1
|
Nemtsova V, Vischer AS, Burkard T. Hypertensive Heart Disease: A Narrative Review Series-Part 3: Vasculature, Biomarkers and the Matrix of Hypertensive Heart Disease. J Clin Med 2024; 13:505. [PMID: 38256639 PMCID: PMC10816030 DOI: 10.3390/jcm13020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Over the last few decades, research efforts have resulted in major advances in our understanding of the pathophysiology of hypertensive heart disease (HHD). This is the third part of a three-part review series. Here, we focus on the influence of high blood pressure on the micro- and macroalterations that occur in the vasculature in HHD. We also provide an overview of circulating cardiac biomarkers that may prove useful for a better understanding of the pathophysiology, development and progression of HHD, and may play a unique role in the diagnostic and prognostic evaluation of patients with HHD, taking into account their properties showing as abnormal long before the onset of the disease. In the conclusion, we propose an updated definition of HHD and a matrix for clinical classification, which we suspect will be useful in practice, allowing an individual approach to HHD patients.
Collapse
Affiliation(s)
- Valeriya Nemtsova
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland; (V.N.); (A.S.V.)
- Internal Diseases and Family Medicine Department, Educational and Scientific Medical Institute of National Technical University «Kharkiv Polytechnic Institute», 61000 Kharkiv, Ukraine
| | - Annina S. Vischer
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland; (V.N.); (A.S.V.)
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Thilo Burkard
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland; (V.N.); (A.S.V.)
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
- Department of Cardiology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
2
|
Dai Z, Thorp EB. New Way to Study Pulmonary Hypertension in HFpEF. Circ Res 2023; 133:899-901. [PMID: 37943948 PMCID: PMC10655841 DOI: 10.1161/circresaha.123.323753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Affiliation(s)
- Zhiyu Dai
- Division of Pulmonary, Critical Care and Sleep, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Sarver Heart Center, University of Arizona, Tucson, Arizona, USA
| | - Edward Benjamin Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| |
Collapse
|
3
|
Murrant CL, Fletcher NM. Capillary communication: the role of capillaries in sensing the tissue environment, coordinating the microvascular, and controlling blood flow. Am J Physiol Heart Circ Physiol 2022; 323:H1019-H1036. [PMID: 36149771 DOI: 10.1152/ajpheart.00088.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Historically, capillaries have been viewed as the microvascular site for flux of nutrients to cells and removal of waste products. Capillaries are the most numerous blood vessel segment within the tissue, whose vascular wall consists of only a single layer of endothelial cells and are situated within microns of each cell of the tissue, all of which optimizes capillaries for the exchange of nutrients between the blood compartment and the interstitial space of tissues. There is, however, a growing body of evidence to support that capillaries play an important role in sensing the tissue environment, coordinating microvascular network responses, and controlling blood flow. Much of our growing understanding of capillaries stems from work in skeletal muscle and more recent work in the brain, where capillaries can be stimulated by products released from cells of the tissue during increased activity and are able to communicate with upstream and downstream vascular segments, enabling capillaries to sense the activity levels of the tissue and send signals to the microvascular network to coordinate the blood flow response. This review will focus on the emerging role that capillaries play in communication between cells of the tissue and the vascular network required to direct blood flow to active cells in skeletal muscle and the brain. We will also highlight the emerging central role that disruptions in capillary communication may play in blood flow dysregulation, pathophysiology, and disease.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicole M Fletcher
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Ovchinnikov A, Potekhina A, Belyavskiy E, Ageev F. Heart Failure with Preserved Ejection Fraction and Pulmonary Hypertension: Focus on Phosphodiesterase Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15081024. [PMID: 36015172 PMCID: PMC9414416 DOI: 10.3390/ph15081024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary hypertension (PH) is common in patients with heart failure with preserved ejection fraction (HFpEF). A chronic increase in mean left atrial pressure leads to passive remodeling in pulmonary veins and capillaries and modest PH (isolated postcapillary PH, Ipc-PH) and is not associated with significant right ventricular dysfunction. In approximately 20% of patients with HFpEF, "precapillary" alterations of pulmonary vasculature occur with the development of the combined pre- and post-capillary PH (Cpc-PH), pertaining to a poor prognosis. Current data indicate that pulmonary vasculopathy may be at least partially reversible and thus serves as a therapeutic target in HFpEF. Pulmonary vascular targeted therapies, including phosphodiesterase (PDE) inhibitors, may have a valuable role in the management of patients with PH-HFpEF. In studies of Cpc-PH and HFpEF, PDE type 5 inhibitors were effective in long-term follow-up, decreasing pulmonary artery pressure and improving RV contractility, whereas studies of Ipc-PH did not show any benefit. Randomized trials are essential to elucidate the actual value of PDE inhibition in selected patients with PH-HFpEF, especially in those with invasively confirmed Cpc-PH who are most likely to benefit from such treatment.
Collapse
Affiliation(s)
- Artem Ovchinnikov
- Out-Patient Department, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 3-d Cherepkovskaya St., 15a, 121552 Moscow, Russia
- Department of Clinical Functional Diagnostics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-414-66-12 or +7-(916)-505-79-58; Fax: +7-(495)-414-66-12
| | - Alexandra Potekhina
- Out-Patient Department, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 3-d Cherepkovskaya St., 15a, 121552 Moscow, Russia
| | - Evgeny Belyavskiy
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz, 13353 Berlin, Germany
| | - Fail Ageev
- Out-Patient Department, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 3-d Cherepkovskaya St., 15a, 121552 Moscow, Russia
| |
Collapse
|
5
|
Inampudi C, Silverman D, Simon MA, Leary PJ, Sharma K, Houston BA, Vachiéry JL, Haddad F, Tedford RJ. Pulmonary Hypertension in the Context of Heart Failure With Preserved Ejection Fraction. Chest 2021; 160:2232-2246. [PMID: 34391755 PMCID: PMC8727853 DOI: 10.1016/j.chest.2021.08.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the most common form of heart failure and frequently is associated with pulmonary hypertension (PH). HFpEF associated with PH may be difficult to distinguish from precapillary forms of PH, although this distinction is crucial because therapeutic pathways are divergent for the two conditions. A comprehensive and systematic approach using history, clinical examination, and noninvasive and invasive evaluation with and without provocative testing may be necessary for accurate diagnosis and phenotyping. After diagnosis, HFpEF associated with PH can be subdivided into isolated postcapillary pulmonary hypertension (IpcPH) and combined postcapillary and precapillary pulmonary hypertension (CpcPH) based on the presence or absence of elevated pulmonary vascular resistance. CpcPH portends a worse prognosis than IpcPH. Despite its association with reduced functional capacity and quality of life, heart failure hospitalizations, and higher mortality, therapeutic options focused on PH for HFpEF associated with PH remain limited. In this review, we aim to provide an updated overview on clinical definitions and hemodynamically characterized phenotypes of PH, pathophysiologic features, therapeutic strategies, and ongoing challenges in this patient population.
Collapse
Affiliation(s)
- Chakradhari Inampudi
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Daniel Silverman
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Marc A Simon
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco
| | - Peter J Leary
- Department of Medicine, University of Washington, Seattle, WA
| | - Kavita Sharma
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Brian A Houston
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Jean-Luc Vachiéry
- Département de Cardiologie Cliniques, Universitaires de Bruxelles-Hôpital Erasme, Brussels, Belgium
| | - Francois Haddad
- Division of Cardiovascular Medicine and Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Ryan J Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
6
|
Heidorn MW, Steck S, Müller F, Tröbs SO, Buch G, Schulz A, Schwuchow-Thonke S, Schuch A, Strauch K, Schmidtmann I, Lackner KJ, Gori T, Münzel T, Wild PS, Prochaska JH. FEV 1 Predicts Cardiac Status and Outcome in Chronic Heart Failure. Chest 2021; 161:179-189. [PMID: 34416218 DOI: 10.1016/j.chest.2021.07.2176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND COPD is an established predictor of clinical outcome in patients with chronic heart failure (HF). However, little evidence is available about the predictive value of FEV1 in chronic HF. RESEARCH QUESTION Is pulmonary function related to the progression of chronic HF? STUDY DESIGN AND METHODS The MyoVasc study (ClinicalTrials.gov Identifier: NCT04064450) is a prospective cohort study of HF. Information on pulmonary and cardiac functional and structural status was obtained by body plethysmography and echocardiography. The primary study end point was worsening of HF. RESULTS Overall 2,998 participants (age range, 35-84 years) with available FEV1 data were eligible for analysis. Linear multivariate regression analysis revealed an independent relationship of FEV1 (per -1 SD) with deteriorated systolic and diastolic left ventricle (LV) function as well as LV hypertrophy under adjustment of age, sex, height, cardiovascular risk factors (CVRFs), and clinical profile (LV ejection fraction: β-estimate, -1.63% [95% CI, -2.00% to -1.26%]; E/E' ratio: β-estimate, 0.82 [95% CI, 0.64-0.99]; and LV mass/height2.7: β-estimate, 1.58 [95% CI, 1.07-2.10]; P < .001 for all). During a median time to follow-up of 2.6 years (interquartile range, 1.1-4.1 years), worsening of HF occurred in 235 individuals. In Cox regression model adjusted for age, sex, height, CVRF, and clinical profile, pulmonary function (FEV1 per -1 SD) was an independent predictor of worsening of HF (hazard ratio [HR], 1.44 [95% CI, 1.27-1.63]; P < .001). Additional adjustment for obstructive airway pattern and C-reactive protein mitigated, but did not substantially alter, the results underlining the robustness of the observed effect (HRFEV1, 1.39 [95% CI, 1.20-1.61]; P < .001). The predictive value of FEV1 was consistent across subgroups, including individuals without obstruction (HR, 1.55 [95% CI, 1.34-1.77]; P < .001) and nonsmokers (HR, 1.72 [95% CI, 1.39-1.96]; P < .001). INTERPRETATION FEV1 represents a strong candidate to improve future risk stratification and prevention strategies in individuals with chronic, stable HF. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT04064450; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Marc W Heidorn
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; German Center for Cardiovascular Research, partner site Rhine Main, Mainz, Germany
| | - Stefanie Steck
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; German Center for Cardiovascular Research, partner site Rhine Main, Mainz, Germany
| | - Felix Müller
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; German Center for Cardiovascular Research, partner site Rhine Main, Mainz, Germany
| | - Sven-Oliver Tröbs
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; German Center for Cardiovascular Research, partner site Rhine Main, Mainz, Germany
| | - Gregor Buch
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sören Schwuchow-Thonke
- German Center for Cardiovascular Research, partner site Rhine Main, Mainz, Germany; Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander Schuch
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Irene Schmidtmann
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Karl J Lackner
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tommaso Gori
- German Center for Cardiovascular Research, partner site Rhine Main, Mainz, Germany; Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Münzel
- German Center for Cardiovascular Research, partner site Rhine Main, Mainz, Germany; Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
7
|
Fernández AI, Yotti R, González-Mansilla A, Mombiela T, Gutiérrez-Ibanes E, Pérez del Villar C, Navas-Tejedor P, Chazo C, Martínez-Legazpi P, Fernández-Avilés F, Bermejo J. The Biological Bases of Group 2 Pulmonary Hypertension. Int J Mol Sci 2019; 20:ijms20235884. [PMID: 31771195 PMCID: PMC6928720 DOI: 10.3390/ijms20235884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a potentially fatal condition with a prevalence of around 1% in the world population and most commonly caused by left heart disease (PH-LHD). Usually, in PH-LHD, the increase of pulmonary pressure is only conditioned by the retrograde transmission of the left atrial pressure. However, in some cases, the long-term retrograde pressure overload may trigger complex and irreversible biomechanical and biological changes in the pulmonary vasculature. This latter clinical entity, designated as combined pre- and post-capillary PH, is associated with very poor outcomes. The underlying mechanisms of this progression are poorly understood, and most of the current knowledge comes from the field of Group 1-PAH. Treatment is also an unsolved issue in patients with PH-LHD. Targeting the molecular pathways that regulate pulmonary hemodynamics and vascular remodeling has provided excellent results in other forms of PH but has a neutral or detrimental result in patients with PH-LHD. Therefore, a deep and comprehensive biological characterization of PH-LHD is essential to improve the diagnostic and prognostic evaluation of patients and, eventually, identify new therapeutic targets. Ongoing research is aimed at identify candidate genes, variants, non-coding RNAs, and other biomarkers with potential diagnostic and therapeutic implications. In this review, we discuss the state-of-the-art cellular, molecular, genetic, and epigenetic mechanisms potentially involved in PH-LHD. Signaling and effective pathways are particularly emphasized, as well as the current knowledge on -omic biomarkers. Our final aim is to provide readers with the biological foundations on which to ground both clinical and pre-clinical research in the field of PH-LHD.
Collapse
Affiliation(s)
- Ana I. Fernández
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Raquel Yotti
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Ana González-Mansilla
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Teresa Mombiela
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Enrique Gutiérrez-Ibanes
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Candelas Pérez del Villar
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Paula Navas-Tejedor
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Christian Chazo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Pablo Martínez-Legazpi
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-91-586-8279
| |
Collapse
|
8
|
Lung-Kidney Cross-Talk. CRITICAL CARE NEPHROLOGY 2019. [PMCID: PMC7969729 DOI: 10.1016/b978-0-323-44942-7.00121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Awareness of the multifaceted lung and kidney interactions in the critically ill has increased considerably. Cardiogenic and noncardiogenic pulmonary edema represent two entities of pulmonary edema and differ significantly in terms of alveolar fluid clearance. Acute lung injury describes the breakdown of normal lung architecture with development of a high-permeability noncardiogenic pulmonary edema resulting from an inflammation/oxidant-mediated injury to the alveolar-capillary barrier and downregulation of the epithelial active ion transport system. Acute kidney injury is the most common organ dysfunction in patients with acute respiratory distress syndrome. It may develop as a result of blood gas disturbances that compromise renal blood flow and renal compensatory mechanisms; pulmonary hypertension, which may aggravate renal impairment by causing renal congestion and tissue edema; and mechanical ventilation–induced alterations, including systemic release of mediators, all which promote end-organ cell injury. Acute kidney injury, on the other hand, may initiate and perpetuate lung injury resulting from fluid overload and the systemic release of mediators that promote increased pulmonary vascular permeability, lung inflammation, and apoptosis, and breakdown of the transepithelial electrolyte and water transport, ultimately leading to respiratory failure. It is hoped that an in-depth understanding of the factors influencing lung-kidney interactions will encourage physicians to explore and develop new strategies for the benefit of the patient. This chapter will:Review the pathophysiology of acute lung injury. Summarize the emerging understanding of lung-kidney cross-talk in the critically ill patient. Identify the mechanisms by which acute kidney injury may potentiate acute lung injury.
Collapse
|
9
|
Electrocardiogram signs of right ventricular hypertrophy may help identify pulmonary hypertension in patients with dilated cardiomyopathy. IJC HEART & VASCULATURE 2018; 22:61-66. [PMID: 30603664 PMCID: PMC6307311 DOI: 10.1016/j.ijcha.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 11/23/2022]
Abstract
Objective To the authors' knowledge, limited data are available regarding the association between Electrocardiogram (ECG) signs of right ventricular hypertrophy (RVH) and pulmonary hypertension (PH) in patients with dilated cardiomyopathy (DCM). We aimed to assess the accuracy of the recommended ECG criteria of RVH for predicting PH in patients with DCM. Methods According to the definition of PH (mPAP ≥ 25 mm Hg), 35 patients with DCM were divided into 2 groups: DCM with PH (n = 22) and DCM without PH (n = 13). Right heart catheterization was performed in all patients. Seventeen parameters of RVH recommended by the AHA/ACCF/HRS for diagnosis of RVH on ECG were determinded. Results The following parameters were correlated with mPAP: RV1 > 6 mm, SV5 > 10 mm, R:SV6 < 0.4, RV1 + SV5 or V6 > 10.5 mm and PII amplitude. The following parameters were significantly different between DCM patients with and without PH: S in V5 (SV5) > 10 mm, S in V6 (SV6) > 3 mm, R:S ratio in V5 (R:SV5) < 0.75, RV1 + SV5 or V6 > 10.5 mm, S > R inI, S > R inII and R:S V1 > R:S V3, although results were no longer significant after correcting for multiple comparisons. High specificity (92.3-100%), lowsensitivity (31.8-50%), high positive predictive value, and low negative predictive value of established parameters of RVH were noted for predicting PH in patients with DCM. Conclusion Several ECG signs of RVH may be useful for in the diagnosis PH in patients with DCM.
Collapse
Key Words
- BUN, blood urea nitrogen
- CO, cardiac output
- DBP, diastolic blood pressure
- DCM, dilated cardiomyopathy
- Dilated cardiomyopathy
- ECG
- ECG, electrocardiogram
- LAD, left atrial diameter
- LHD, left heart disease
- LVEDD, left ventricular end diastolic Diameter
- LVEF, left ventricular ejection fraction
- NPV, negative predictive values
- NT pro-BNP, N-terminal fragment pro-brain natriuretic peptide
- NYHA, New York Heart Association
- PA, pulmonary arterial
- PASP, pulmonary artery systolic pressure
- PAWP, pulmonary capillary wedge pressure
- PH, pulmonary hypertension
- PPV, positive predictive values
- PVR, pulmonary vascular resistance
- Pulmonary hypertension
- RHC, right heart catheterization
- RVEDD, right ventricle end diastolic diameter
- RVH, right ventricular hypertrophy
- Right ventricular hypertrophy
- SBP, systolic blood pressure
- TPG, transpulmonary gradient
- mPAP, mean pulmonary artery pressure
Collapse
|
10
|
Foster AJ, Platt MJ, Huber JS, Eadie AL, Arkell AM, Romanova N, Wright DC, Gillis TE, Murrant CL, Brunt KR, Simpson JA. Central-acting therapeutics alleviate respiratory weakness caused by heart failure-induced ventilatory overdrive. Sci Transl Med 2018; 9:9/390/eaag1303. [PMID: 28515334 DOI: 10.1126/scitranslmed.aag1303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/13/2017] [Indexed: 12/22/2022]
Abstract
Diaphragmatic weakness is a feature of heart failure (HF) associated with dyspnea and exertional fatigue. Most studies have focused on advanced stages of HF, leaving the cause unresolved. The long-standing theory is that pulmonary edema imposes a mechanical stress, resulting in diaphragmatic remodeling, but stable HF patients rarely exhibit pulmonary edema. We investigated how diaphragmatic weakness develops in two mouse models of pressure overload-induced HF. As in HF patients, both models had increased eupneic respiratory pressures and ventilatory drive. Despite the absence of pulmonary edema, diaphragmatic strength progressively declined during pressure overload; this decline correlated with a reduction in diaphragm cross-sectional area and preceded evidence of muscle weakness. We uncovered a functional codependence between angiotensin II and β-adrenergic (β-ADR) signaling, which increased ventilatory drive. Chronic overdrive was associated with increased PERK (double-stranded RNA-activated protein kinase R-like ER kinase) expression and phosphorylation of EIF2α (eukaryotic translation initiation factor 2α), which inhibits protein synthesis. Inhibition of β-ADR signaling after application of pressure overload normalized diaphragm strength, Perk expression, EIF2α phosphorylation, and diaphragmatic cross-sectional area. Only drugs that were able to penetrate the blood-brain barrier were effective in treating ventilatory overdrive and preventing diaphragmatic atrophy. These data provide insight into why similar drugs have different benefits on mortality and symptomatology, despite comparable cardiovascular effects.
Collapse
Affiliation(s)
- Andrew J Foster
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Mathew J Platt
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jason S Huber
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ashley L Eadie
- Department of Pharmacology, Dalhousie Medicine, Saint John, New Brunswick E2L 4L5, Canada
| | - Alicia M Arkell
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nadya Romanova
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - David C Wright
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Coral L Murrant
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine, Saint John, New Brunswick E2L 4L5, Canada.
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
11
|
Echocardiographic validation of pulmonary hypertension due to heart failure with reduced ejection fraction in mice. Sci Rep 2018; 8:1363. [PMID: 29358732 PMCID: PMC5778040 DOI: 10.1038/s41598-018-19625-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/05/2018] [Indexed: 01/08/2023] Open
Abstract
Pulmonary hypertension (PH) associated with left heart diseases is the most prevalent cause of PH. The scarcity of studies exploring the pathophysiology and therapies of group II PH resides in the lack of validated small animal models with non-invasive determination of the presence and severity of PH. Heart failure (HF) was induced in mice by coronary artery ligation. Mice developed PH as evidenced by an elevated right ventricular (RV) systolic pressure and RV hypertrophy. Detailed non-invasive echocardiographic analysis on the left and right ventricles showed impaired left ventricular (LV) systolic and diastolic function. In addition, RV hypertrophy was confirmed by echo and accompanied by impaired function as well as increased pulmonary resistance. Correlation analysis validated the use of the LV wall-motion score index (WMSI) at a threshold value of ≥2.0 as a powerful and reliable indicator for the presence of PH and RV dysfunction. Echocardiography is an accurate non-invasive technique to diagnose PH in a HF mouse model. Moreover, an echocardiographic parameter of infarct size and LV function, the LV WMSI, reliably correlates with the presence of PH, RV hypertrophy and RV dysfunction and could be used to improve efficiency and design of pre-clinical studies.
Collapse
|
12
|
Guazzi M, Labate V. Pulmonary Hypertension in Heart Failure Patients: Pathophysiology and Prognostic Implications. Curr Heart Fail Rep 2017; 13:281-294. [PMID: 27858232 DOI: 10.1007/s11897-016-0306-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary hypertension (PH) due to left heart disease (LHD), i.e., group 2 PH, is the most common reason for increased pressures in the pulmonary circuit. Although recent guidelines incorporate congenital heart disease in this classification, left-sided heart diseases of diastolic and systolic origin including valvular etiology are the vast majority. In these patients, an increased left-sided filling pressure triggers a multistage hemodynamic evolution that ends into right ventricular failure through an initial passive increase in pulmonary artery pressure complicated over time by pulmonary vasoconstriction, endothelial dysfunction, and remodeling of the small-resistance pulmonary arteries. Regardless of the underlying left heart pathology, when present, PH-LHD is associated with more severe symptoms, worse exercise tolerance, and outcome, especially when right ventricular dysfunction and failure are part of the picture. Compared with group 1 and other forms of pulmonary arterial hypertension, PH-LHD is more often seen in elderly patients with a higher prevalence of cardiovascular comorbidities and most, if not all, of the features of metabolic syndrome, especially in case of HF preserved ejection fraction. In this review, we provide an update on current knowledge and some potential challenges about the pathophysiology and established prognostic implications of group 2 PH in patients with HF of either preserved or reduced ejection fraction.
Collapse
Affiliation(s)
- Marco Guazzi
- University Cardiology Department, IRCCS Policlinico San Donato, University of Milano, Piazza Malan, 2, 20097, Milan, Italy.
| | - Valentina Labate
- University Cardiology Department, IRCCS Policlinico San Donato, University of Milano, Piazza Malan, 2, 20097, Milan, Italy
| |
Collapse
|
13
|
Colvin KL, Yeager ME. What people with Down Syndrome can teach us about cardiopulmonary disease. Eur Respir Rev 2017; 26:26/143/160098. [DOI: 10.1183/16000617.0098-2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/13/2016] [Indexed: 12/19/2022] Open
Abstract
Down syndrome is the most common chromosomal abnormality among live-born infants. Through full or partial trisomy of chromosome 21, Down syndrome is associated with cognitive impairment, congenital malformations (particularly cardiovascular) and dysmorphic features. Immune disturbances in Down syndrome account for an enormous disease burden ranging from quality-of-life issues (autoimmune alopecia) to more serious health issues (autoimmune thyroiditis) and life-threatening issues (leukaemia, respiratory tract infections and pulmonary hypertension). Cardiovascular and pulmonary diseases account for ∼75% of the mortality seen in persons with Down syndrome. This review summarises the cardiovascular, respiratory and immune challenges faced by individuals with Down syndrome, and the genetic underpinnings of their pathobiology. We strongly advocate increased comparative studies of cardiopulmonary disease in persons with and without Down syndrome, as we believe these will lead to new strategies to prevent and treat diseases affecting millions of people worldwide.
Collapse
|
14
|
Abstract
Pulmonary hypertension associated with left heart disease is the most common form of pulmonary hypertension. Although its pathophysiology remains incompletely understood, it is now well recognized that the presence of pulmonary hypertension is associated with a worse prognosis. Right ventricular failure has independent and additive prognostic value over pulmonary hypertension for adverse outcomes in left heart disease. Recently, several new terminologies have been introduced to better define and characterize the nature and severity of pulmonary hypertension. Several new treatment options including the use of pulmonary arterial hypertension specific therapies are being considered, but there is lack of evidence. Here, we review the recent advances in this field and summarize the diagnostic and therapeutic modalities of use in the management of pulmonary hypertension associated with left heart disease.
Collapse
Affiliation(s)
- Bhavadharini Ramu
- Cardiovascular Division, Section of Advanced Heart Failure and Pulmonary Hypertension, Lillehei Heart Institute, University of Minnesota, 420 Delaware Street SE, MMC 508, Minneapolis, MN, 55455, USA
| | - Thenappan Thenappan
- Cardiovascular Division, Section of Advanced Heart Failure and Pulmonary Hypertension, Lillehei Heart Institute, University of Minnesota, 420 Delaware Street SE, MMC 508, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
Dayeh NR, Ledoux J, Dupuis J. Lung Capillary Stress Failure and Arteriolar Remodelling in Pulmonary Hypertension Associated with Left Heart Disease (Group 2 PH). Prog Cardiovasc Dis 2016; 59:11-21. [PMID: 27195752 DOI: 10.1016/j.pcad.2016.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 11/25/2022]
Abstract
Left heart diseases (LHD) represent the most prevalent cause of pulmonary hypertension (PH), yet there are still no approved therapies that selectively target the pulmonary circulation in LHD. The increase in pulmonary capillary pressure due to LHD is a triggering event leading to physical and biological alterations of the pulmonary circulation. Acutely, mechanosensitive endothelial dysfunction and increased capillary permeability combined with reduced fluid resorption lead to the development of interstitial and alveolar oedema. From repeated cycles of such capillary stress failure originate more profound changes with pulmonary endothelial dysfunction causing increased basal and reactive pulmonary vascular tone. This contributes to pulmonary vascular remodelling with increased arterial wall thickness, but most prominently, to alveolar wall remodelling characterized by myofibroblasts proliferation with collagen and interstitial matrix deposition. Although protective against acute pulmonary oedema, alveolar wall thickening becomes maladaptive and is responsible for the development of a restrictive lung syndrome and impaired gas exchanges contributing to shortness of breath and PH. Increasing awareness of these processes is unraveling novel pathophysiologic processes that could represent selective therapeutic targets. Thus, the roles of caveolins, of the intermediate myofilament nestin and of endothelial calcium dyshomeostasis were recently evaluated in pre-clinical models. The pathophysiology of PH due to LHD (group II PH) is distinctive from other groups of PH. Therefore, therapies targeting PH due to LHD must be evaluated in that context.
Collapse
Affiliation(s)
- Nour R Dayeh
- Research Center, Montreal Heart Institute, Montreal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jonathan Ledoux
- Research Center, Montreal Heart Institute, Montreal, QC, Canada; Département de Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Jocelyn Dupuis
- Research Center, Montreal Heart Institute, Montreal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada; Département de Physiologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
16
|
Abstract
Breathing exercises (BE) and inspiratory muscle training (IMT) have been demonstrated to improve ventilation and ventilation-to-perfusion matching, and to improve exercise, functional performance, and many pathophysiologic manifestations of heart failure (HF). This article provides an extensive review of BE and IMT in patients with HF and identifies several key areas in need of further investigation, including the role of expiratory muscle training, IMT targeted at various locations of inspiration (early, mid, or late inspiration), and alteration of the ratio of inspiratory time to total breath time, all of which have substantial potential to improve many pathophysiologic manifestations of HF.
Collapse
Affiliation(s)
- Lawrence P Cahalin
- Department of Physical Therapy, Leonard M. Miller School of Medicine, University of Miami, Miami, 5915 Ponce de Leon Boulevard, Coral Gables, FL 33146-2435, USA.
| | - Ross A Arena
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, 1919 West Taylor Street, Room 459, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Cardio-Pulmonary-Renal Interactions: A Multidisciplinary Approach. J Am Coll Cardiol 2015; 65:2433-48. [PMID: 26046738 DOI: 10.1016/j.jacc.2015.04.024] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 12/16/2022]
Abstract
Over the past decade, science has greatly advanced our understanding of interdependent feedback mechanisms involving the heart, lung, and kidney. Organ injury is the consequence of maladaptive neurohormonal activation, oxidative stress, abnormal immune cell signaling, and a host of other mechanisms that precipitate adverse functional and structural changes. The presentation of interorgan crosstalk may include an acute, chronic, or acute on chronic timeframe. We review the current, state-of-the-art understanding of cardio-pulmonary-renal interactions and their related pathophysiology, perpetuating nature, and cycles of increased susceptibility and reciprocal progression. To this end, we present a multidisciplinary approach to frame the diverse spectrum of published observations on the topic. Assessment of organ functional reserve and use of biomarkers are valuable clinical strategies to screen and detect disease, assist in diagnosis, assess prognosis, and predict recovery or progression to chronic disease.
Collapse
|
18
|
Thenappan T, Prins KW, Cogswell R, Shah SJ. Pulmonary Hypertension Secondary to Heart Failure With Preserved Ejection Fraction. Can J Cardiol 2015; 31:430-9. [DOI: 10.1016/j.cjca.2014.12.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 12/16/2022] Open
|
19
|
Robinson NE, Williams KJ, Stack A, Jackson WF, Derksen FJ. Exercise-induced pulmonary haemorrhage: A progressive disease affecting performance? Equine Vet J 2015; 47:339-40. [PMID: 25712624 DOI: 10.1111/evj.12412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N E Robinson
- Large Animal Clinical Sciences, Michigan State University, East Lansing, USA
| | | | | | | | | |
Collapse
|
20
|
Mendes PR, Kiyota TA, Cipolli JA, Schreiber R, Paim LR, Bellinazzi VR, Matos-Souza JR, Sposito AC, Nadruz W. Gender influences the relationship between lung function and cardiac remodeling in hypertensive subjects. Hypertens Res 2014; 38:264-8. [PMID: 25427680 DOI: 10.1038/hr.2014.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/01/2014] [Accepted: 10/10/2014] [Indexed: 11/10/2022]
Abstract
Hypertensive patients are predisposed to left ventricular (LV) remodeling and frequently exhibit decline in lung function as compared with the general population. Here, we investigated the association between spirometric and echocardiographic data in non-smoking hypertensive subjects and the role of gender in this regard. In a cross-sectional study, 107 hypertensive patients (60 women) enrolled from a university outpatient clinic were evaluated by clinical, hemodynamic, laboratory and echocardiographic analysis. Vital capacity, forced vital capacity (FVC), forced expired volume in 1 s (FEV1) and in 6 s (FEV6), FEV1/FVC ratio and FEV1/FEV6 ratio were estimated by spirometry. In women, higher LV mass index and E/Em ratio correlated with markers of restrictive lung alterations, such as reduced FVC (r=-044; P<0.001; r=-0.42; P<0.001, respectively) and FEV6 (r=-0.43; P<0.001; r=-0.39; P<0.01, respectively), while higher left atrial volume index correlated with markers of obstructive lung alterations, such as reduced FEV1/FVC (r=-055; P<0.001) and FEV1/FEV6 (r=-0.45; P<0.001) ratios. These relationships were further confirmed by stepwise regression analysis adjusted for potential confounders. In men, LV mass index correlated with FVC and FEV6, but these associations did not remain statistically significant after adjustment for confounding variables. Furthermore, inflammatory markers such as plasma C-reactive protein and matrix-metalloproteinases-2 and -9 levels did not influence the association between spirometric and cardiac parameters. In conclusion, these results indicate that LV remodeling is related to restrictive lung alterations while left atrial remodeling is associated with obstructive lung alterations in hypertensive women.
Collapse
Affiliation(s)
- Paulo R Mendes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Tatiana A Kiyota
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - José A Cipolli
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Roberto Schreiber
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Layde R Paim
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Vera R Bellinazzi
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - José R Matos-Souza
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Andrei C Sposito
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Wilson Nadruz
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| |
Collapse
|
21
|
Guazzi M, Gomberg-Maitland M, Arena R. Pulmonary hypertension in heart failure with preserved ejection fraction. J Heart Lung Transplant 2014; 34:273-81. [PMID: 25577563 DOI: 10.1016/j.healun.2014.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/18/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022] Open
Abstract
In heart failure with preserved ejection fraction (HFpEF), an entity that remains challenging and difficult to treat, the development of pulmonary hypertension (PH), via an increase in left atrial pressure, is the direct consequence of reduced relaxation and enhanced stiffness of the left ventricle and is now viewed as an important contributor to clinical worsening and increased mortality. PH becomes a relevant clinical phenotype in approximately 50% of patients with HFpEF and represents a true challenge in the clinical follow-up and management of these patients. Along with these epidemiologic insights, there has been increasing recognition of the pathophysiology of PH and its consequences on the right ventricle in patients with HFpEF. Novel and effective therapeutic interventions aimed at preventing and reversing PH are highly relevant in the attempt to modify the poor clinical trajectory and growing health care burden of HFpEF. Many theoretical rationales as well as progressively accumulating evidence support the usefulness of nitric oxide pathway-potentiating compounds in targeting the lung vasculature through phosphodiesterase 5 inhibitors or guanylate cyclase stimulators to produce vasodilation and potentially a biologic effect. These pharmacologic strategies may be clinically effective options for the treatment of PH in patients with HFpEF; however, large controlled trials are necessary to address definitively the safety, tolerability, and potential impact on morbidity and mortality. This review details the pathophysiologic process, prevalence, and consequences of HFpEF-associated PH and discusses current and emerging treatment strategies to prevent or treat this deleterious sequela when present.
Collapse
Affiliation(s)
- Marco Guazzi
- Heart Failure Unit and Cardiopulmonary Laboratory, Cardiology, I.R.C.C.S., Policlinico San Donato University Hospital, Milan, Italy.
| | | | - Ross Arena
- Department of Physical Therapy and Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois Chicago, Chicago, Illinois
| |
Collapse
|
22
|
Dupuis J, Guazzi M. Pathophysiology and clinical relevance of pulmonary remodelling in pulmonary hypertension due to left heart diseases. Can J Cardiol 2014; 31:416-29. [PMID: 25840093 DOI: 10.1016/j.cjca.2014.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/27/2014] [Accepted: 10/03/2014] [Indexed: 12/29/2022] Open
Abstract
Pulmonary hypertension (PH) in left heart disease, classified as group II, is the most common form of PH that occurs in approximately 60% of cases of reduced and preserved left ventricular ejection fraction. Although relatively much is known about hemodynamic stages (passive or reactive) and their consequences on the right ventricle (RV) there is no consensus on the best hemodynamic definition of group II PH. In addition, the main pathways that lead to lung capillary injury and impaired biology of small artery remodelling processes are largely unknown. Typical lung manifestations of an increased pulmonary pressure and progressive RV-pulmonary circulation uncoupling are an abnormal alveolar capillary gas diffusion, impaired lung mechanics (restriction), and exercise ventilation inefficiency. Of several classes of pulmonary vasodilators currently clinically available, oral phosphodiesterase 5 inhibition, because of its strong selectivity for targeting the cyclic guanosine monophosphate pathway in the pulmonary circulation, is increasingly emerging as an attractive opportunity to reach hemodynamic benefits, reverse capillary injury, and RV remodelling, and improve functional capacity. Guanylate cyclase stimulators offer an additional intriguing opportunity but the lack of selectivity and systemic effects might preclude some of the anticipated benefits on the pulmonary circulation. Future trials will determine whether new routes of pharmacologic strategy aimed at targeting lung structural and vascular remodelling might affect morbidity and mortality in left heart disease populations. We believe that this therapeutic goal rather than a pure hemodynamic effect might ultimately emerge as an important challenge for the clinician.
Collapse
Affiliation(s)
- Jocelyn Dupuis
- Department of Medicine, Université de Montréal and Research Center of the Montreal Heart Institute, Montreal, Québec, Canada
| | - Marco Guazzi
- University of Milano Heart Failure Unit, IRCCS Policlinico San Donato, Milano, Italy.
| |
Collapse
|