1
|
Domingues I, Yagoubi H, Zhang W, Marotti V, Kambale EK, Vints K, Sliwinska MA, Leclercq IA, Beloqui A. Effects of semaglutide-loaded lipid nanocapsules on metabolic dysfunction-associated steatotic liver disease. Drug Deliv Transl Res 2024; 14:2917-2929. [PMID: 38615156 PMCID: PMC11385015 DOI: 10.1007/s13346-024-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent chronic liver disease that can progress to end-stage conditions with life-threatening complications, but no pharmacologic therapy has been approved. Drug delivery systems such as lipid nanocapsules (LNC) are very versatile platforms that are easy to produce and can induce the secretion of the native glucagon-like peptide 1 (GLP-1) when orally administered. GLP-1 analogs are currently being studied in clinical trials in the context of MASLD. Our nanosystem provides with increased levels of the native GLP-1 and increased plasmatic absorption of the encapsulated GLP-1 analog (semaglutide). Our goal was to use our strategy to demonstrate a better outcome and a greater impact on the metabolic syndrome associated with MASLD and on liver disease progression with our strategy compared with the oral marketed version of semaglutide, Rybelsus®. Therefore, we studied the effect of our nanocarriers on a dietary mouse model of MASLD, the Western diet model, during a daily chronic treatment of 4 weeks. Overall, the results showed a positive impact of semaglutide-loaded lipid nanocapsules towards the normalization of glucose homeostasis and insulin resistance. In the liver, there were no significant changes in lipid accumulation, but an improvement in markers related to inflammation was observed. Overall, our strategy had a positive trend on the metabolic syndrome and at reducing inflammation, mitigating the progression of the disease. Oral administration of the nanosystem was more efficient at preventing the progression of the disease to more severe states when compared to the administration of Rybelsus®, as a suspension.
Collapse
Affiliation(s)
- Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200, Brussels, Belgium
| | - Hafsa Yagoubi
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200, Brussels, Belgium
| | - Wunan Zhang
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200, Brussels, Belgium
| | - Valentina Marotti
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200, Brussels, Belgium
| | - Espoir K Kambale
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200, Brussels, Belgium
| | - Katlijn Vints
- EM-platform, VIB Bio Imaging Core, KU Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium
| | | | - Isabelle A Leclercq
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Avenue Emmanuel Mounier 53, 1200, Brussels, Belgium.
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200, Brussels, Belgium.
- WEL Research Institute, WELBIO Department, Avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
2
|
Cui N, Zhang W, Su F, Zhang Z, Qiao W, Sun Y, Yang B, Kuang H, Wang Q. Metabolomics and Lipidomics Study Unveils the Impact of Tauroursodeoxycholic Acid on Hyperlipidemic Mice. Molecules 2023; 28:6352. [PMID: 37687178 PMCID: PMC10490038 DOI: 10.3390/molecules28176352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Bear bile powder is an essential, traditional and valuable Chinese herbal medicine that clears heat, calms the liver, and improves eyesight. Early studies have shown that bear bile powder has lipid-lowering activity, but due to the scarcity of natural bear bile powder resources, it has yet to be used on a large scale. Researchers have found that tauroursodeoxycholic acid (TUDCA) is the primary characteristic bioactive substance of bear bile powder. This study aimed to investigate the therapeutic effect of TUDCA on high-fat diet (HFD)-induced hyperlipidemia. A hyperlipidemia model was established by feeding mice high-fat chow, following the intervention of different concentrations of TUDCA (25/50/100 mg/kg) orally, the hallmark biochemical indexes (total cholesterol (TC), total triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)), histopathological examination (hematoxylin-eosin (HE) staining and oil red O (ORO) staining), and metabolomic analysis of serum and liver. The results showed that TUDCA could downregulate total TC, TG, LDL-C, upregulate HDL-C, reduce fat deposition in hepatocytes, reverse hepatocyte steatosis, and exhibit prominent lipid-lowering activity. In addition, it may play a therapeutic role by regulating glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Na Cui
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Wensen Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Fazhi Su
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Zhihong Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Weijie Qiao
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou 510006, China
| |
Collapse
|
3
|
Domingues I, Michalowski CB, Marotti V, Zhang W, Van Hul M, Cani PD, Leclercq IA, Beloqui A. Exploiting the biological effect exerted by lipid nanocapsules in non-alcoholic fatty liver disease. J Control Release 2023; 356:542-553. [PMID: 36907563 PMCID: PMC7614370 DOI: 10.1016/j.jconrel.2023.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects approximately 25% of the global adult population and can progress to end-stage liver disease with life-threatening complications; however, no pharmacologic therapy has been approved. Drug delivery systems such as lipid nanocapsules (LNCs) are a very versatile platform, easy to produce, and can induce the secretion of the native glucagon-like peptide 1 (GLP-1) when orally administered. GLP-1 analogs are currently being extensively studied in clinical trials in the context of NAFLD. Our nanosystem provides with increased levels of GLP-1, triggered by the nanocarrier itself, and by the plasmatic absorption of the encapsulated synthetic analog (exenatide). Our goal in this study was to demonstrate a better outcome and a greater impact on the metabolic syndrome and liver disease progression associated with NAFLD with our nanosystem than with the subcutaneous injection of the GLP-1 analog alone. To that end, we studied the effect of chronic administration (one month) of our nanocarriers in two mouse models of early NASH: a genetic model (foz/foz mice fed a high fat diet (HFD)) and a dietary model (C57BL/6J mice fed with a western diet plus fructose (WDF)). Our strategy had a positive impact in promoting the normalization of glucose homeostasis and insulin resistance in both models, mitigating the progression of the disease. In the liver, diverging results were observed between the models, with the foz/foz mice presenting a better outcome. Although a complete resolution of NASH was not achieved in either model, the oral administration of the nanosystem was more efficient at preventing the progression of the disease into more severe states than the subcutaneous injection. We thus confirmed our hypothesis that the oral administration of our formulation has a stronger effect on alleviating the metabolic syndrome associated with NAFLD than the subcutaneous injection of the peptide.
Collapse
Affiliation(s)
- Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Cecilia Bohns Michalowski
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Valentina Marotti
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Wunan Zhang
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; WELBIO (Walloon Excellence in Life sciences and BIOtechnology), WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; WELBIO (Walloon Excellence in Life sciences and BIOtechnology), WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Isabelle A Leclercq
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Avenue Emmanuel Mounier 53, 1200 Brussels, Belgium.
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; WELBIO (Walloon Excellence in Life sciences and BIOtechnology), WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium.
| |
Collapse
|
4
|
Macrophages, Low-Grade Inflammation, Insulin Resistance and Hyperinsulinemia: A Mutual Ambiguous Relationship in the Development of Metabolic Diseases. J Clin Med 2022; 11:jcm11154358. [PMID: 35955975 PMCID: PMC9369133 DOI: 10.3390/jcm11154358] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic derangement with poor glycemic control accompanying overweight and obesity is associated with chronic low-grade inflammation and hyperinsulinemia. Macrophages, which present a very heterogeneous population of cells, play a key role in the maintenance of normal tissue homeostasis, but functional alterations in the resident macrophage pool as well as newly recruited monocyte-derived macrophages are important drivers in the development of low-grade inflammation. While metabolic dysfunction, insulin resistance and tissue damage may trigger or advance pro-inflammatory responses in macrophages, the inflammation itself contributes to the development of insulin resistance and the resulting hyperinsulinemia. Macrophages express insulin receptors whose downstream signaling networks share a number of knots with the signaling pathways of pattern recognition and cytokine receptors, which shape macrophage polarity. The shared knots allow insulin to enhance or attenuate both pro-inflammatory and anti-inflammatory macrophage responses. This supposedly physiological function may be impaired by hyperinsulinemia or insulin resistance in macrophages. This review discusses the mutual ambiguous relationship of low-grade inflammation, insulin resistance, hyperinsulinemia and the insulin-dependent modulation of macrophage activity with a focus on adipose tissue and liver.
Collapse
|
5
|
Tauroursodeoxycholic acid improves glucose tolerance and reduces adiposity in normal protein and malnourished mice fed a high-fat diet. Food Res Int 2022; 156:111331. [DOI: 10.1016/j.foodres.2022.111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/19/2022]
|
6
|
De Rudder M, Bouzin C, Nachit M, Louvegny H, Vande Velde G, Julé Y, Leclercq IA. Automated computerized image analysis for the user-independent evaluation of disease severity in preclinical models of NAFLD/NASH. J Transl Med 2020; 100:147-160. [PMID: 31506634 DOI: 10.1038/s41374-019-0315-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023] Open
Abstract
Pathologists use a semiquantitative scoring system (NAS or SAF score) to facilitate the reporting of disease severity and evolution. Similar scores are applied for the same purposes in rodents. Histological scores have inherent inter- and intra-observer variability and yield discrete and not continuous values. Here we performed an automatic numerical quantification of NASH features on liver sections in common preclinical NAFLD/NASH models. High-fat diet-fed foz/foz mice (Foz HF) or wild-type mice (WT HF) known to develop progressive NASH or an uncomplicated steatosis, respectively, and C57Bl6 mice fed a choline-deficient high-fat diet (CDAA) to induce steatohepatitis were analyzed at various time points. Automated software image analysis of steatosis, inflammation, and fibrosis was performed on digital images from entire liver sections. Data obtained were compared with the NAS score, biochemical quantification, and gene expression. As histologically assessed, WT HF mice had normal liver up to week 34 when they harbor mild steatosis with if any, little inflammation. Foz HF mice exhibited grade 2 steatosis as early as week 4, grade 3 steatosis at week 12 up to week 34; inflammation and ballooning increased gradually with time. Automated measurement of steatosis (macrovesicular steatosis area) revealed a strong correlation with steatosis scores (r = 0.89), micro-CT liver density, liver lipid content (r = 0.89), and gene expression of CD36 (r = 0.87). Automatic assessment of the number of F4/80-immunolabelled crown-like structures strongly correlated with conventional inflammatory scores (r = 0.79). In Foz HF mice, collagen deposition, evident at week 20 and progressing at week 34, was automatically quantified on picrosirius red-stained entire liver sections. The automated procedure also faithfully captured and quantitated macrovesicular steatosis, mixed inflammation, and pericellular fibrosis in CDAA-induced steatohepatitis. In conclusion, the automatic numerical analysis represents a promising quantitative method to rapidly monitor NAFLD activity with high-throughput in large preclinical studies and for accurate monitoring of disease evolution.
Collapse
Affiliation(s)
- Maxime De Rudder
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- Imaging platform 2IP, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Maxime Nachit
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.,Department of Imaging and Pathology, Faculty of Medicine & MoSAIC, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Heloïse Louvegny
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Faculty of Medicine & MoSAIC, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | | | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
7
|
Activation of brown adipose tissue enhances the efficacy of caloric restriction for treatment of nonalcoholic steatohepatitis. J Transl Med 2019; 99:4-16. [PMID: 30258096 DOI: 10.1038/s41374-018-0120-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the form of nonalcoholic fatty liver disease that can evolve into cirrhosis. Lifestyle modifications achieving 10% weight loss reverse NASH, but there are no effective approved drug treatments. We previously identified defective adaptive thermogenesis as a factor contributing to metabolic syndrome and hepatic steatosis. We have now tested whether increasing nonshivering thermogenesis can improve preexisting NASH in mice. In high-fat diet-fed foz/foz mice with established NASH, treatment with β3AR agonist restored brown adipose tissue (BAT) function, decreased body weight, improved glucose tolerance, and reduced hepatic lipid content compared to untreated counterparts, but had no impact on liver inflammation or on nonalcoholic fatty liver disease activity score (NAS). Similarly, β3AR agonist did not alter liver pathology in other steatohepatitis models, including MCD diet-fed diabetic obese db/db mice. Caloric restriction alone alleviated the hepatic inflammatory signature in foz/foz mice. Addition of a β3AR agonist to mice subjected to caloric restriction enhanced weight loss and glucose tolerance, and improved liver steatosis, hepatocellular injury, and further reduced liver inflammation. These changes contributed to a significantly lower NAS score such as no (0/9) animals in this group fulfilled the criteria for NASH pathology compared to eight out of ten mice under caloric restriction alone. In conclusion, β3AR agonist counteracts features of the metabolic syndrome and alleviates steatosis, but does not reverse NASH. However, when coupled with weight loss therapy, BAT stimulation provides additional therapeutic advantages and reverses NASH.
Collapse
|
8
|
Spradley FT, Smith JA, Alexander BT, Anderson CD. Developmental origins of nonalcoholic fatty liver disease as a risk factor for exaggerated metabolic and cardiovascular-renal disease. Am J Physiol Endocrinol Metab 2018; 315:E795-E814. [PMID: 29509436 PMCID: PMC6293166 DOI: 10.1152/ajpendo.00394.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intrauterine growth restriction (IUGR) is linked to increased risk for chronic disease. Placental ischemia and insufficiency in the mother are implicated in predisposing IUGR offspring to metabolic dysfunction, including hypertension, insulin resistance, abnormalities in glucose homeostasis, and nonalcoholic fatty liver disease (NAFLD). It is unclear whether these metabolic disturbances contribute to the developmental origins of exaggerated cardiovascular-renal disease (CVRD) risk accompanying IUGR. IUGR impacts the pancreas, adipose tissue, and liver, which are hypothesized to program for hepatic insulin resistance and subsequent NAFLD. NAFLD is projected to become the major cause of chronic liver disease and contributor to uncontrolled type 2 diabetes mellitus, which is a leading cause of chronic kidney disease. While NAFLD is increased in experimental models of IUGR, lacking is a full comprehension of the mechanisms responsible for programming of NAFLD and whether this potentiates susceptibility to liver injury. The use of well-established and clinically relevant rodent models, which mimic the clinical characteristics of IUGR, metabolic disturbances, and increased blood pressure in the offspring, will permit investigation into mechanisms linking adverse influences during early life and later chronic health. The purpose of this review is to propose mechanisms, including those proinflammatory in nature, whereby IUGR exacerbates the pathogenesis of NAFLD and how these adverse programmed outcomes contribute to exaggerated CVRD risk. Understanding the etiology of the developmental origins of chronic disease will allow investigators to uncover treatment strategies to intervene in the mother and her offspring to halt the increasing prevalence of metabolic dysfunction and CVRD.
Collapse
Affiliation(s)
- Frank T Spradley
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, School of Medicine, The University of Mississippi Medical Center , Jackson, Mississippi
- Cardiovascular-Renal Research Center, The University of Mississippi Medical Center , Jackson, Mississippi
- Department of Physiology and Biophysics, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Jillian A Smith
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, School of Medicine, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Barbara T Alexander
- Cardiovascular-Renal Research Center, The University of Mississippi Medical Center , Jackson, Mississippi
- Department of Physiology and Biophysics, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Christopher D Anderson
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, School of Medicine, The University of Mississippi Medical Center , Jackson, Mississippi
- Cardiovascular-Renal Research Center, The University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
9
|
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69:927-947. [PMID: 29940269 DOI: 10.1016/j.jhep.2018.06.008] [Citation(s) in RCA: 634] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
The global epidemic of obesity has been accompanied by a rising burden of non-alcoholic fatty liver disease (NAFLD), with manifestations ranging from simple steatosis to non-alcoholic steatohepatitis, potentially developing into hepatocellular carcinoma. Although much attention has focused on NAFLD, its pathogenesis remains largely obscure. The hallmark of NAFLD is the hepatic accumulation of lipids, which subsequently leads to cellular stress and hepatic injury, eventually resulting in chronic liver disease. Abnormal lipid accumulation often coincides with insulin resistance in steatotic livers and is associated with perturbed endoplasmic reticulum (ER) proteostasis in hepatocytes. In response to chronic ER stress, an adaptive signalling pathway known as the unfolded protein response is triggered to restore ER proteostasis. However, the unfolded protein response can cause inflammation, inflammasome activation and, in the case of non-resolvable ER stress, the death of hepatocytes. Experimental data suggest that the unfolded protein response influences hepatic tumour development, aggressiveness and response to treatment, offering novel therapeutic avenues. Herein, we provide an overview of the evidence linking ER stress to NAFLD and discuss possible points of intervention.
Collapse
Affiliation(s)
| | - Deborah Vallée
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, 02115 Boston, MA, USA
| | - Eric Chevet
- "Chemistry, Oncogenesis, Stress, Signaling", Inserm U1242, Université de Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | |
Collapse
|
10
|
Henkel J, Alfine E, Saín J, Jöhrens K, Weber D, Castro JP, König J, Stuhlmann C, Vahrenbrink M, Jonas W, Kleinridders A, Püschel GP. Soybean Oil-Derived Poly-Unsaturated Fatty Acids Enhance Liver Damage in NAFLD Induced by Dietary Cholesterol. Nutrients 2018; 10:nu10091326. [PMID: 30231595 PMCID: PMC6164134 DOI: 10.3390/nu10091326] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
While the impact of dietary cholesterol on the progression of atherosclerosis has probably been overestimated, increasing evidence suggests that dietary cholesterol might favor the transition from blunt steatosis to non-alcoholic steatohepatitis (NASH), especially in combination with high fat diets. It is poorly understood how cholesterol alone or in combination with other dietary lipid components contributes to the development of lipotoxicity. The current study demonstrated that liver damage caused by dietary cholesterol in mice was strongly enhanced by a high fat diet containing soybean oil-derived ω6-poly-unsaturated fatty acids (ω6-PUFA), but not by a lard-based high fat diet containing mainly saturated fatty acids. In contrast to the lard-based diet the soybean oil-based diet augmented cholesterol accumulation in hepatocytes, presumably by impairing cholesterol-eliminating pathways. The soybean oil-based diet enhanced cholesterol-induced mitochondrial damage and amplified the ensuing oxidative stress, probably by peroxidation of poly-unsaturated fatty acids. This resulted in hepatocyte death, recruitment of inflammatory cells, and fibrosis, and caused a transition from steatosis to NASH, doubling the NASH activity score. Thus, the recommendation to reduce cholesterol intake, in particular in diets rich in ω6-PUFA, although not necessary to reduce the risk of atherosclerosis, might be sensible for patients suffering from non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Janin Henkel
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany.
| | - Eugenia Alfine
- German Institute of Human Nutrition, Junior Research Group Central Regulation of Metabolism; D-14558 Nuthetal, Germany.
- German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany.
| | - Juliana Saín
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany.
- Department of Biological Sciences, Food Science and Nutrition, Faculty of Biochemistry and Biological Sciences, National University of the Litoral (UNL), Santa Fe S3000, Argentina.
| | - Korinna Jöhrens
- Institute of Pathology, Carl Gustav Carus University Hospital Dresden; D-01307 Dresden, Germany.
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition; D-14558 Nuthetal, Germany.
| | - José P Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition; D-14558 Nuthetal, Germany.
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition; D-14558 Nuthetal, Germany.
| | - Christin Stuhlmann
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany.
| | - Madita Vahrenbrink
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany.
| | - Wenke Jonas
- German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany.
- Department of Experimental Diabetology, German Institute of Human Nutrition; D-14558 Nuthetal, Germany.
| | - André Kleinridders
- German Institute of Human Nutrition, Junior Research Group Central Regulation of Metabolism; D-14558 Nuthetal, Germany.
- German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany.
| | - Gerhard P Püschel
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany.
| |
Collapse
|
11
|
Wang W, Zhao J, Gui W, Sun D, Dai H, Xiao L, Chu H, Du F, Zhu Q, Schnabl B, Huang K, Yang L, Hou X. Tauroursodeoxycholic acid inhibits intestinal inflammation and barrier disruption in mice with non-alcoholic fatty liver disease. Br J Pharmacol 2018; 175:469-484. [PMID: 29139555 PMCID: PMC5773980 DOI: 10.1111/bph.14095] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 10/08/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE The gut-liver axis is associated with the progression of non-alcoholic fatty liver disease (NAFLD). Targeting the gut-liver axis and bile acid-based pharmaceuticals are potential therapies for NAFLD. The effect of tauroursodeoxycholic acid (TUDCA), a candidate drug for NAFLD, on intestinal barrier function, intestinal inflammation, gut lipid transport and microbiota composition was analysed in a murine model of NAFLD. EXPERIMENTAL APPROACH The NAFLD mouse model was established by feeding mice a high-fat diet (HFD) for 16 weeks. TUDCA was administered p.o. during the last 4 weeks. The expression levels of intestinal tight junction genes, lipid metabolic and inflammatory genes were determined by quantitative PCR. Tissue inflammation was evaluated by haematoxylin and eosin staining. The gut microbiota was analysed by 16S rRNA gene sequencing. KEY RESULTS TUDCA administration attenuated HFD-induced hepatic steatosis, inflammatory responses, obesity and insulin resistance in mice. Moreover, TUDCA attenuated gut inflammatory responses as manifested by decreased intestinal histopathology scores and inflammatory cytokine levels. In addition, TUDCA improved intestinal barrier function by increasing levels of tight junction molecules and the solid chemical barrier. The components involved in ileum lipid transport were also reduced by TUDCA administration in HFD-fed mice. Finally, the TUDCA-treated mice showed a different gut microbiota composition compared with that in HFD-fed mice but similar to that in normal chow diet-fed mice. CONCLUSIONS AND IMPLICATIONS TUDCA attenuates the progression of HFD-induced NAFLD in mice by ameliorating gut inflammation, improving intestinal barrier function, decreasing intestinal fat transport and modulating intestinal microbiota composition.
Collapse
Affiliation(s)
- Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinfang Zhao
- Division of Gastroenterology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenfang Gui
- Division of Gastroenterology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Sun
- Division of Cardiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Haijiang Dai
- Center of Clinical Pharmacology, The Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Li Xiao
- Division of Gastroenterology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fan Du
- Division of Gastroenterology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | | | - Bernd Schnabl
- Department of MedicineBiomedical Research Facility 2 (BRF2), University of California, San DiegoLa JollaCAUSA
| | - Kai Huang
- Division of Cardiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
12
|
Machado MV, Diehl AM. Pathogenesis of Nonalcoholic Fatty Liver Disease. ZAKIM AND BOYER'S HEPATOLOGY 2018:369-390.e14. [DOI: 10.1016/b978-0-323-37591-7.00025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Farrell GC, Haczeyni F, Chitturi S. Pathogenesis of NASH: How Metabolic Complications of Overnutrition Favour Lipotoxicity and Pro-Inflammatory Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1061:19-44. [PMID: 29956204 DOI: 10.1007/978-981-10-8684-7_3] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overnutrition, usually with obesity and genetic predisposition, lead to insulin resistance, which is an invariable accompaniment of nonalcoholic fatty liver disease (NAFLD). The associated metabolic abnormalities, pre- or established diabetes, hypertension and atherogenic dyslipidemia (clustered as metabolic syndrome) tend to be worse for nonalcoholic steatohepatitis (NASH), revealing it as part of a continuum of metabolic pathogenesis. The origins of hepatocellular injury and lobular inflammation which distinguish NASH from simple steatosis have intrigued investigators, but it is now widely accepted that NASH results from liver lipotoxicity. The key issue is not the quantity of liver fat but the type(s) of lipid molecules that accumulate, and how they are "packaged" to avoid subcellular injury. Possible lipotoxic mediators include free (unesterified) cholesterol, saturated free fatty acids, diacylglycerols, lysophosphatidyl-choline, sphingolipids and ceramide. Lipid droplets are intracellular storage organelles for non-structural lipid whose regulation is influenced by genetic polymorphisms, such as PNPLA3. Cells unable to sequester chemically reactive lipid molecules undergo mitochondrial injury, endoplasmic reticulum (ER) stress and autophagy, all processes of interest for NASH pathogenesis. Lipotoxicity kills hepatocytes by apoptosis, a highly regulated, non-inflammatory form of cell death, but also by necrosis, necroptosis and pyroptosis; the latter involve mitochondrial injury, oxidative stress, activation of c-Jun N-terminal kinase (JNK) and release of danger-associated molecular patterns (DAMPs). DAMPs stimulate innate immunity by binding pattern recognition receptors, such as Toll-like receptor 4 (TLR4) and the NOD-like receptor protein 3 (NLRP3) inflammasome, which release a cascade of pro-inflammatory chemokines and cytokines. Thus, lipotoxic hepatocellular injury attracts inflammatory cells, particularly activated macrophages which surround ballooned hepatocytes as crown-like structures. In both experimental and human NASH, livers contain cholesterol crystals which are a second signal for NLRP3 activation; this causes interleukin (IL)-1β and IL18 secretion to attract and activate macrophages and neutrophils. Injured hepatocytes also liberate plasma membrane-derived extracellular vesicles; these have been shown to circulate in NASH and to be pro-inflammatory. The way metabolic dysfunction leads to lipotoxicity, innate immune responses and the resultant pattern of cellular inflammation in the liver are likely also relevant to hepatic fibrogenesis and hepatocarcinogenesis. Pinpointing the key molecules involved pharmacologically should eventually lead to effective pharmacotherapy against NASH.
Collapse
Affiliation(s)
- Geoffrey C Farrell
- Australian National University Medical School, and Gastroenterology and Hepatology Unit, The Canberra Hospital, Woden, ACT, Australia.
| | - Fahrettin Haczeyni
- Australian National University Medical School, and Gastroenterology and Hepatology Unit, The Canberra Hospital, Woden, ACT, Australia
| | - Shivakumar Chitturi
- Australian National University Medical School, and Gastroenterology and Hepatology Unit, The Canberra Hospital, Woden, ACT, Australia
| |
Collapse
|
14
|
Legry V, Francque S, Haas JT, Verrijken A, Caron S, Chávez-Talavera O, Vallez E, Vonghia L, Dirinck E, Verhaegen A, Kouach M, Lestavel S, Lefebvre P, Van Gaal L, Tailleux A, Paumelle R, Staels B. Bile Acid Alterations Are Associated With Insulin Resistance, but Not With NASH, in Obese Subjects. J Clin Endocrinol Metab 2017; 102:3783-3794. [PMID: 28938455 DOI: 10.1210/jc.2017-01397] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022]
Abstract
CONTEXT Bile acids (BAs) are signaling molecules controlling energy homeostasis that can be both toxic and protective for the liver. BA alterations have been reported in obesity, insulin resistance (IR), and nonalcoholic steatohepatitis (NASH). However, whether BA alterations contribute to NASH independently of the metabolic status is unclear. OBJECTIVE To assess BA alterations associated with NASH independently of body mass index and IR. DESIGN AND SETTING Patients visiting the obesity clinic of the Antwerp University Hospital (a tertiary referral facility) were recruited from 2006 to 2014. PATIENTS Obese patients with biopsy-proven NASH (n = 32) and healthy livers (n = 26) were matched on body mass index and homeostasis model assessment of IR. MAIN OUTCOME MEASURES Transcriptomic analyses were performed on liver biopsies. Plasma concentrations of 21 BA species and 7α-hydroxy-4-cholesten-3-one, a marker of BA synthesis, were determined by liquid chromatography-tandem mass spectrometry. Plasma fibroblast growth factor 19 was measured by enzyme-linked immunosorbent assay. RESULTS Plasma BA concentrations did not correlate with any hepatic lesions, whereas, as previously reported, primary BA strongly correlated with IR. Transcriptomic analyses showed unaltered hepatic BA metabolism in NASH patients. In line, plasma 7α-hydroxy-4-cholesten-3-one was unchanged in NASH. Moreover, no sign of hepatic BA accumulation or activation of BA receptors-farnesoid X, pregnane X, and vitamin D receptors-was found. Finally, plasma fibroblast growth factor 19, secondary-to-primary BA, and free-to-conjugated BA ratios were similar, suggesting unaltered intestinal BA metabolism and signaling. CONCLUSIONS In obese patients, BA alterations are related to the metabolic phenotype associated with NASH, especially IR, but not liver necroinflammation.
Collapse
Affiliation(s)
- Vanessa Legry
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Edegem/Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
| | - Joel T Haas
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - An Verrijken
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, 2650 Egedem/Antwerp, Belgium
| | - Sandrine Caron
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Oscar Chávez-Talavera
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Emmanuelle Vallez
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Edegem/Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, 2650 Egedem/Antwerp, Belgium
| | - Ann Verhaegen
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, 2650 Egedem/Antwerp, Belgium
| | - Mostafa Kouach
- Plateau de Spectrométrie de Masse-Groupe de Recherche sur les formes Injectables et les Technologies Associées, (PSM-GRITA), Faculté de Pharmacie, F-59000 Lille, France
| | - Sophie Lestavel
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Philippe Lefebvre
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk/Antwerp, Belgium
- Department of Endocrinology, Diabetes and Metabolism, Antwerp University Hospital, 2650 Egedem/Antwerp, Belgium
| | - Anne Tailleux
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Réjane Paumelle
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Bart Staels
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, F-59000 Lille, France
| |
Collapse
|
15
|
Defective adaptive thermogenesis contributes to metabolic syndrome and liver steatosis in obese mice. Clin Sci (Lond) 2016; 131:285-296. [PMID: 27803297 DOI: 10.1042/cs20160469] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023]
Abstract
Fatty liver diseases are complications of the metabolic syndrome associated with obesity, insulin resistance and low grade inflammation. Our aim was to uncover mechanisms contributing to hepatic complications in this setting. We used foz/foz mice prone to obesity, insulin resistance and progressive fibrosing non-alcoholic steatohepatitis (NASH). Foz/foz mice are hyperphagic but wild-type (WT)-matched calorie intake failed to protect against obesity, adipose inflammation and glucose intolerance. Obese foz/foz mice had similar physical activity level but reduced energy expenditure. Thermogenic adaptation to high-fat diet (HFD) or to cold exposure was severely impaired in foz/foz mice compared with HFD-fed WT littermates due to lower sympathetic tone in their brown adipose tissue (BAT). Intermittent cold exposure (ICE) restored BAT function and thereby improved glucose tolerance, decreased fat mass and liver steatosis. We conclude that failure of BAT adaptation drives the metabolic complications of obesity in foz/foz mice, including development of liver steatosis. Induction of endogenous BAT function had a significant therapeutic impact on obesity, glucose tolerance and liver complications and is a potential new avenue for therapy of non-alcoholic fatty liver disease (NAFLD).
Collapse
|
16
|
Ioannou GN. The Role of Cholesterol in the Pathogenesis of NASH. Trends Endocrinol Metab 2016; 27:84-95. [PMID: 26703097 DOI: 10.1016/j.tem.2015.11.008] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023]
Abstract
Lipotoxicity drives the development of progressive hepatic inflammation and fibrosis in a subgroup of patients with nonalcoholic fatty liver disease (NAFLD), causing nonalcoholic steatohepatitis (NASH) and even progression to cirrhosis and hepatocellular carcinoma (HCC). While the underlying molecular mechanisms responsible for the development of inflammation and fibrosis that characterize progressive NASH remain unclear, emerging evidence now suggests that hepatic free cholesterol (FC) is a major lipotoxic molecule critical in the development of experimental and human NASH. In this review, we examine the effects of excess FC in hepatocytes, Kupffer cells (KCs), and hepatic stellate cells (HSCs), and the subcellular mechanisms by which excess FC can induce cellular toxicity or proinflammatory and profibrotic effects in these cells.
Collapse
Affiliation(s)
- George N Ioannou
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Guo Q, Shi Q, Li H, Liu J, Wu S, Sun H, Zhou B. Glycolipid Metabolism Disorder in the Liver of Obese Mice Is Improved by TUDCA via the Restoration of Defective Hepatic Autophagy. Int J Endocrinol 2015; 2015:687938. [PMID: 26681941 PMCID: PMC4668323 DOI: 10.1155/2015/687938] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/24/2015] [Accepted: 11/01/2015] [Indexed: 12/16/2022] Open
Abstract
Objective. Tauroursodeoxycholic acid (TUDCA) has been considered an important regulator of energy metabolism in obesity. However, the mechanism underlying how TUDCA is involved in insulin resistance is not fully understood. We tested the effects of TUDCA on autophagic dysfunction in obese mice. Material and Methods. 500 mg/kg of TUDCA was injected into obese mice, and metabolic parameters, autophagy markers, and insulin signaling molecular were assessed by Western blotting and real-time PCR. Results. The TUDCA injections in the obese mice resulted in a reduced body weight gain, lower blood glucose, and improved insulin sensitivity compared with obese mice that were injected with vehicle. Meanwhile, TUDCA treatment not only reversed autophagic dysfunction and endoplasmic reticulum stress, but also improved the impaired insulin signaling in the liver of obese mice. Additionally, the same results obtained with TUDCA were evident in obese mice treated with the adenoviral Atg7. Conclusions. We found that TUDCA reversed abnormal autophagy, reduced ER stress, and restored insulin sensitivity in the liver of obese mice and that glycolipid metabolism disorder was also improved via the restoration of defective hepatic autophagy.
Collapse
Affiliation(s)
- Qinyue Guo
- Critical Care Medicine, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, Shaanxi 710061, China
| | - Qindong Shi
- Critical Care Medicine, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, Shaanxi 710061, China
| | - Huixia Li
- Key Laboratory of Environment and Genes Related to Diseases, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiali Liu
- Key Laboratory of Environment and Genes Related to Diseases, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, Shaanxi 710061, China
| | - Hongzhi Sun
- Key Laboratory of Environment and Genes Related to Diseases, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- *Hongzhi Sun: and
| | - Bo Zhou
- Department of Respiratory, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, Shaanxi 710061, China
- *Bo Zhou:
| |
Collapse
|
18
|
Gan LT, Van Rooyen DM, Koina ME, McCuskey RS, Teoh NC, Farrell GC. Hepatocyte free cholesterol lipotoxicity results from JNK1-mediated mitochondrial injury and is HMGB1 and TLR4-dependent. J Hepatol 2014; 61:1376-84. [PMID: 25064435 DOI: 10.1016/j.jhep.2014.07.024] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/02/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Free cholesterol (FC) accumulates in non-alcoholic steatohepatitis (NASH) but not in simple steatosis. We sought to establish how FC causes hepatocyte injury. METHODS In NASH-affected livers from diabetic mice, subcellular FC distribution (filipin fluorescence) was established by subcellular marker co-localization. We loaded murine hepatocytes with FC by incubation with low-density lipoprotein (LDL) and studied the effects of FC on JNK1 activation, mitochondrial injury and cell death and on the amplifying roles of the high-mobility-group-box 1 (HMGB1) protein and the Toll-like receptor 4 (TLR4). RESULTS In NASH, FC localized to hepatocyte plasma membrane, mitochondria and ER. This was reproduced in FC-loaded hepatocytes. At 40 μM LDL, hepatocyte FC increased to cause LDH leakage, apoptosis and necrosis associated with JNK1 activation (c-Jun phosphorylation), mitochondrial membrane pore transition, cytochrome c release, oxidative stress (GSSG:GSH ratio) and ATP depletion. Mitochondrial swelling and crystae disarray were evident by electron microscopy. Jnk1(-/-) and Tlr4(-/-) hepatocytes were refractory to FC lipotoxicity; JNK inhibitors (1-2 μM CC-401, CC-930) blocked apoptosis and necrosis. Cyclosporine A and caspase-3 inhibitors protected FC-loaded hepatocytes, confirming mitochondrial cell death pathways; in contrast, 4-phenylbutyric acid, which improves ER folding capacity did not protect FC-loaded hepatocytes. HMGB1 was released into the culture medium of FC-loaded wild type (WT) but not Jnk1(-/-) or Tlr4(-/-) hepatocytes, while anti-HMGB1 anti-serum prevented JNK activation and FC lipotoxicity in WT hepatocytes. CONCLUSIONS These novel findings show that mitochondrial FC deposition causes hepatocyte apoptosis and necrosis by activating JNK1; inhibition of which could be a novel therapeutic approach in NASH. Further, there is a tight link between JNK1-dependent HMGB1 secretion from lipotoxic hepatocytes and a paracrine cytolytic effect on neighbouring cholesterol-loaded hepatocytes operating via TLR4.
Collapse
Affiliation(s)
- Lay T Gan
- Liver Research Group, Australian National University (ANU) Medical School at The Canberra Hospital, Garran, ACT, Australia
| | - Derrick M Van Rooyen
- Liver Research Group, Australian National University (ANU) Medical School at The Canberra Hospital, Garran, ACT, Australia
| | - Mark E Koina
- Department of Anatomical Pathology, ACT Pathology, The Canberra Hospital, ACT, Australia
| | - Robert S McCuskey
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, USA
| | - Narcissus C Teoh
- Liver Research Group, Australian National University (ANU) Medical School at The Canberra Hospital, Garran, ACT, Australia
| | - Geoffrey C Farrell
- Liver Research Group, Australian National University (ANU) Medical School at The Canberra Hospital, Garran, ACT, Australia.
| |
Collapse
|