidative stress, and carbohydrate metabolism. AGEs cause further inflammation and oxidative stress through RAGE, but also through RAGE-independent mechanisms. This review describes the complexity of RAGE signaling and the causes of AGE accumulation, followed by a comprehensive overview of alterations reported on AGEs and RAGE in COPD and in important co-morbidities. Furthermore, it describes the mechanisms by which AGEs and RAGE contribute to the pathophysiology of individual disease conditions and how they execute crosstalk between organ systems. A section on therapeutic strategies that target AGEs and RAGE and could alleviate patients from multimorbid conditions using single therapeutics concludes this review.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Timothy N Perkins
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
13
|
Liu J, Jin Z, Wang X, Jakoš T, Zhu J, Yuan Y. RAGE pathways play an important role in regulation of organ fibrosis. Life Sci 2023; 323:121713. [PMID: 37088412 DOI: 10.1016/j.lfs.2023.121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Organ fibrosis is a pathological process of fibroblast activation and excessive deposition of extracellular matrix after persistent tissue injury and therefore is a common endpoint of many organ pathologies. Multiple cellular types and soluble mediators, including chemokines, cytokines and non-peptidic factors, are implicated in fibrogenesis and the remodeling of tissue architecture. The molecular basis of the fibrotic process is complex and consists of closely intertwined signaling networks. Research has strived for a better understanding of these pathological mechanisms to potentially reveal novel therapeutic targets for fibrotic diseases. In light of new knowledge, the receptor for advanced glycation end products (RAGE) emerged as an important candidate for the regulation of a wide variety of cellular functions related to fibrosis, including inflammation, cell proliferation, apoptosis, and angiogenesis. RAGE is a pattern recognition receptor that binds a broad range of ligands such as advanced glycation end products, high mobility group box-1, S-100 calcium-binding protein and amyloid beta protein. Although the link between RAGE and fibrosis has been established, the exact mechanisms need be investigated in further studies. The aim of this review is to collect all available information about the intricate function of RAGE and its signaling cascades in the pathogenesis of fibrotic diseases within different organs. In addition, to the major ligands and signaling pathways, we discuss potential strategies for targeting RAGE in fibrosis. We emphasize the functional links between RAGE, inflammation and fibrosis that may guide further studies and the development of improved therapeutic drugs.
Collapse
Affiliation(s)
- Jing Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Zhedong Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Xiaolong Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Tanja Jakoš
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| |
Collapse
|
14
|
Chu XH, Hu HY, Godje ISG, Zhu LJ, Zhu JB, Feng YL, Wang H, Zhang YB, Huang J, Sun XG. Elevated HMGB1 and sRAGE levels in cerebrospinal fluid of aneurysmal subarachnoid hemorrhage patients. J Stroke Cerebrovasc Dis 2023; 32:107061. [PMID: 36871437 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Neuroinflammation after aneurysmal subarachnoid hemorrhage (aSAH) leads to poor outcome of patients. High mobility group box 1 (HMGB1) contributes to inflammation through binding to receptors for advanced glycation end-products (RAGE) in various diseases. We aimed to determine the production of these two factors after aSAH and their relationship with clinical features. METHODS HMGB1 and soluble RAGE (sRAGE) levels in cerebrospinal fluid (CSF) of aSAH patients and controls were measured, and their temporal courses were observed. The correlation between early concentrations (days 1-3) and clinical symptoms assessed by disease severity scores, neuroinflammation estimated by CSF IL-6 levels, as well as prognosis evidenced by delayed cerebral ischemia (DCI) and 6-month adverse outcome was investigated. Finally, combined analysis of early levels for predicting prognosis was confirmed. RESULTS CSF HMGB1 and sRAGE levels were higher in aSAH patients than in controls (P < 0.05), and the levels decreased from higher early to lower over time. Their early concentrations were positively associated with disease severity scores, IL-6 levels, DCI and 6-month poor outcome (P < 0.05). HMGB1 ≥ 6045.5 pg/ml (OR = 14.291, P = 0.046) and sRAGE ≥ 572.0 pg/ml (OR = 13.988, P = 0.043) emerged as independent predictors for DCI, while HMGB1 ≥ 5163.2 pg/ml (OR = 7.483, P = 0.043) and sRAGE ≥ 537.3 pg/ml (OR = 12.653, P = 0.042) were predictors for 6-month poor outcome. Combined analysis of them improved predictive values of adverse prognosis. CONCLUSION CSF HMGB1 and sRAGE levels of aSAH patients were increased early and then varied dynamically, which might act as potential biomarkers for poor outcome, especially when co-analyzed.
Collapse
Affiliation(s)
- Xue-Hong Chu
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Hui-Yu Hu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Ivan Steve Godje Godje
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Li-Juan Zhu
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Jia-Bao Zhu
- Department of Neurosurgery, Yuncheng Central Hospital Affiliated to Shanxi Medical University, No. 3690, Hedong East Street, Yuncheng, Shanxi, 044000, PR. China
| | - Yong-Liang Feng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Hai Wang
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Yi-Bo Zhang
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Juan Huang
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Xin-Gang Sun
- Department of Neurology, the Second Hospital Affiliated to Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, Shanxi, 030000, PR. China.
| |
Collapse
|
15
|
Johnson JM, Takebe Y, Zhang G, Ober R, McLuckie A, Niedt GW, Johnson LL. Blocking RAGE improves wound healing in diabetic pigs. Int Wound J 2023; 20:678-686. [PMID: 35945908 PMCID: PMC9927915 DOI: 10.1111/iwj.13909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022] Open
Abstract
Receptor for Advanced Glycated End-products (RAGE) is highly expressed in diabetes and impairs wound healing. We proposed that administering an antibody that blocks RAGE will hasten the healing of dorsal wounds in diabetic pigs compared with a non-immune IgG. Two purpose-bred diabetic (D) Yucatan minipigs (Sinclair, Auxvasse MO) each underwent 12 2 × 2 cm full thickness dorsal wounds: four wounds received decellularized porcine skin patches (Xylyx Bio, Bklyn NY): four anti-RAGE Ab (CR-3) infused patches, four saline infused patches and four wounds were left open. One pig received anti-RAGE Ab (CR-3) 1 mg/kg IM q 10 days and other received non-immune IgG. Wounds were measured at 2 and 4 weeks followed by euthanasia and wound harvesting. At 2 weeks few of the patches appeared to be incorporated into the wound. By 4 weeks all patches in pigs treated systemically with CR-3 were detached and the wounds almost healed. For all 24 wounds for both pigs regardless of presence of patch or type of patch, the average IgG treated pig wound size at 4 weeks was 69.2 ± 14.6% of initial size and the average CR-3 treated pig wound size was 40.9 ± 11.3% of initial size (P = 0.0002). Quantitative immunohistology showed greater staining for collagen in the CR-3 treated wounds compared with IgG treated. Staining was positive for RAGE, Mac, and IL-6 in the IgG treated wounds and negative in the CR-3 treated wounds. From these pilot experiments, we conclude that a RAGE blocking antibody given parenterally improved wound healing in a diabetic pig while patches were not effective.
Collapse
Affiliation(s)
- Jordan M Johnson
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| | - Yared Takebe
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| | - Geping Zhang
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| | - Rebecca Ober
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| | - Alicia McLuckie
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| | - George W Niedt
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| | - Lynne L Johnson
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| |
Collapse
|
16
|
Gouliopoulos N, Gazouli M, Karathanou K, Moschos MM. The association of AGER and ALDH2 gene polymorphisms with diabetic retinopathy. Eur J Ophthalmol 2022; 33:11206721221126287. [PMID: 36113108 DOI: 10.1177/11206721221126287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
PURPOSE To evaluate the possible associations between AGER (rs1051993, rs2070600) and ALDH2 (rs671) gene polymorphisms with nonproliferative (NPDR) and proliferative (PDR) diabetic retinopathy, in a well-defined Greek population. MATERIALS 66 NPDR patients and 57 PDR patients participated in our study, along with 156 age- and gender-matched healthy-control subjects (CL). All the participants underwent a complete ophthalmological examination, while clinical and demographic data were collected. Furthermore, they were genotyped for the studied polymorphisms. RESULTS No significant differences were detected among the studied groups regarding the participants' age and gender status. We found that the ALDH2 AA genotype was significantly more frequent in PDR patients than in CL (p = 0.014). Furthermore, between NPDR and PDR groups, the AGER rs1051993 GT and TT genotype frequencies were significantly elevated in PDR patients (p < 0.0001 and 0.04, respectively). Moreover, we demonstrated that the heterozygous GT genotype in DR patients is accompanied by 71.11 times higher risk of developing PDR (OR = 71.11: 95% CI- 4.14-1215.2), while the homozygous TT genotype is associated with 12.71 times elevated risk for PDR development (OR = 12.71: 95% CI- 0.63-254.1). CONCLUSIONS We documented that the ALDH2 AA and AGER rs1051993 GT and TT genotypes were observed significantly more frequently in PDR Greek diabetic patients. Our findings also support the genetic theory, suggesting that heritability is significantly implicated in the development of DR, providing additional evidence in the understanding of DR pathogenesis.
Collapse
Affiliation(s)
- Nikolaos Gouliopoulos
- 1st Department of Ophthalmology, Medical School, 393206National and Kapodistrian University of Athens, Athens, Greece
- 2nd Department of Ophthalmology, Medical School, 393206National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology Medical School, 393206National and Kapodistrian University of Athens, Athens, Greece
| | | | - Marilita M Moschos
- 1st Department of Ophthalmology, Medical School, 393206National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Mouanness M, Nava H, Dagher C, Merhi Z. Contribution of Advanced Glycation End Products to PCOS Key Elements: A Narrative Review. Nutrients 2022; 14:nu14173578. [PMID: 36079834 PMCID: PMC9460172 DOI: 10.3390/nu14173578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decade, data has suggested that dietary advanced glycation end products (AGEs) play an important role in both reproductive and metabolic dysfunctions associated with polycystic ovary syndrome (PCOS). AGEs are highly reactive molecules that are formed by the non-enzymatic glycation process between reducing sugars and proteins, lipids, or nucleic acids. They can be formed endogenously under normal metabolic conditions or under abnormal situations such as diabetes, renal disease, and other inflammatory disorders. Bodily AGEs can also accumulate from exogenous dietary sources particularly when ingested food is cooked and processed under high-temperature conditions, such as frying, baking, or grilling. Women with PCOS have elevated levels of serum AGEs that are associated with insulin resistance and obesity and that leads to a high deposition of AGEs in the ovarian tissue causing anovulation and hyperandrogenism. This review will describe new data relevant to the role of AGEs in several key elements of PCOS phenotype and pathophysiology. Those elements include ovarian dysfunction, hyperandrogenemia, insulin resistance, and obesity. The literature findings to date suggest that targeting AGEs and their cellular actions could represent a novel approach to treating PCOS symptoms.
Collapse
Affiliation(s)
| | - Henry Nava
- Rejuvenating Fertility Center, New York, NY 10019, USA
| | - Christelle Dagher
- Department of Obstetrics and Gynecology, American University of Beirut Medical Center, Beirut P.O. Box 100, Lebanon
| | - Zaher Merhi
- Rejuvenating Fertility Center, New York, NY 10019, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY 11219, USA
- Correspondence: ; Tel.: +1-(203)-557-9696
| |
Collapse
|
18
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|
19
|
Singh H, Agrawal DK. Therapeutic potential of targeting the receptor for advanced glycation end products (RAGE) by small molecule inhibitors. Drug Dev Res 2022; 83:1257-1269. [PMID: 35781678 PMCID: PMC9474610 DOI: 10.1002/ddr.21971] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
Receptor for advanced glycation end products (RAGE) is a 45 kDa transmembrane receptor of immunoglobulin family that can bind to various endogenous and exogenous ligands and initiate the inflammatory downstream signaling pathways. RAGE is involved in various disorders including cardiovascular and neurodegenerative diseases, cancer, and diabetes. This review summarizes the structural features of RAGE and its various isoforms along with their pathological effects. Mainly, the article emphasized on the translational significance of antagonizing the interactions of RAGE with its ligands using small molecules reported in the last 5 years and discusses future approaches that could be employed to block the interactions in the treatment of chronic inflammatory ailments. The RAGE inhibitors described in this article could prove as a powerful approach in the management of immune‐inflammatory diseases. A critical review of the literature suggests that there is a dire need to dive deeper into the molecular mechanism of action to resolve critical issues that must be addressed to understand RAGE‐targeting therapy and long‐term blockade of RAGE in human diseases.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
20
|
Advanced Glycation End Products (AGEs) and Chronic Kidney Disease: Does the Modern Diet AGE the Kidney? Nutrients 2022; 14:nu14132675. [PMID: 35807857 PMCID: PMC9268915 DOI: 10.3390/nu14132675] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Since the 1980s, chronic kidney disease (CKD) affecting all ages has increased by almost 25%. This increase may be partially attributable to lifestyle changes and increased global consumption of a “western” diet, which is typically energy dense, low in fruits and vegetables, and high in animal protein and ultra-processed foods. These modern food trends have led to an increase in the consumption of advanced glycation end products (AGEs) in conjunction with increased metabolic dysfunction, obesity and diabetes, which facilitates production of endogenous AGEs within the body. When in excess, AGEs can be pathological via both receptor-mediated and non-receptor-mediated pathways. The kidney, as a major site for AGE clearance, is particularly vulnerable to AGE-mediated damage and increases in circulating AGEs align with risk of CKD and all-cause mortality. Furthermore, individuals with significant loss of renal function show increased AGE burden, particularly with uraemia, and there is some evidence that AGE lowering via diet or pharmacological inhibition may be beneficial for CKD. This review discusses the pathways that drive AGE formation and regulation within the body. This includes AGE receptor interactions and pathways of AGE-mediated pathology with a focus on the contribution of diet on endogenous AGE production and dietary AGE consumption to these processes. We then analyse the contribution of AGEs to kidney disease, the evidence for dietary AGEs and endogenously produced AGEs in driving pathogenesis in diabetic and non-diabetic kidney disease and the potential for AGE targeted therapies in kidney disease.
Collapse
|
21
|
Mouanness M, Merhi Z. Impact of Dietary Advanced Glycation End Products on Female Reproduction: Review of Potential Mechanistic Pathways. Nutrients 2022; 14:nu14050966. [PMID: 35267940 PMCID: PMC8912317 DOI: 10.3390/nu14050966] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end products (AGEs), a heterogenous group of products formed by the reaction between protein and reducing sugars, can form endogenously due to non-enzymatic reactions or by exogenous sources such as diet where considerable increase in AGEs is observed due to the modification of food mainly by thermal processing. Recent studies have suggested that AGEs could impact, via inducing inflammation and oxidative stress, the reproductive health and fertility in both males and females. This review presents a summary of recently published data pertaining to the pathogenesis of dietary AGEs and their receptors as well as their potential impact on female reproductive health. More specifically, it will present data pertaining to dietary AGEs’ involvement in the mechanistic pathogenesis of polycystic ovary syndrome, ovarian dysfunction, as well as the AGEs’ effect perinatally on the female offspring reproduction. Understanding the mechanistic impact of dietary AGEs on female reproduction can help contribute to the development of targeted pharmacological therapies that will help curb rising female infertility.
Collapse
Affiliation(s)
- Marco Mouanness
- Rejuvenating Fertility Center, 315 W 57th Street, Suite 208, New York, NY 10019, USA;
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Zaher Merhi
- Rejuvenating Fertility Center, 315 W 57th Street, Suite 208, New York, NY 10019, USA;
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY 11219, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Correspondence:
| |
Collapse
|
22
|
Miyagawa T, Iwata Y, Oshima M, Ogura H, Sato K, Nakagawa S, Yamamura Y, Kamikawa Y, Miyake T, Kitajima S, Toyama T, Hara A, Sakai N, Shimizu M, Furuichi K, Munesue S, Yamamoto Y, Kaneko S, Wada T. Soluble receptor for advanced glycation end products protects from ischemia- and reperfusion-induced acute kidney injury. Biol Open 2021; 11:273473. [PMID: 34812852 PMCID: PMC8822355 DOI: 10.1242/bio.058852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
The full-length receptor for advanced glycation end products (RAGE) is a multiligand pattern recognition receptor. High-mobility group box 1 (HMGB1) is a RAGE ligand of damage-associated molecular patterns that elicits inflammatory reactions. The shedded isoform of RAGE and endogenous secretory RAGE (esRAGE), a splice variant, are soluble isoforms (sRAGE) that act as organ-protective decoys. However, the pathophysiologic roles of RAGE/sRAGE in acute kidney injury (AKI) remain unclear. We found that AKI was more severe, with enhanced renal tubular damage, macrophage infiltration, and fibrosis, in mice lacking both RAGE and sRAGE than in wild-type control mice. Using murine tubular epithelial cells (TECs), we demonstrated that hypoxia upregulated messenger RNA (mRNA) expression of HMGB1 and tumor necrosis factor α (TNF-α), whereas RAGE and esRAGE expressions were paradoxically decreased. Moreover, the addition of recombinant sRAGE canceled hypoxia-induced inflammation and promoted cell viability in cultured TECs. sRAGE administration prevented renal tubular damage in models of ischemia/reperfusion-induced AKI and of anti-glomerular basement membrane (anti-GBM) glomerulonephritis. These results suggest that sRAGE is a novel therapeutic option for AKI.
Collapse
Affiliation(s)
- Taro Miyagawa
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan.,Division of Infection Control, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Megumi Oshima
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Hisayuki Ogura
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Koichi Sato
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Shiori Nakagawa
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Yasutaka Kamikawa
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Taito Miyake
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Shinji Kitajima
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Akinori Hara
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan.,Division of Blood Purification, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Kengo Furuichi
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Seiichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Shuichi Kaneko
- Department of System Biology, Institute of Medical Pharmaceutical and Health Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| |
Collapse
|
23
|
Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Int J Mol Sci 2021; 22:ijms22136904. [PMID: 34199060 PMCID: PMC8268101 DOI: 10.3390/ijms22136904] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin superfamily. RAGE binds and mediates cellular responses to a range of DAMPs (damage-associated molecular pattern molecules), such as AGEs, HMGB1, and S100/calgranulins, and as an innate immune sensor, can recognize microbial PAMPs (pathogen-associated molecular pattern molecules), including bacterial LPS, bacterial DNA, and viral and parasitic proteins. RAGE and its ligands stimulate the activations of diverse pathways, such as p38MAPK, ERK1/2, Cdc42/Rac, and JNK, and trigger cascades of diverse signaling events that are involved in a wide spectrum of diseases, including diabetes mellitus, inflammatory, vascular and neurodegenerative diseases, atherothrombosis, and cancer. Thus, the targeted inhibition of RAGE or its ligands is considered an important strategy for the treatment of cancer and chronic inflammatory diseases.
Collapse
|
24
|
The Trp triad within the V-domain of the receptor for advanced glycation end products modulates folding, stability and ligand binding. Biosci Rep 2021; 40:221810. [PMID: 31912881 PMCID: PMC6997106 DOI: 10.1042/bsr20193360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 01/13/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) recognizes damage-associated molecular patterns (DAMPs) and plays a critical role for the innate immune response and sterile tissue inflammation. RAGE overexpression is associated with diabetic complications, neurodegenerative diseases and certain cancers. Yet, the molecular mechanism of ligand recognition by RAGE is insufficiently understood to rationalize the binding of diverse ligands. The N-terminal V-type Ig-domain of RAGE contains a triad of tryptophan residue; Trp51, Trp61 and Trp72. The role of these three Trp residues for domain folding, stability and binding of the RAGE ligand S100B was investigated through site-directed mutagenesis, UV/VIS, CD and fluorescence spectrometry, protein–protein interaction studies, and X-ray crystallography. The data show that the Trp triad stabilizes the folded V-domain by maintaining a short helix in the structure. Mutation of any Trp residue increases the structural plasticity of the domain. Residues Trp61 and Trp72 are involved in the binding of S100B, yet they are not strictly required for S100B binding. The crystal structure of the RAGE-derived peptide W72 in complex with S100B showed that Trp72 is deeply buried in a hydrophobic depression on the S100B surface. The studies suggest that multiple binding modes between RAGE and S100B exist and point toward a not previously recognized role of the Trp residues for RAGE-ligand binding. The Trp triad of the V-domain appears to be a suitable target for novel RAGE inhibitors, either in the form of monoclonal antibodies targeting this epitope, or small organic molecules.
Collapse
|
25
|
Gu X, Shu D, Ying S, Dai Y, Zhang Q, Chen X, Chen H, Dai W. Roxithromycin attenuates inflammation via modulation of RAGE-influenced calprotectin expression in a neutrophilic asthma model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:494. [PMID: 33850891 PMCID: PMC8039670 DOI: 10.21037/atm-21-859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Roxithromycin (RXM), a macrolide antibiotic, exhibits anti-asthmatic effects, but its specific mechanism of action remains elusive. We evaluated the effects of RXM on airway inflammation, the expression of calprotectin, and the activity of the receptor of advanced glycation end products (RAGE) to determine whether RXM alleviates inflammation by regulating RAGE activation, and thereby calprotectin expression, in neutrophilic asthma. Methods Male Brown Norway rats were sensitized with ovalbumin (OVA) and Freund’s complete adjuvant (FCA) mixture, followed by OVA challenge to induce neutrophilic asthma. RXM (30 mg/kg) or FPS-ZM1 (RAGE inhibitor, 1.5 mg/kg) was administered 30 min prior to each challenge. The infiltration of airway inflammatory cells and cytokines, as well as the expression of calprotectin and RAGE, was assessed. Results The expression of airway inflammatory cells and cytokines was found to be significantly elevated in OVA + FCA-induced rats. Increased expression of both calprotectin and RAGE was also detected in OVA + FCA-induced asthma [bronchoalveolar lavage fluid (BALF) calprotectin: 15.07±1.79 vs. 3.86±0.69 ng/mL; serum calprotectin: 20.47±1.64 vs. 9.29±1.31 ng/mL; lung tissue homogenates calprotectin: 28.82±1.01 vs. 12.02±1.38 ng/mg; BALF RAGE: 762.93±36.47 vs. 294.25±45.92 ng/mL; serum RAGE: 906.43±58.95 vs. 505.60±30.16 ng/mL; lung tissue homogenates RAGE: 1,585.24±177.59 vs. 461.53±63.40 ng/mg; all P<0.001]. However, all of these changes were interrupted by RXM and FPS-ZM1. Conclusions RXM exerted similar effects as the RAGE inhibitor FPS-ZM1 in terms of reducing airway inflammation and downregulating the expression of calprotectin and RAGE in a neutrophilic asthma model. Our findings provide novel insights into the mechanisms underlying the effect of RXM pretreatment on neutrophilic asthma. Furthermore, FPS-ZM1 may be useful as an intervention specific to the neutrophilic asthma phenotype.
Collapse
Affiliation(s)
- Xiaofei Gu
- Department of Neurology Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Respiratory and Critical Care Medicine, Yuhang First People's Hospital, Hangzhou, China.,Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danni Shu
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanrong Dai
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huijun Chen
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, China
| | - Wei Dai
- Department of Neurology Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Safwat NA, ELkhamisy MM, Abdel-Wahab SEA, Hamza MT, Boshnak NH, Kenny MA. Polymorphisms of the receptor for advanced glycation end products as vasculopathy predictor in sickle cell disease. Pediatr Res 2021; 89:185-190. [PMID: 32544923 DOI: 10.1038/s41390-020-1014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND The genetic variants of the receptor for advanced glycation end products (RAGE) gene have been associated with vascular disease risk. The objective of this work was to explore the association of three single-nucleotide polymorphisms (SNPs) of RAGE gene (374T/A, 429T/C, and G82S) with vascular complications in SCD. METHODS The study was conducted on 40 children with SCD and 40 healthy children served as controls. All participants were genotyped for the three studied RAGE polymorphisms by polymerase chain reaction (PCR). RESULTS Regarding 374T/A polymorphism, the frequency of TA, TT genotypes and T allele were higher in patients (p < 0.001). T allele was associated with higher incidence of sickling crisis and stroke (p < 0.05). In the subgroup analyses of 429T/C polymorphism, an association between C allele and SCD vascular complications was observed (p < 0.05). Concerning the frequency of G82S genotypes of RAGE, GG variant was detected in 39 (97.5%) of the patients, as compared with 40 (100%) of controls (p = 0.3). A regression analysis proved that HbS%, serum ferritin, and the -374T and 429C alleles were significant independent predictors of frequent sickling episodes (p < 0.05). CONCLUSIONS The C allele of -429T/C and T allele of 374T/A RAGE polymorphisms may be considered as predictors for vascular dysfunction in SCD. IMPACT The C allele of -429T/C and T allele of 374T/A RAGE polymorphisms may be considered as predictors for vascular dysfunction in SCD patients. To our knowledge, our study is the first exploring the association of three single-nucleotide polymorphisms of RAGE gene (374T/A, 429T/C, and G82S) with vascular complications in SCD. Early identification of patients carrying these genetic variants might be of great importance not only to identify subjects at risk of vasculopathy but also to direct them to RAGE-targeted treatments.
Collapse
Affiliation(s)
- Nesma Ahmed Safwat
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Mai Mohamed ELkhamisy
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Mohamed Tarif Hamza
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Noha Hussein Boshnak
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud Adel Kenny
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
27
|
Johnson LL, Johnson J, Ober R, Holland A, Zhang G, Backer M, Backer J, Ali Z, Tekabe Y. Novel Receptor for Advanced Glycation End Products-Blocking Antibody to Treat Diabetic Peripheral Artery Disease. J Am Heart Assoc 2020; 10:e016696. [PMID: 33327730 PMCID: PMC7955479 DOI: 10.1161/jaha.120.016696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Expression of receptor for advanced glycation end products (RAGE) plays an important role in diabetic peripheral artery disease. We proposed to show that treatment with an antibody blocking RAGE would improve hind limb perfusion and muscle viability in diabetic pig with femoral artery (FA) ligation. Methods and Results Purpose‐bred diabetic Yucatan minipigs with average fasting blood sugar of 357 mg/dL on insulin to maintain a glucose range of 300 to 500 mg/dL were treated with either a humanized monoclonal anti‐RAGE antibody (CR‐3) or nonimmune IgG. All pigs underwent intravascular occlusion of the anterior FA. Animals underwent (201Tl) single‐photon emission computed tomography/x‐ray computed tomography imaging on days 1 and 28 after FA occlusion, angiogenesis imaging with [99mTc]dodecane tetra‐acetic acid–polyethylene glycol–single chain vascular endothelial growth factor (scVEGF), muscle biopsies on day 7, and contrast angiogram day 28. Results showed greater increases in perfusion to the gastrocnemius from day 1 to day 28 in CR‐3 compared with IgG treated pigs (P=0.0024), greater uptake of [99mTc]dodecane tetra‐acetic acid‐polyethylene glycol‐scVEGF (scV/Tc) in the proximal gastrocnemius at day 7, confirmed by tissue staining for capillaries and vascular endothelial growth factor A, and less muscle loss and fibrosis at day 28. Contrast angiograms showed better reconstitution of the distal FA from collaterals in the CR‐3 versus IgG treated diabetic pigs (P=0.01). The gastrocnemius on nonoccluded limb at necropsy had higher 201Tl uptake (percentage injected dose per gram) and reduced RAGE staining in arterioles in CR‐3 treated compared with IgG treated animals (P=0.04). Conclusions A novel RAGE‐blocking antibody improved hind limb perfusion and angiogenesis in diabetic pigs with FA occlusion. Contributing factors are increased collaterals and reduced vascular RAGE expression. CR‐3 shows promise for clinical treatment in diabetic peripheral artery disease.
Collapse
Affiliation(s)
- Lynne L Johnson
- Department of Medicine Columbia University Medical Center New York NY
| | - Jordan Johnson
- Department of Medicine Columbia University Medical Center New York NY
| | - Rebecca Ober
- Department of Medicine Columbia University Medical Center New York NY
| | - April Holland
- Department of Medicine Columbia University Medical Center New York NY
| | - Geping Zhang
- Department of Medicine Columbia University Medical Center New York NY
| | | | | | - Ziad Ali
- Department of Medicine Columbia University Medical Center New York NY
| | - Yared Tekabe
- Department of Medicine Columbia University Medical Center New York NY
| |
Collapse
|
28
|
Azizian-Farsani F, Abedpoor N, Hasan Sheikhha M, Gure AO, Nasr-Esfahani MH, Ghaedi K. Receptor for Advanced Glycation End Products Acts as a Fuel to Colorectal Cancer Development. Front Oncol 2020; 10:552283. [PMID: 33117687 PMCID: PMC7551201 DOI: 10.3389/fonc.2020.552283] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein taken in diverse chronic inflammatory conditions. RAGE behaves as a pattern recognition receptor, which binds and is engaged in the cellular response to a variety of damage-associated molecular pattern molecules, as well as HMGB1, S100 proteins, and AGEs (advanced glycation end-products). The RAGE activation turns out to a formation of numerous intracellular signaling mechanisms, resulting in the progression and prolongation of colorectal carcinoma (CRC). The RAGE expression correlates well with the survival of colon cancer cells. RAGE is involved in the tumorigenesis, which increases and develops well in the stressed tumor microenvironment. In this review, we summarized downstream signaling cascade activated by the multiligand activation of RAGE, as well as RAGE ligands and their sources, clinical studies, and tumor markers related to RAGE particularly in the inflammatory tumor microenvironment in CRC. Furthermore, the role of RAGE signaling pathway in CRC patients with diabetic mellitus is investigated. RAGE has been reported to drive assorted signaling pathways, including activator protein 1, nuclear factor-κB, signal transducer and activator of transcription 3, SMAD family member 4 (Smad4), mitogen-activated protein kinases, mammalian target of rapamycin, phosphoinositide 3-kinases, reticular activating system, Wnt/β-catenin pathway, and Glycogen synthase kinase 3β, and even microRNAs.
Collapse
Affiliation(s)
| | - Navid Abedpoor
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Reasearch (ACECR), Isfahan, Iran
| | | | - Ali Osmay Gure
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Reasearch (ACECR), Isfahan, Iran
| | - Kamran Ghaedi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Reasearch (ACECR), Isfahan, Iran.,Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
29
|
Reed JC, Preston-Hurlburt P, Philbrick W, Betancur G, Korah M, Lucas C, Herold KC. The receptor for advanced glycation endproducts (RAGE) modulates T cell signaling. PLoS One 2020; 15:e0236921. [PMID: 32986722 PMCID: PMC7521722 DOI: 10.1371/journal.pone.0236921] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
The receptor for advanced glycation endproducts (RAGE) is expressed in T cells after activation with antigen and is constitutively expressed in T cells from patients at-risk for and with type 1 diabetes mellitus (T1D). RAGE expression was associated with an activated T cell phenotype, leading us to examine whether RAGE is involved in T cell signaling. In primary CD4+ and CD8+ T cells from patients with T1D or healthy control subjects, RAGE- cells showed reduced phosphorylation of Erk. To study T cell receptor signaling in RAGE+ or–T cells, we compared signaling in RAGE+/+ Jurkat cells, Jurkat cells with RAGE eliminated by CRISPR/Cas9, or silenced with siRNA. In RAGE KO Jurkat cells, there was reduced phosphorylation of Zap70, Erk and MEK, but not Lck or CD3ξ. RAGE KO cells produced less IL-2 when activated with anti-CD3 +/- anti-CD28. Stimulation with PMA restored signaling and (with ionomycin) IL-2 production. Silencing RAGE with siRNA also decreased signaling. Our studies show that RAGE expression in human T cells is associated with an activated signaling cascade. These findings suggest a link between inflammatory products that are found in patients with diabetes, other autoimmune diseases, and inflammation that may enhance T cell reactivity.
Collapse
Affiliation(s)
- James C. Reed
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Paula Preston-Hurlburt
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States of America
| | - William Philbrick
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT, United States of America
| | - Gabriel Betancur
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Maria Korah
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Carrie Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Kevan C. Herold
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States of America
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
30
|
The association between plasma HMGB1 and sRAGE and clinical outcome in intracerebral hemorrhage. J Neuroimmunol 2020; 345:577266. [DOI: 10.1016/j.jneuroim.2020.577266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
|
31
|
Della Corte L, Foreste V, Barra F, Gustavino C, Alessandri F, Centurioni MG, Ferrero S, Bifulco G, Giampaolino P. Current and experimental drug therapy for the treatment of polycystic ovarian syndrome. Expert Opin Investig Drugs 2020; 29:819-830. [PMID: 32543238 DOI: 10.1080/13543784.2020.1781815] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is an endocrine disorder that affects 8-13% of reproductive-age women. Irregular periods, hirsutism, or infertility are the most common clinical presentations of patients affected by PCOS. This syndrome is also linked to metabolic abnormalities such as type 2 diabetes, insulin resistance and obesity. The optimal therapeutic approach is still unknown. AREAS COVERED This narrative review offers an overview of the literature on current and experimental pharmacological options for treating PCOS and highlights ongoing clinical trials. Several electronic databases were searched and current research registers were analyzed to the present year. The papers selected for this review were critically analyzed, and all data available were summarized, organized, and explored to derive key information. EXPERT OPINION The main goal of PCOS treatment is to obtain a metabolic and hormonal balance. Optimal PCOS therapy should be direct to the reproductive abnormalities and the entire spectrum of endocrine and metabolic complications that appear to have a long-term negative impact on PCOS patient health, as in post-menopausal period. The discovery of new mechanisms in PCOS pathogenesis will offer the possibility of testing new drug classes.
Collapse
Affiliation(s)
- Luigi Della Corte
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples "Federico II" , Naples, Italy
| | - Virginia Foreste
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples "Federico II" , Naples, Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa , Genoa, Italy
| | - Claudio Gustavino
- Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Franco Alessandri
- Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | | | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa , Genoa, Italy
| | - Giuseppe Bifulco
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples "Federico II" , Naples, Italy
| | - Pierluigi Giampaolino
- Department of Public Health, School of Medicine, University of Naples Federico II , Naples, Italy
| |
Collapse
|
32
|
Alves CH, Fernandes R, Santiago AR, Ambrósio AF. Microglia Contribution to the Regulation of the Retinal and Choroidal Vasculature in Age-Related Macular Degeneration. Cells 2020; 9:cells9051217. [PMID: 32423062 PMCID: PMC7290930 DOI: 10.3390/cells9051217] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
The retina is a highly metabolically active tissue with high-level consumption of nutrients and oxygen. This high metabolic demand requires a properly developed and maintained vascular system. The retina is nourished by two systems: the central retinal artery that supplies the inner retina and the choriocapillaris that supplies the outer retina and retinal pigment epithelium (RPE). Pathological neovascularization, characterized by endothelial cell proliferation and new vessel formation, is a common hallmark in several retinal degenerative diseases, including age-related macular degeneration (AMD). A limited number of studies have suggested that microglia, the resident immune cells of the retina, have an important role not only in the pathology but also in the formation and physiology of the retinal vascular system. Here, we review the current knowledge on microglial interaction with the retinal vascular system under physiological and pathological conditions. To do so, we first highlight the role of microglial cells in the formation and maintenance of the retinal vasculature system. Thereafter, we discuss the molecular signaling mechanisms through which microglial cells contribute to the alterations in retinal and choroidal vasculatures and to the neovascularization in AMD.
Collapse
Affiliation(s)
- C. Henrique Alves
- Retinal Dysfunction and Neuroinflammation Lab, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.H.A.); (R.F.); (A.R.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Rosa Fernandes
- Retinal Dysfunction and Neuroinflammation Lab, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.H.A.); (R.F.); (A.R.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Ana Raquel Santiago
- Retinal Dysfunction and Neuroinflammation Lab, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.H.A.); (R.F.); (A.R.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - António Francisco Ambrósio
- Retinal Dysfunction and Neuroinflammation Lab, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.H.A.); (R.F.); (A.R.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480093
| |
Collapse
|
33
|
Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3818196. [PMID: 32256950 PMCID: PMC7104326 DOI: 10.1155/2020/3818196] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
The advanced glycation end products (AGEs) are organic molecules formed in any living organisms with a great variety of structural and functional properties. They are considered organic markers of the glycation process. Due to their great heterogeneity, there is no specific test for their operational measurement. In this review, we have updated the most common chromatographic, colorimetric, spectroscopic, mass spectrometric, and serological methods, typically used for the determination of AGEs in biological samples. We have described their signaling and signal transduction mechanisms and cell epigenetic effects. Although mass spectrometric analysis is not widespread in the detection of AGEs at the clinical level, this technique is highly promising for the early diagnosis and therapeutics of diseases caused by AGEs. Protocols are available for high-resolution mass spectrometry of glycated proteins although they are characterized by complex machine management. Simpler procedures are available although much less precise than mass spectrometry. Among them, immunochemical tests are very common since they are able to detect AGEs in a simple and immediate way. In these years, new methodologies have been developed using an in vivo novel and noninvasive spectroscopic methods. These methods are based on the measurement of autofluorescence of AGEs. Another method consists of detecting AGEs in the human skin to detect chronic exposure, without the inconvenience of invasive methods. The aim of this review is to compare the different approaches of measuring AGEs at a clinical perspective due to their strict association with oxidative stress and inflammation.
Collapse
|
34
|
Psoralea corylifolia L. Seed Extract Attenuates Methylglyoxal-Induced Insulin Resistance by Inhibition of Advanced Glycation End Product Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4310319. [PMID: 31976027 PMCID: PMC6954480 DOI: 10.1155/2019/4310319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/31/2019] [Accepted: 12/05/2019] [Indexed: 01/11/2023]
Abstract
Accumulation of advanced glycation end products (AGEs) in the body has been implicated in the pathogenesis of metabolic conditions, such as diabetes mellitus. Methylglyoxal (MGO), a major precursor of AGEs, has been reported to induce insulin resistance in both in vitro and in vivo studies. Psoralea corylifolia seeds (PCS) have been used as a traditional medicine for several diseases, but their potential application in treating insulin resistance has not yet been evaluated. This study is aimed at investigating whether PCS extract could attenuate insulin resistance induced by MGO. Male C57BL/6N mice (6 weeks old) were administered 1% MGO in their drinking water for 18 weeks, and the PCS extract (200 or 500 mg/kg) was orally administered daily from the first day of the MGO administration. We observed that both 200 and 500 mg/kg PCS extract treatment significantly improved glucose tolerance and insulin sensitivity and markedly restored p-Akt and p-IRS1/2 expression in the livers of the MGO-administered mice. Additionally, the PCS extract significantly increased the phosphorylation of Akt and IRS-1/2 and glucose uptake in MGO-treated HepG2 cells. Further studies showed that the PCS extract inhibited MGO-induced AGE formation in the HepG2 cells and in the sera of MGO-administered mice. PCS extract also increased the expression of glyoxalase 1 (GLO1) in the liver tissue of MGO-administered mice. The PCS extract significantly decreased the phosphorylation of ERK, p38, and NF-κB and suppressed the mRNA expression of proinflammatory molecules including TNF-α and IL-1β and iNOS in MGO-administered mice. Additionally, we demonstrated that the PCS extract attenuated oxidative stress, as evidenced by the reduced ROS production in the MGO-treated cells and the enhanced expression of antioxidant enzymes in the liver of MGO-administered mice. Thus, PCS extract ameliorated the MGO-induced insulin resistance in HepG2 cells and in mice by reducing oxidative stress via the inhibition of AGE formation. These findings suggest the potential of PCS extract as a candidate for the prevention and treatment of insulin resistance.
Collapse
|
35
|
Prasad K. AGE-RAGE Stress in the Pathophysiology of Atrial Fibrillation and Its Treatment. Int J Angiol 2019; 29:72-80. [PMID: 32476808 DOI: 10.1055/s-0039-3400541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common of cardiac arrhythmias. Mechanisms such as atrial structural remodeling and electrical remodeling have been implicated in the pathogenesis of AF. The data to date suggest that advanced glycation end products (AGEs) and its cell receptor RAGE (receptor for AGE) and soluble receptor (sRAGE) are involved in the pathogenesis of AF. This review focuses on the role of AGE-RAGE axis in the pathogenesis of AF. Interaction of AGE with RAGE generates reactive oxygen species, cytokines, and vascular cell adhesion molecules. sRAGE is a cytoprotective agent. The data show that serum levels of AGE and sRAGE, and expression of RAGE, are elevated in AF patients. Elevated levels of sRAGE did not protect the development of AF. This might be due to greater elevation of AGE than sRAGE. Measurement of AGE-RAGE stress (AGE/sRAGE) would be appropriate as compared with measurement of AGE or RAGE or sRAGE alone in AF patients. AGE and its interaction with RAGE can induce AF through alteration in cellular protein and extracellular matrix. AGE and its interaction with RAGE induce atrial structural and electrical remodeling. The treatment strategy should be directed toward reduction in AGE levels, suppression of RAGE expression, blocking of binding of AGE to RAGE, and elevation of sRAGE and antioxidants. In conclusion, AGE-RAGE axis is involved in the development of AF through atrial structural and electrical remodeling. The treatment modalities for AF should include lowering of AGE, suppression of RAGE, elevation of sRAGE, and use of antioxidants.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatchewan, Saskatoon, Canada
| |
Collapse
|
36
|
Safari MR, Noroozi R, Omrani MD, Taheri M, Ghafouri-Fard S. Analysis of association between RAGE polymorphisms and stroke risk. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
37
|
Ghafouri-Fard S, Noroozi R, Musavi M, Taheri M. Association analysis between genomic variants within advanced glycation end product specific receptor ( AGER) gene and risk of breast cancer in Iranian women. Heliyon 2019; 5:e02542. [PMID: 31667394 PMCID: PMC6812209 DOI: 10.1016/j.heliyon.2019.e02542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/04/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022] Open
Abstract
The advanced glycation end product specific receptor (AGER) gene codes for a cell surface receptor which is one of the immunoglobulin superfamily members. This gene has a number of single nucleotide polymorphisms (SNPs) whose variants are associated with altered function of the encoded protein. In the current project, we examined association between rs184003 and rs1800625 SNPs and susceptibility to breast cancer in an Iranian population. The current study excludes participation of rs184003 AGER variant in conferring cancer risk. However, for the rs1800625, based on the calculated P value, the results should be assessed in larger cohorts. Primarily, the rs1800625 SNP was associated with breast cancer risk in dominant model (OR (95% CI) = 1.79 (1.03–3.11)), but after correction for multiple comparisons it did not reach the level of significance (adjusted P value = 0.07). The other SNP was not associated with breast cancer risk in any inheritance model. Haplotype analyses revealed a trend toward association between the GC haplotype (rs184003 and rs1800625 respectively) and risk of breast cancer (OR (95% CI) = 1.77 (1.09–2.88), adjusted P value = 0.08)). The current study excludes participation of rs184003 AGER variants in conferring cancer risk. However, for the rs1800625, based on the calculated P value, the results should be assessed in larger cohorts.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Noroozi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Musavi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Lee TW, Kao YH, Chen YJ, Chao TF, Lee TI. Therapeutic potential of vitamin D in AGE/RAGE-related cardiovascular diseases. Cell Mol Life Sci 2019; 76:4103-4115. [PMID: 31250032 PMCID: PMC11105755 DOI: 10.1007/s00018-019-03204-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases (CVDs) are among the leading threats to human health. The advanced glycation end product (AGE) and receptor for AGE (RAGE) signaling pathway regulates the pathogenesis of CVDs, through its effects on arterial stiffness, atherosclerosis, mitochondrial dysfunction, oxidative stress, calcium homeostasis, and cytoskeletal function. Targeting the AGE/RAGE pathway is a potential therapeutic strategy for ameliorating CVDs. Vitamin D has several beneficial effects on the cardiovascular system. Experimental findings have shown that vitamin D regulates AGE/RAGE signaling and its downstream effects. This article provides a comprehensive review of the mechanistic insights into AGE/RAGE involvement in CVDs and the modulation of the AGE/RAGE signaling pathways by vitamin D.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Road, Section 3 Wenshan District, Taipei, 11696, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Road, Section 3 Wenshan District, Taipei, 11696, Taiwan.
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
39
|
Eichhorst A, Daniel C, Rzepka R, Sehnert B, Nimmerjahn F, Voll RE, Chevalier N. Relevance of Receptor for Advanced Glycation end Products (RAGE) in Murine Antibody-Mediated Autoimmune Diseases. Int J Mol Sci 2019; 20:ijms20133234. [PMID: 31266174 PMCID: PMC6651235 DOI: 10.3390/ijms20133234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
It is incompletely understood how self-antigens become targets of humoral immunity in antibody-mediated autoimmune diseases. In this context, alarmins are discussed as an important level of regulation. Alarmins are recognized by various receptors, such as receptor for advanced glycation end products (RAGE). As RAGE is upregulated under inflammatory conditions, strongly binds nucleic acids and mediates pro-inflammatory responses upon alarmin recognition, our aim was to examine its contribution to immune complex-mediated autoimmune diseases. This question was addressed employing RAGE−/− animals in murine models of pristane-induced lupus, collagen-induced, and serum-transfer arthritis. Autoantibodies were assessed by enzyme-linked immunosorbent assay, renal disease by quantification of proteinuria and histology, arthritis by scoring joint inflammation. The associated immune status was determined by flow cytometry. In both disease entities, we detected tendentiously decreased autoantibody levels in RAGE−/− mice, however no differences in clinical outcome. In accordance with autoantibody levels, a subgroup of the RAGE−/− animals showed a decrease in plasma cells, and germinal center B cells and an increase in follicular B cells. Based on our results, we suggest that RAGE deficiency alone does not significantly affect antibody-mediated autoimmunity. RAGE may rather exert its effects along with other receptors linking environmental factors to auto-reactive immune responses.
Collapse
Affiliation(s)
- Alexandra Eichhorst
- Department of Rheumatology and Clinical Immunology, Medical Centre-University of Freiburg, Faculty of Medicine, 79106 Freiburg, Baden-Wuerttemberg, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) of Erlangen-Nuremberg, 91054 Erlangen, Bavaria, Germany
| | - Rita Rzepka
- Department of Rheumatology and Clinical Immunology, Medical Centre-University of Freiburg, Faculty of Medicine, 79106 Freiburg, Baden-Wuerttemberg, Germany
| | - Bettina Sehnert
- Department of Rheumatology and Clinical Immunology, Medical Centre-University of Freiburg, Faculty of Medicine, 79106 Freiburg, Baden-Wuerttemberg, Germany
| | - Falk Nimmerjahn
- Department of Biology, Friedrich-Alexander University (FAU) of Erlangen-Nuremberg, 91058 Erlangen, Bavaria, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Centre-University of Freiburg, Faculty of Medicine, 79106 Freiburg, Baden-Wuerttemberg, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Centre-University of Freiburg, Faculty of Medicine, 79106 Freiburg, Baden-Wuerttemberg, Germany.
| |
Collapse
|
40
|
Li Y, Chen C, Ma Y, Xiao J, Luo G, Li Y, Wu D. Multi-system reproductive metabolic disorder: significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci 2019; 228:167-175. [PMID: 31029778 DOI: 10.1016/j.lfs.2019.04.046] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
Polycystic ovary syndrome (PCOS), a multisystem disease, is a major reason for female infertility around the world. It is no longer considered simply as a disease of ovary. Now researchers growing awareness of the multisystem features of this disease. PCOS has a higher relationship with metabolic disturbance and hypothalamic-pituitary-ovarian axis (HPOA) function disorders. This syndrome results in hyperandrogenemia (HA), hyperinsulinemia/insulin resistance (IR), increased estrone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) ratio imbalance, infertility, cardiovascular diseases, endometrial dysfunction, obesity, and including a litany of other health issues. Furthermore, PCOS has been garnered in recent times. Interventions like metformin, orlistat, hormonal contraceptives, GLP1 agonists, and VitD have been applied to ameliorate or reverse the pathological characterization of PCOS. Moreover, drug-combined therapy of PCOS is superior to single drug administration. This review will focus on the recent progress in pathogenesis and therapy of PCOS.
Collapse
Affiliation(s)
- Yan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, PR China; Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan 410078, PR China
| | - Changye Chen
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Yan Ma
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, PR China
| | - Guifang Luo
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Yukun Li
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, PR China.
| | - Daichao Wu
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, PR China; University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.
| |
Collapse
|
41
|
Gateva AT, Assyov YS, Tsakova AD, Kamenov ZA. Serum AGEs and sRAGE levels are not related to vascular complications in patients with prediabetes. Diabetes Metab Syndr 2019; 13:1005-1010. [PMID: 31336435 DOI: 10.1016/j.dsx.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/17/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND While hyperglycemia has a key role in the pathogenesis of microvascular complications of diabetes, it is just one of the many factors contributing to macrovascular damage. The aim of the present study is to investigate the link between serum pentosidine and sRAGE levels and vascular complications in patients with prediabetes compared to normal glucose tolerance controls with obesity. METHODS In this study were included 76 patients with mean age 50.7 ± 10.7 years, divided into two age and BMI-matched groups - group 1 with obesity without glycemic disturbances (n = 38) and group 2 with obesity and prediabetes (n = 38). RESULTS There was no significant difference in pentosidine and sRAGE levels between patients with obesity and prediabetes. Patients with hypertension had lower levels of sRAGE compared to nonhypertensive subjects. sRAGE showed a weak negative correlation to blood glucose on 60th min of OGTT and HOMA index. There was no correlation between sRAGE and pentosidine levels and the markers of micro- and macrovascular complications. There was no difference in sRAGE and pentosidine levels between patients with and without endothelial dysfunction. CONCLUSIONS sRAGE and pentosidine levels are similar in patients with obesity with and without prediabetes and do not correlate to the markers of micro- and macrovascular complications.
Collapse
Affiliation(s)
- Antoaneta T Gateva
- Clinic of Endocrinology, University Hospital "Alexandrovska", Medical University-Sofia, 1 Georgi Sofiiski str, 1431, Sofia, Bulgaria.
| | - Yavor S Assyov
- Clinic of Endocrinology, University Hospital "Alexandrovska", Medical University-Sofia, 1 Georgi Sofiiski str, 1431, Sofia, Bulgaria
| | - Adelina D Tsakova
- Central Clinical Laboratory, University Hospital "Alexandrovska", Medical University-Sofia, 1 Georgi Sofiiski str, 1431, Sofia, Bulgaria
| | - Zdravko A Kamenov
- Clinic of Endocrinology, University Hospital "Alexandrovska", Medical University-Sofia, 1 Georgi Sofiiski str, 1431, Sofia, Bulgaria
| |
Collapse
|
42
|
Pathological Implications of Receptor for Advanced Glycation End-Product ( AGER) Gene Polymorphism. DISEASE MARKERS 2019; 2019:2067353. [PMID: 30863465 PMCID: PMC6378764 DOI: 10.1155/2019/2067353] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/01/2019] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) is a cell surface transmembrane multiligand receptor, encoded by the AGER gene. RAGE presents many transcripts, is expressed mainly in the lung, and involves multiple pathways (such as NFκB, Akt, p38, and MAP kinases) that initiate and perpetuate an unfavorable proinflammatory state. Due to these numerous functional activities, RAGE is implicated in multiple diseases. AGER is a highly polymorphic gene, with polymorphisms or SNP (single-nucleotide polymorphism) that could be responsible or co-responsible for disease development. This review was designed to shed light on the pathological implications of AGER polymorphisms. Five polymorphisms are described: rs2070600, rs1800624, rs1800625, rs184003, and a 63 bp deletion. The rs2070600 SNP may be associated with the development of human autoimmune disease, diabetes complications, cancer, and lung diseases such as chronic obstructive pulmonary disease and acute respiratory distress syndrome. The rs1800624 SNP involves AGER gene regulation and may be related to reduced risk of heart disease, cancer, Crohn's disease, and type 1 diabetes complications. The rs1800625 SNP may be associated with the development of diabetic retinopathy, cancer, and lupus but may be protective against cardiovascular risk. The rs184003 SNP seems related to coronary artery disease, breast cancer, and diabetes. The 63 bp deletion may be associated with reduced survival from heart diseases during diabetic nephropathy. Here, these potential associations between AGER polymorphisms and the development of diseases are discussed, as there have been conflicting findings on the pathological impact of AGER SNPs in the literature. These contradictory results might be explained by distinct AGER SNP frequencies depending on ethnicity.
Collapse
|
43
|
Merhi Z. Crosstalk between advanced glycation end products and vitamin D: A compelling paradigm for the treatment of ovarian dysfunction in PCOS. Mol Cell Endocrinol 2019; 479:20-26. [PMID: 30170183 DOI: 10.1016/j.mce.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
Abstract
Women with PCOS have elevated levels of the harmful advanced glycation end products (AGEs) and low serum levels of vitamin D. AGEs and their receptors may contribute to the pathogenesis of PCOS and its metabolic and reproductive consequences. On the other hand, vitamin D might improve PCOS phenotype and could alleviate the detrimental effects of AGEs. A literature review using PubMed was performed. Critical analysis was carried out for articles pertaining to: 1) the role of AGEs and their receptors in the pathophysiology of PCOS, in particular ovarian dysfunction, and 2) the action of vitamin D in attenuating the adverse effects of AGEs in women with PCOS at both the serum and the cellular levels. Data from in vitro experiments, animal models, and human studies provide compelling evidence that AGEs and their receptors may contribute to the pathogenesis of ovarian dysfunction in PCOS. The actions of AGEs in PCOS might be attenuated and/or reversed by the presence or supplementation of vitamin D. Once a mechanistic understanding of the relationship between AGEs and vitamin D is established, this knowledge might contribute to the subsequent development of new-targeted pharmacological therapies for improving ovarian health in women with PCOS.
Collapse
Affiliation(s)
- Zaher Merhi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Obstetrics and Gynecology, New York University School of Medicine, 4 Columbus Circle, Fourth Floor, New York, NY 10019, USA.
| |
Collapse
|
44
|
BOOS CJ, LAMB CM, MIDWINTER M, MELLOR A, WOODS DR, HOWLEY M, STANSFIELD T, FOSTER M, O’HARA JP. The Effects of Acute Hypoxia on Tissue Oxygenation and Circulating Alarmins in Healthy Adults. Physiol Res 2018; 67:935-943. [PMID: 29750887 DOI: 10.33549/physiolres.933743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The binding of high-mobility group box-1 (HMGB-1) to the membrane receptor for advanced glycation end-products (mRAGE) is a key early mediator of non-infectious inflammation and its triggers include ischaemia/hypoxia. The effects of acute hypoxia on soluble RAGE (sRAGE) are unknown. Fourteen healthy adults (50 % women; 26.6±3.8 years) were assessed at baseline normoxia (T0), followed by four time-points (T90, 95, 100 and 180 min) over three hours of continuous normobaric hypoxia (NH, 4,450 m equivalent) and again 60 min after return to normoxia (T240). A 5-min exercise step test was performed during NH at T90. Plasma concentrations of HMGB-1, sRAGE VCAM-1, ICAM-1, VEGF IL-8 and IL-13 were measured using venous blood. Arterial and tissue oxygen saturations were measured using pulse oximetry (SpO2) and near-infrared spectroscopy (StO2), respectively. NH led to a significant reduction in SpO2, StO2, sRAGE and VEGF, which was compounded by exercise, before increasing to baseline values with normoxic restoration (T240). NH-exercise led to a paired increase in HMGB-1. sRAGE inversely correlated with HMGB-1 (r=-0.32; p=0.006), heart rate (r=-0.43; p=0.004) but was not linked to SpO2 or StO2. In conclusion, short-term NH leads to a fall in sRAGE and VEGF concentrations with a transient rise post NH-exercise in HMGB-1.
Collapse
Affiliation(s)
- C. J. BOOS
- Department of Cardiology, Poole Hospital NHS Foundation Trust, Poole, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pérez-Ruiz I, Meijide S, Hérnandez ML, Navarro R, Larreategui Z, Ferrando M, Ruiz-Larrea MB, Ruiz-Sanz JI. Analysis of Protein Oxidative Modifications in Follicular Fluid from Fertile Women: Natural Versus Stimulated Cycles. Antioxidants (Basel) 2018; 7:antiox7120176. [PMID: 30486406 PMCID: PMC6315688 DOI: 10.3390/antiox7120176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress is associated with obstetric complications during ovarian hyperstimulation in women undergoing in vitro fertilization. The follicular fluid contains high levels of proteins, which are the main targets of free radicals. The aim of this work was to determine specific biomarkers of non-enzymatic oxidative modifications of proteins from follicular fluid in vivo, and the effect of ovarian stimulation with gonadotropins on these biomarkers. For this purpose, 27 fertile women underwent both a natural and a stimulated cycle. The biomarkers, glutamic semialdehyde (GSA), aminoadipic semialdehyde (AASA), Nε-(carboxymethyl)lysine (CML), and Nε-(carboxyethyl)lysine (CEL), were measured by gas-liquid chromatography coupled to mass spectrometry. Results showed that follicular fluid contained products of protein modifications by direct metal-catalyzed oxidation (GSA and AASA), glycoxidation (CML and CEL), and lipoxidation (CML). GSA was the most abundant biomarker (91.5%). The levels of CML amounted to 6% of the total lesions and were higher than AASA (1.3%) and CEL (1.2%). In the natural cycle, CEL was significantly lower (p < 0.05) than in the stimulated cycle, suggesting that natural cycles are more protected against protein glycoxidation. These findings are the basis for further research to elucidate the possible relevance of this follicular biomarker of advanced glycation end product in fertility programs.
Collapse
Affiliation(s)
- Irantzu Pérez-Ruiz
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| | - Susana Meijide
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
| | - María-Luisa Hérnandez
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| | - Rosaura Navarro
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| | - Zaloa Larreategui
- Valencian Institute of Infertility (IVI-RMA)-Bilbao, 48940 Leioa, Spain.
| | - Marcos Ferrando
- Valencian Institute of Infertility (IVI-RMA)-Bilbao, 48940 Leioa, Spain.
| | - María-Begoña Ruiz-Larrea
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| | - José-Ignacio Ruiz-Sanz
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| |
Collapse
|
46
|
Ataç ZS, Alaylıoğlu M, Dursun E, Gezen-Ak D, Yılmazer S, Gürvit H. G82S polymorphism of receptor for advanced glycation end products gene and serum soluble RAGE levels in mild cognitive impairment and dementia of Alzheimer's type patients in Turkish population. J Clin Neurosci 2018; 59:197-201. [PMID: 30389362 DOI: 10.1016/j.jocn.2018.10.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/15/2018] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a chronic, neurodegenaration resulting in progressive cognitive decline leading to dementia. Mild cognitive impairment (MCI) is also a clinical definition of cognitive decline without functional impairment. Receptor for advanced glycation end products (RAGE) is one of the neuronal membrane receptors that binds amyloid beta peptide (Aβ) triggering Aβ-related pathologic signalling mechanisms. Soluble RAGE (sRAGE) is the soluble isoform of RAGE and it collects peripheral Aβ by acting as a sink, prevents both RAGE-AGE interaction and transfer of Aβ into brain. In this study, an association was investigated in Turkish cohorts of patients with dementia with Alzheimer's Type (DAT) and MCI patients by measuring serum sRAGE levels and by genotyping G82S polymorphism and comparing them to healthy control (HC) subjects. Although the serum sRAGE levels showed a decreasing manner among the groups, these differences were not statistically significant (p = 0.2). This is the first study for Turkish population.
Collapse
Affiliation(s)
- Zehra Simin Ataç
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Merve Alaylıoğlu
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erdinç Dursun
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Duygu Gezen-Ak
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Selma Yılmazer
- Department of Medical Biology, Faculty of Medicine, Altınbaş University, Istanbul, Turkey
| | - Hakan Gürvit
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
47
|
Yang DB, Dong XQ, Du Q, Yu WH, Zheng YK, Hu W, Wang KY, Chen FH, Xu YS, Wang Y, Chen G. Clinical relevance of cleaved RAGE plasma levels as a biomarker of disease severity and functional outcome in aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2018; 486:335-340. [PMID: 30144440 DOI: 10.1016/j.cca.2018.08.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cleaved receptor for advanced glycation end-products (cRAGE) has been introduced as a new inflammatory marker. We clarified the associations between cRAGE levels, disease severity and functional outcome in aneurysmal subarachnoid hemorrhage (aSAH). METHODS In this prospective, observational study, plasma levels of total soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE) were quantified in 108 aSAH patients and 108 controls. The level of cRAGE was calculated by subtracting the level of esRAGE from that of sRAGE. World Federation of Neurological Surgeons (WFNS) score, modified Fisher score, and Hunt Hess (HH) score were recorded to assess aSAH severity. Relationship between plasma cRAGE levels and 6-month poor outcome (Glasgow Outcome Scale score of 1-3) was assess using multivariate analysis. RESULTS Plasma cRAGE levels were significantly higher in patients than in controls. Its levels were significantly correlated with WNFS score, modified Fisher score and HH score of patients. Plasma cRAGE emerged as an independent predictor for 6-month poor outcome. Area under receiver operating characteristic curve (AUC) of this biomarker was similar to those of WNFS score, modified Fisher score and HH score. Moreover, it significantly improved AUCs of WNFS score, modified Fisher score and HH score. CONCLUSIONS Plasma cRAGE levels are highly associated with the severity and poor prognosis in aSAH.
Collapse
Affiliation(s)
- Ding-Bo Yang
- Department of Neurosurgery, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 261 Huansha Road, Hangzhou 310006, China
| | - Xiao-Qiao Dong
- Department of Neurosurgery, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 261 Huansha Road, Hangzhou 310006, China
| | - Quan Du
- Department of Neurosurgery, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 261 Huansha Road, Hangzhou 310006, China
| | - Wen-Hua Yu
- Department of Neurosurgery, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 261 Huansha Road, Hangzhou 310006, China
| | - Yong-Ke Zheng
- Department of Intensive Care Unit, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 261 Huansha Road, Hangzhou 310006, China
| | - Wei Hu
- Department of Intensive Care Unit, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 261 Huansha Road, Hangzhou 310006, China
| | - Ke-Yi Wang
- Clinical Laboratory Center, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 261 Huansha Road, Hangzhou 310006, China
| | - Fang-Hui Chen
- Department of Emergency Medicine, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 261 Huansha Road, Hangzhou 310006, China
| | - Yuan-Sheng Xu
- Department of Emergency Medicine, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 261 Huansha Road, Hangzhou 310006, China
| | - Yi Wang
- Department of Emergency Medicine, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 261 Huansha Road, Hangzhou 310006, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
48
|
Palanissami G, Paul SFD. RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer—a Review. Discov Oncol 2018; 9:295-325. [DOI: 10.1007/s12672-018-0342-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
|
49
|
Mehta R, Shaw G, Masschelin P, Felix S, Otgonsuren M, Baranova A, Goodman Z, Younossi Z. Polymorphisms in the receptor for advanced glycation end-products (RAGE) gene and circulating RAGE levels as a susceptibility factor for non-alcoholic steatohepatitis (NASH). PLoS One 2018; 13:e0199294. [PMID: 29928018 PMCID: PMC6013208 DOI: 10.1371/journal.pone.0199294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/05/2018] [Indexed: 01/14/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome and major cause of chronic liver disease in developed countries. Its prevalence is increasing in parallel with the prevalence of obesity and other components of the metabolic syndrome. As the liver is central to the clearance and catabolism of circulating advanced glycosylation end-products (AGEs), AGEs and their cognate receptors—RAGE (receptor for AGEs) system might be involved in NAFLD in obese patients. To examine this, we investigated four common polymorphisms of RAGE gene: 1704G/T (rs184003), G82S (rs2070600), -374T/A (rs1800624) and −429T/C (rs1800625) in 340 obese patients with metabolic syndrome. and protein levels of AGE and RAGE. This is the first study to describe association of 4 common polymorphisms with non-alcoholic steatohepatitis (NASH) as well as to examine protein levels of RAGE and AGE. Univariate analysis showed patients carrying the rs1800624 heterozygote genotype (AT) exhibited 2.36-fold increased risk of NASH (odds ratio (OR) = 2.36; 95% confidence interval (95% CI): 1.35–4.19) after adjusting for confounders. The minor allele -374 A has been shown to suppress the expression of RAGE protein. The protein levels of esRAGE, total sRAGE and AGE protein levels did not correlate with each other in obese patients with no liver disease, indicative of RAGE signaling playing an independent role in liver injury. In obese patients with non-NASH NAFLD and NASH respectively, esRAGE protein showed strong positive correlation with total sRAGE protein. Further, haplotype analysis of the 4 SNPs, indicated that haplotype G-A-T-G was significantly associated with 2-fold increased risk for NASH (OR = 2.08; 95% CI: 1.21–3.5; P = 0.006) after adjusting for confounders. In conclusion, the presented data indicate that the G-A-T-G haplotype containing minor allele at position −374 A and major allele at position −429T, 1704G, and G82S G could be regarded as a marker for NASH.
Collapse
Affiliation(s)
- Rohini Mehta
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus, Falls Church, Virginia, United States of America
| | - Gladys Shaw
- Center for the Study of Chronic Metabolic Diseases, George Mason University, Fairfax, Virginia, United States of America
| | - Peter Masschelin
- Center for the Study of Chronic Metabolic Diseases, George Mason University, Fairfax, Virginia, United States of America
| | - Sean Felix
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus, Falls Church, Virginia, United States of America
| | - Munkzhul Otgonsuren
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus, Falls Church, Virginia, United States of America
| | - Ancha Baranova
- Center for the Study of Chronic Metabolic Diseases, George Mason University, Fairfax, Virginia, United States of America
| | - Zachary Goodman
- Center for Liver Disease, Department of Medicine, Inova Fairfax Hospital, Falls Church, Virginia, United States of America
| | - Zobair Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus, Falls Church, Virginia, United States of America
- Center for Liver Disease, Department of Medicine, Inova Fairfax Hospital, Falls Church, Virginia, United States of America
- * E-mail:
| |
Collapse
|
50
|
Asymptomatic HIV People Present Different Profiles of sCD14, sRAGE, DNA Damage, and Vitamins, according to the Use of cART and CD4 + T Cell Restoration. J Immunol Res 2018; 2018:7531718. [PMID: 29992171 PMCID: PMC5914107 DOI: 10.1155/2018/7531718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/30/2018] [Accepted: 02/08/2018] [Indexed: 01/14/2023] Open
Abstract
We aimed to analyze markers of immune activation, inflammation, and oxidative stress in 92 asymptomatic HIV-infected patients according to the adequate (AR, >500 cells/mm3) or inadequate (IR, <500 cells/mm3) CD4+ T recovery and the presence or absence of antiretroviral treatment (cART). In relation to those newly diagnosed, they were divided into two groups, cART-naïve IR (nIR) and cART-naïve AR (nAR). Among those diagnosed more than five years ago, the following division was made: the cART-naïve long-term nonprogressors (LTNP); patient under cART and AR (tAR); and patients under cART and IR (tIR). We investigated the expression of soluble receptor for advanced glycation end products (sRAGE), high-mobility group-box protein −1 (HMGB1), soluble CD14 (sCD14), IL-8, IL-10, 8-isoprostane, vitamins, and DNA damage. We observed higher levels of sRAGE in tAR as compared to nIR, nAR, LTNP, and more sCD14 than in nIR and nAR. As for IL-10 levels, we found nIR > nAR > LTNP > tAR > tIR. Higher levels of 8-isoprostane were observed in nIR. LTNP presented a higher retinol dosage than tAR and less genotoxic damage induced by oxidative stress than the other groups. We suggest that the therapy, despite being related to lesser immune activation and inflammation, alters the vitamin profile and consequently increases the oxidative stress of patients. In addition, the lowest genotoxic index for LTNP indicates that both VL and cART could be responsible for the increased DNA damage. More studies are needed to understand the influence of cART on persistent immune activation and inflammation.
Collapse
|