1
|
Güzel Ö, Kehoe PG. The Contribution of the Renin-Angiotensin System to Alzheimer's Disease. Curr Top Behav Neurosci 2025; 69:107-127. [PMID: 39543022 DOI: 10.1007/7854_2024_525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The renin-angiotensin system (RAS) is becoming increasingly recognised as a biochemical pathway relevant to the development and progression of Alzheimer's disease (AD). RAS involvement in AD was initially linked to AD via numerous genetic association studies and more recent Genome-Wide Association Studies (GWAS), and in some cases in relation to classical hallmarks of AD pathology. Since these initial findings, which will be summarised here, several complementary areas of research are converging in support of what has been proposed as the Angiotensin Hypothesis for Alzheimer's disease. This hypothesis proposes how the RAS and disease-associated changes to the normal balance between opposing regulatory pathways within RAS warrant careful consideration in the pathogenesis of AD and its pathology. We discuss some of these in relation to RAS-targeting therapeutics, originally developed for the treatment of cardiovascular conditions, and how they might be repurposed as interventions for AD.
Collapse
Affiliation(s)
- Özge Güzel
- Cerebrovascular and Dementia Research Group, Bristol Medical School, University of Bristol, Bristol, UK.
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye.
| | - Patrick G Kehoe
- Cerebrovascular and Dementia Research Group, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
2
|
Barbosa GADC, Rubinho MP, Aquino-Júnior MK, Pedro JR, Donato LF, Trisciuzzi L, Silva AO, Ruginsk SG, Ceron CS, Peixoto N, Dias MVS, Pereira MGAG. Neuritogenesis and protective effects activated by Angiotensin 1-7 in astrocytes-neuron interaction. Neuropeptides 2024; 108:102480. [PMID: 39500142 DOI: 10.1016/j.npep.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/18/2024]
Abstract
The renin angiotensin system (RAS) has been studied for its effects on various neurological disorders. The identification of functional receptors for Ang-(1-7) and Ang II peptides in astrocytes highlights the physiological modulation and the important role of these cells in the central nervous system. The present study aims to understand the role of RAS peptides, particularly Ang-(1-7) and Ang II, in the secretion of trophic factors by astrocytes and their effects on hippocampal neurons. We used primary cultures of astrocytes and neurons from the hippocampus of either sex neonate of Wistar strain rats. In the present study, we demonstrated that the treatment of astrocytes with Ang-(1-7) acts on the modulation of these cells, inducing reactive astrogliosis, identified through the increase in the expression of GFAP. Furthermore, we obtained a conditioned medium from astrocytes treated with Ang-(1-7), which in addition to promoting the secretion of neurotrophic factors essential for neuronal-glial interactions that are fundamental for neuritogenesis and neuronal survival, showed a neuroprotective effect against glutamatergic excitotoxicity. In turn, Ang II does not exhibit the same effects on astrocyte modulation, exacerbating deleterious effects on brain RAS. Neuron-astrocyte interactions have been shown to be an integral part of the central effects mediated by RAS, and this study has significantly contributed to the understanding of the biochemical mechanisms involved in the functioning of this system.
Collapse
Affiliation(s)
| | - Marina Prado Rubinho
- Department of Biochemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Lívia Fligioli Donato
- Department of Biochemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Leonardo Trisciuzzi
- Department of Biochemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Silvia Graciela Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Carla Speroni Ceron
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Nathalia Peixoto
- Electrical & Computer Engineering Department, George Mason University, Fairfax, VA, United States of America
| | | | | |
Collapse
|
3
|
Al‐Qahtani Z, Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GE. The potential role of brain renin-angiotensin system in the neuropathology of Parkinson disease: Friend, foe or turncoat? J Cell Mol Med 2024; 28:e18495. [PMID: 38899551 PMCID: PMC11187740 DOI: 10.1111/jcmm.18495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson disease (PD) is one of the most common neurodegenerative diseases of the brain. Of note, brain renin-angiotensin system (RAS) is intricate in the PD neuropathology through modulation of oxidative stress, mitochondrial dysfunction and neuroinflammation. Therefore, modulation of brain RAS by angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) may be effective in reducing the risk and PD neuropathology. It has been shown that all components including the peptides and enzymes of the RAS are present in the different brain areas. Brain RAS plays a critical role in the regulation of memory and cognitive function, and in the controlling of central blood pressure. However, exaggerated brain RAS is implicated in the pathogenesis of different neurodegenerative diseases including PD. Two well-known pathways of brain RAS are recognized including; the classical pathway which is mainly mediated by AngII/AT1R has detrimental effects. Conversely, the non-classical pathway which is mostly mediated by ACE2/Ang1-7/MASR and AngII/AT2R has beneficial effects against PD neuropathology. Exaggerated brain RAS affects the viability of dopaminergic neurons. However, the fundamental mechanism of brain RAS in PD neuropathology was not fully elucidated. Consequently, the purpose of this review is to disclose the mechanistic role of RAS in in the pathogenesis of PD. In addition, we try to revise how the ACEIs and ARBs can be developed for therapeutics in PD.
Collapse
Affiliation(s)
- Zainah Al‐Qahtani
- Neurology Section, Internal Medicine Department, College of MedicineKing khaled universityAbhaSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & Development, FunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
4
|
Greene ES, Tabler TW, Orlowski SK, Dridi S. Effect of heat stress on the hypothalamic expression of water channel- and noncoding RNA biogenesis-related genes in modern broilers and their ancestor red jungle fowl. Brain Res 2024; 1830:148810. [PMID: 38365130 DOI: 10.1016/j.brainres.2024.148810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Genetic selection for high growth rate has resulted in spectacular progress in feed efficiency in chickens. As feed intake and water consumption (WC) are associated and both are affected by environmental conditions, we evaluated WC and its hypothalamic regulation in three broiler-based research lines and their ancestor jungle fowl (JF) under heat stress (HS) conditions. Slow growing ACRB, moderate growing 95RB, fast growing MRB, and JF were exposed to daily chronic cyclic HS (36 °C, 9 h/d) or thermoneutral temperature (24 °C). HS increased WC in the MRB only. Arginine vasopressin (AVP) mRNA levels were decreased by HS in the MRB. Within the renin-angiotensin-aldosterone system (RAAS) system, renin expression was increased by HS in the JF, ACRB, and 95RB, while angiotensin I-converting enzyme (ACE), angiotensin II receptors (type 1, AT1, and type 2, AT2) were affected by line. The expression of aquaporin (AQP2, 7, 9, 10, 11, and 12) genes was upregulated by HS, whereas AQP4 and AQP5 expressions were influenced by line. miRNA processing components (Dicer1, Ago2, Drosha) were significantly different among the lines, but were unaffected by HS. In summary, this is the first report showing the effect of HS on hypothalamic water channel- and noncoding RNA biogenesis-related genes in modern chicken populations and their ancestor JF. These results provide a novel framework for future research to identify new molecular mechanisms and signatures involved in water homeostasis and adaptation to HS.
Collapse
Affiliation(s)
- Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Travis W Tabler
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara K Orlowski
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States.
| |
Collapse
|
5
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Hamad RS, Alexiou A, Papadakis M, Saad HM, Batiha GE. Role of brain renin-angiotensin system in depression: A new perspective. CNS Neurosci Ther 2024; 30:e14525. [PMID: 37953501 PMCID: PMC11017442 DOI: 10.1111/cns.14525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Depression is a mood disorder characterized by abnormal thoughts. The pathophysiology of depression is related to the deficiency of serotonin (5HT), which is derived from tryptophan (Trp). Mitochondrial dysfunction, oxidative stress, and neuroinflammation are involved in the pathogenesis of depression. Notably, the renin-angiotensin system (RAS) is involved in the pathogenesis of depression, and different findings revealed that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) may be effective in depression. However, the underlying mechanism for the role of dysregulated brain RAS-induced depression remains speculative. Therefore, this review aimed to revise the conceivable role of ACEIs and ARBs and how these agents ameliorate the pathophysiology of depression. Dysregulation of brain RAS triggers the development and progression of depression through the reduction of brain 5HT and expression of brain-derived neurotrophic factor (BDNF) and the induction of mitochondrial dysfunction, oxidative stress, and neuroinflammation. Therefore, inhibition of central classical RAS by ARBS and ACEIs and activation of non-classical RAS prevent the development of depression by regulating 5HT, BDNF, mitochondrial dysfunction, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal MedicineMedical CollegeNajran UniversityNajranKSA
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Rabab S. Hamad
- Biological Sciences DepartmentCollege of Science, King Faisal UniversityAl AhsaSaudi Arabia
- Central LaboratoryTheodor Bilharz Research InstituteGizaEgypt
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
6
|
Barak R, Goshtasbi G, Fatehi R, Firouzabadi N. Signaling pathways and genetics of brain Renin angiotensin system in psychiatric disorders: State of the art. Pharmacol Biochem Behav 2024; 236:173706. [PMID: 38176544 DOI: 10.1016/j.pbb.2023.173706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Along the conventional pathways, Renin-angiotensin system (RAS) plays a key role in the physiology of the CNS and pathogenesis of psychiatric diseases. RAS is a complex regulatory pathway which is composed of several peptides and receptors and comprises two counter-regulatory axes. The classical (ACE1/AngII/AT1 receptor) axis and the contemporary (ACE2/Ang (1-7)/Mas receptor) axis. The genes coding for elements of both axes have been broadly studied. Numerous functional polymorphisms on components of RAS have been identified to serve as informative disease and treatment markers. This review summarizes the role of each peptide and receptor in the pathophysiology of psychiatric disorders (depression, bipolar disorders and schizophrenia), followed by a concise look at the role of genetic polymorphism of the RAS in the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Roya Barak
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ghazal Goshtasbi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Tiwari V, Singh J, Tiwari P, Chaturvedi S, Gupta S, Mishra A, Singh S, Wahajuddin M, Hanif K, Shukla S. ACE2/ANG-(1-7)/Mas receptor axis activation prevents inflammation and improves cognitive functions in streptozotocin induced rat model of Alzheimer's disease-like phenotypes. Eur J Pharmacol 2023; 946:175623. [PMID: 36871666 DOI: 10.1016/j.ejphar.2023.175623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Activation of the renin-angiotensin system (RAS), by Angiotensin converting enzyme/Angiotensin II/Angiotensin receptor-1 (ACE/Ang II/AT1 R) axis elicits amyloid deposition and cognitive impairment. Furthermore, ACE2 induced release of Ang-(1-7) binds with the Mas receptor and autoinhibits ACE/Ang II/AT1 axis activation. Inhibition of ACE by perindopril has been reported to improve memory in preclinical settings. However, the functional significance and mechanism by which ACE2/Mas receptor regulate cognitive functions and amyloid pathology is not known. The present study is aimed to determine the role of ACE2/Ang-(1-7)/Mas receptor axis in STZ induced rat model of Alzheimer's disease (AD). We have used pharmacological, biochemical and behavioural approaches to identify the role of ACE2/Ang-(1-7)/Mas receptor axis activation on AD-like pathology in both in vitro and invivo models. STZ treatment enhances ROS formation, inflammation markers and NFκB/p65 levels which are associated with reduced ACE2/Mas receptor levels, acetylcholine activity and mitochondrial membrane potential in N2A cells. DIZE mediated ACE2/Ang-(1-7)/Mas receptor axis activation resulted in reduced ROS generation, astrogliosis, NFκB level and inflammatory molecules and improved mitochondrial functions along with Ca2+ influx in STZ treated N2A cells. Interestingly, DIZE induced activation of ACE2/Mas receptor significantly restored acetylcholine levels and reduced amyloid-beta and phospho-tau deposition in cortex and hippocampus that resulted in improved cognitive function in STZ induced rat model of AD-like phenotypes. Our data indicate that ACE2/Mas receptor activation is sufficient to prevented cognitive impairment and progression of amyloid pathology in STZ induced rat model of AD-like phenotypes. These findings suggest the potential role of ACE2/Ang-(1-7)/Mas axis in AD pathophysiology by regulating inflammation cognitive functions.
Collapse
Affiliation(s)
- Virendra Tiwari
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jitendra Singh
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India
| | - Priya Tiwari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India
| | - Swati Chaturvedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmaceutics and Pharmacokinetics, CSIR - Central Drug Research Institute, Lucknow, 226031, (U.P), India
| | - Shivangi Gupta
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akanksha Mishra
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India; Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 01595, USA
| | - Sonu Singh
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India; Department of Neuroscience, School of Medicine, University of Connecticut (Uconn) Health Center, 263 Farmington Avenue, L-4078, Farmington, CT, 06030, USA
| | - Muhammad Wahajuddin
- Division of Pharmaceutics and Pharmacokinetics, CSIR - Central Drug Research Institute, Lucknow, 226031, (U.P), India; Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - Kashif Hanif
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Xu T, Zhou X, Kanen JW, Wang L, Li J, Chen Z, Zhang R, Jiao G, Zhou F, Zhao W, Yao S, Becker B. Angiotensin blockade enhances motivational reward learning via enhancing striatal prediction error signaling and frontostriatal communication. Mol Psychiatry 2023; 28:1692-1702. [PMID: 36810437 DOI: 10.1038/s41380-023-02001-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Adaptive human learning utilizes reward prediction errors (RPEs) that scale the differences between expected and actual outcomes to optimize future choices. Depression has been linked with biased RPE signaling and an exaggerated impact of negative outcomes on learning which may promote amotivation and anhedonia. The present proof-of-concept study combined computational modeling and multivariate decoding with neuroimaging to determine the influence of the selective competitive angiotensin II type 1 receptor antagonist losartan on learning from positive or negative outcomes and the underlying neural mechanisms in healthy humans. In a double-blind, between-subjects, placebo-controlled pharmaco-fMRI experiment, 61 healthy male participants (losartan, n = 30; placebo, n = 31) underwent a probabilistic selection reinforcement learning task incorporating a learning and transfer phase. Losartan improved choice accuracy for the hardest stimulus pair via increasing expected value sensitivity towards the rewarding stimulus relative to the placebo group during learning. Computational modeling revealed that losartan reduced the learning rate for negative outcomes and increased exploitatory choice behaviors while preserving learning for positive outcomes. These behavioral patterns were paralleled on the neural level by increased RPE signaling in orbitofrontal-striatal regions and enhanced positive outcome representations in the ventral striatum (VS) following losartan. In the transfer phase, losartan accelerated response times and enhanced VS functional connectivity with left dorsolateral prefrontal cortex when approaching maximum rewards. These findings elucidate the potential of losartan to reduce the impact of negative outcomes during learning and subsequently facilitate motivational approach towards maximum rewards in the transfer of learning. This may indicate a promising therapeutic mechanism to normalize distorted reward learning and fronto-striatal functioning in depression.
Collapse
Affiliation(s)
- Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jonathan W Kanen
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- Max Planck School of Cognition, Leipzig, Germany
| | - Zhiyi Chen
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Weihua Zhao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China. .,MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
9
|
Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13:1053136. [PMID: 36761172 PMCID: PMC9902382 DOI: 10.3389/fimmu.2022.1053136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Emotional disorders, including depression and anxiety, contribute considerably to morbidity across the world. Depression is a serious condition and is projected to be the top contributor to the global burden of disease by 2030. The role of the renin-angiotensin system (RAS) in hypertension and emotional disorders is well established. Evidence points to an association between elevated RAS activity and depression and anxiety, partly through the induction of neuroinflammation, stress, and oxidative stress. Therefore, blocking the RAS provides a theoretical basis for future treatment of anxiety and depression. The evidence for the positive effects of RAS blockers on depression and anxiety is reviewed, aiming to provide a promising target for novel anxiolytic and antidepressant medications and/or for improving the efficacy of currently available medications used for the treatment of anxiety and depression, which independent of blood pressure management.
Collapse
Affiliation(s)
| | - Fang Deng
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Rukavina Mikusic NL, Gironacci MM. Mas receptor endocytosis and signaling in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:49-65. [PMID: 36631200 DOI: 10.1016/bs.pmbts.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The renin angiotensin system (RAS) plays a major role in blood pressure regulation and electrolyte homeostasis and is mainly composed by two axes mediating opposite effects. The pressor axis, constituted by angiotensin (Ang) II and the Ang II type 1 receptor (AT1R), exerts vasoconstrictor, proliferative, hypertensive, oxidative and pro-inflammatory actions, while the depressor/protective axis, represented by Ang-(1-7), its Mas receptor (MasR) and the Ang II type 2 receptor (AT2R), opposes the actions elicited by the pressor arm. The MasR belongs to the G protein-coupled receptor (GPCR) family. To avoid receptor overstimulation, GPCRs undergo internalization and trafficking into the cell after being stimulated. Then, the receptor may induce other signaling cascades or it may even interact with other receptors, generating distinct biological responses. Thus, control of a GPCR regarding space and time affects the specificity of the signals transduced by the receptor and the ultimate cellular response. The present chapter is focused on the signaling and trafficking pathways of MasR under physiological conditions and its participation in the pathogenesis of numerous brain diseases.
Collapse
Affiliation(s)
- Natalia L Rukavina Mikusic
- From Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mariela M Gironacci
- From Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
11
|
Aminopeptidase Activities Interact Asymmetrically between Brain, Plasma and Systolic Blood Pressure in Hypertensive Rats Unilaterally Depleted of Dopamine. Biomedicines 2022; 10:biomedicines10102457. [PMID: 36289718 PMCID: PMC9598709 DOI: 10.3390/biomedicines10102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Brain dopamine, in relation to the limbic system, is involved in cognition and emotion. These functions are asymmetrically processed. Hypertension not only alters such functions but also their asymmetric brain pattern as well as their bilateral pattern of neurovisceral integration. The central and peripheral renin-angiotensin systems, particularly the aminopeptidases involved in its enzymatic cascade, play an important role in blood pressure control. In the present study, we report how these aminopeptidases from left and right cortico-limbic locations, plasma and systolic blood pressure interact among them in spontaneously hypertensive rats (SHR) unilaterally depleted of dopamine. The study comprises left and right sham and left and right lesioned (dopamine-depleted) rats as research groups. Results revealed important differences in the bilateral behavior comparing sham left versus sham right, lesioned left versus lesioned right, and sham versus lesioned animals. Results also suggest an important role for the asymmetrical functioning of the amygdala in cardiovascular control and an asymmetrical behavior in the interaction between the medial prefrontal cortex, hippocampus and amygdala with plasma, depending on the left or right depletion of dopamine. Compared with previous results of a similar study in Wistar-Kyoto (WKY) normotensive rats, the asymmetrical behaviors differ significantly between both WKY and SHR strains.
Collapse
|
12
|
Kangussu LM, Rocha NP, Valadão PAC, Machado TCG, Soares KB, Joviano-Santos JV, Latham LB, Colpo GD, Almeida-Santos AF, Furr Stimming E, Simões e Silva AC, Teixeira AL, Miranda AS, Guatimosim C. Renin-Angiotensin System in Huntington's Disease: Evidence from Animal Models and Human Patients. Int J Mol Sci 2022; 23:7686. [PMID: 35887034 PMCID: PMC9316902 DOI: 10.3390/ijms23147686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
The Renin-Angiotensin System (RAS) is expressed in the central nervous system and has important functions that go beyond blood pressure regulation. Clinical and experimental studies have suggested that alterations in the brain RAS contribute to the development and progression of neurodegenerative diseases. However, there is limited information regarding the involvement of RAS components in Huntington's disease (HD). Herein, we used the HD murine model, (BACHD), as well as samples from patients with HD to investigate the role of both the classical and alternative axes of RAS in HD pathophysiology. BACHD mice displayed worse motor performance in different behavioral tests alongside a decrease in the levels and activity of the components of the RAS alternative axis ACE2, Ang-(1-7), and Mas receptors in the striatum, prefrontal cortex, and hippocampus. BACHD mice also displayed a significant increase in mRNA expression of the AT1 receptor, a component of the RAS classical arm, in these key brain regions. Moreover, patients with manifest HD presented higher plasma levels of Ang-(1-7). No significant changes were found in the levels of ACE, ACE2, and Ang II. Our findings provided the first evidence that an imbalance in the RAS classical and counter-regulatory arms may play a role in HD pathophysiology.
Collapse
Affiliation(s)
- Lucas M. Kangussu
- Department of Morphology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.K.); (P.A.C.V.); (T.C.G.M.); (K.B.S.); (J.V.J.-S.); (A.F.A.-S.); (A.S.M.); (C.G.)
| | - Natalia P. Rocha
- Department of Neurology, The Mitchell Center for Alzheimer′s Disease and Related Brain Disorders, The University of Texas Health Science Center, Houston, TX 77030, USA;
- McGovern Medical School, HDSA Center of Excellence at The University of Texas Health Science Center, Houston, TX 77030, USA; (L.B.L.); (E.F.S.)
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston, TX 77054, USA;
| | - Priscila A. C. Valadão
- Department of Morphology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.K.); (P.A.C.V.); (T.C.G.M.); (K.B.S.); (J.V.J.-S.); (A.F.A.-S.); (A.S.M.); (C.G.)
| | - Thatiane C. G. Machado
- Department of Morphology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.K.); (P.A.C.V.); (T.C.G.M.); (K.B.S.); (J.V.J.-S.); (A.F.A.-S.); (A.S.M.); (C.G.)
| | - Kívia B. Soares
- Department of Morphology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.K.); (P.A.C.V.); (T.C.G.M.); (K.B.S.); (J.V.J.-S.); (A.F.A.-S.); (A.S.M.); (C.G.)
| | - Julliane V. Joviano-Santos
- Department of Morphology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.K.); (P.A.C.V.); (T.C.G.M.); (K.B.S.); (J.V.J.-S.); (A.F.A.-S.); (A.S.M.); (C.G.)
- Center for Mathematics, Computing, and Cognition (CMCC), Federal University of ABC (UFABC), São Bernardo do Campo 09612-000, SP, Brazil
| | - Leigh B. Latham
- McGovern Medical School, HDSA Center of Excellence at The University of Texas Health Science Center, Houston, TX 77030, USA; (L.B.L.); (E.F.S.)
- School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Gabriela D. Colpo
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston, TX 77054, USA;
| | - Ana Flávia Almeida-Santos
- Department of Morphology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.K.); (P.A.C.V.); (T.C.G.M.); (K.B.S.); (J.V.J.-S.); (A.F.A.-S.); (A.S.M.); (C.G.)
| | - Erin Furr Stimming
- McGovern Medical School, HDSA Center of Excellence at The University of Texas Health Science Center, Houston, TX 77030, USA; (L.B.L.); (E.F.S.)
| | - Ana Cristina Simões e Silva
- Department of Pediatrics, School of Medicine, Federal University of Minas Gerais, Belo Horizonte 30130-100, MG, Brazil;
| | - Antônio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston, TX 77054, USA;
- Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Aline Silva Miranda
- Department of Morphology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.K.); (P.A.C.V.); (T.C.G.M.); (K.B.S.); (J.V.J.-S.); (A.F.A.-S.); (A.S.M.); (C.G.)
| | - Cristina Guatimosim
- Department of Morphology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.K.); (P.A.C.V.); (T.C.G.M.); (K.B.S.); (J.V.J.-S.); (A.F.A.-S.); (A.S.M.); (C.G.)
| |
Collapse
|
13
|
Correa BHM, Becari L, Peliky Fontes MA, Simões-e-Silva AC, Kangussu LM. Involvement of the Renin-Angiotensin System in Stress: State of the Art and Research Perspectives. Curr Neuropharmacol 2022; 20:1212-1228. [PMID: 34554902 PMCID: PMC9886820 DOI: 10.2174/1570159x19666210719142300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Along with other canonical systems, the renin-angiotensin system (RAS) has shown important roles in stress. This system is a complex regulatory proteolytic cascade composed of various enzymes, peptides, and receptors. Besides the classical (ACE/Ang II/AT1 receptor) and the counter-regulatory (ACE2/Ang-(1-7)/Mas receptor) RAS axes, evidence indicates that nonclassical components, including Ang III, Ang IV, AT2 and AT4, can also be involved in stress. OBJECTIVE AND METHODS This comprehensive review summarizes the current knowledge on the participation of RAS components in different adverse environmental stimuli stressors, including air jet stress, cage switch stress, restraint stress, chronic unpredictable stress, neonatal isolation stress, and post-traumatic stress disorder. RESULTS AND CONCLUSION In general, activation of the classical RAS axis potentiates stress-related cardiovascular, endocrine, and behavioral responses, while the stimulation of the counter-regulatory axis attenuates these effects. Pharmacological modulation in both axes is optimistic, offering promising perspectives for stress-related disorders treatment. In this regard, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are potential candidates already available since they block the classical axis, activate the counter-regulatory axis, and are safe and efficient drugs.
Collapse
Affiliation(s)
- Bernardo H. M. Correa
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Luca Becari
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Marco Antônio Peliky Fontes
- Department of Physiology & Biophysics - Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Ana Cristina Simões-e-Silva
- Department of Pediatrics, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas M. Kangussu
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; ,Address correspondence to this author at the Department of Morphology, Biological Sciences Institute – Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Tel: (+55-31) 3409-2772; E-mail:
| |
Collapse
|
14
|
Jo Y, Kim S, Ye BS, Lee E, Yu YM. Protective Effect of Renin-Angiotensin System Inhibitors on Parkinson's Disease: A Nationwide Cohort Study. Front Pharmacol 2022; 13:837890. [PMID: 35308220 PMCID: PMC8927987 DOI: 10.3389/fphar.2022.837890] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Renin-angiotensin system (RAS) inhibitors have been suggested as protective agents in Parkinson's disease (PD). However, epidemiological evidence on the association between RAS inhibitors and the development of PD is inconsistent. Objectives: To investigate the effect of RAS inhibitors on PD risk in patients with ischemic heart disease (IHD) by type and cumulative duration of RAS inhibitors and their degree of blood-brain barrier (BBB) penetration ability. Methods: This was a propensity score-matched retrospective cohort study using 2008-2019 healthcare claims data from the Korean Health Insurance Review and Assessment database. The association between RAS inhibitor use and PD in patients with IHD was evaluated using multivariate Cox proportional hazard regression analysis. The risks are presented as adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs). Results: Over a 10-year follow-up, 1,086 of 62,228 IHD patients developed PD. The Cox regression model showed that the use of RAS inhibitors was significantly associated with a lower risk of PD (aHR = 0.75; 95% CI 0.66-0.85) than the non-use of RAS inhibitors. Specifically, this reduced risk of PD only remained with the use of BBB-crossing angiotensin II receptor blockers (ARBs) (aHR = 0.62; 95% CI = 0.53-0.74), and this association was more definite with an increasing cumulative duration. A significantly reduced risk of PD was not observed with the use of BBB-crossing angiotensin-converting enzyme inhibitors. Conclusions: The use of ARBs with BBB-penetrating properties and a high cumulative duration significantly reduces the risk of PD in IHD patients. This protective effect could provide insight into disease-modifying drug candidates for PD.
Collapse
Affiliation(s)
- Youngkwon Jo
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, South Korea
| | - Seungyeon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.,Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Euni Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Yun Mi Yu
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, South Korea.,Department of Pharmaceutical Medicine and Regulatory Sciences, Colleges of Medicine and Pharmacy, Yonsei University, Incheon, South Korea
| |
Collapse
|
15
|
Shared Molecular Targets in Parkinson’s Disease and Arterial Hypertension: A Systematic Review. Biomedicines 2022; 10:biomedicines10030653. [PMID: 35327454 PMCID: PMC8945026 DOI: 10.3390/biomedicines10030653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Parkinson’s disease and arterial hypertension are likely to coexist in the elderly, with possible bidirectional interactions. We aimed to assess the role of antihypertensive agents in PD emergence and/or progression. (2) We performed a systematic search on the PubMed database. Studies enrolling patients with Parkinson’s disease who underwent treatment with drugs pertaining to one of the major antihypertensive drug classes (β-blockers, diuretics, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and calcium-channel blockers) prior to or after the diagnosis of parkinsonism were scrutinized. We divided the outcome into two categories: neuroprotective and disease-modifying effect. (3) We included 20 studies in the qualitative synthesis, out of which the majority were observational studies, with only one randomized controlled trial. There are conflicting results regarding the effect of antihypertensive drugs on Parkinson’s disease pathogenesis, mainly because of heterogeneous protocols and population. (4) Conclusions: There is low quality evidence that antihypertensive agents might be potential therapeutic targets in Parkinson’s disease, but this hypothesis needs further testing.
Collapse
|
16
|
Garcia-Garrote M, Parga JA, Labandeira PJ, Labandeira-Garcia JL, Rodriguez-Pallares J. Dopamine regulates adult neurogenesis in the ventricular-subventricular zone via dopamine D3 angiotensin type 2 receptor interactions. Stem Cells 2021; 39:1778-1794. [PMID: 34521155 DOI: 10.1002/stem.3457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
Adult neurogenesis is a dynamic and highly regulated process and different studies suggest that dopamine modulates ventricular-subventricular zone (V-SVZ) neurogenesis. However, the specific role of dopamine and the mechanisms/factors underlying its effects on physiological and pathological conditions such as Parkinson's disease (PD) are not fully understood. Recent studies have described counter-regulatory interactions between renin-angiotensin system (RAS) and dopamine in peripheral tissues and in the nigrostriatal system. We have previously demonstrated that angiotensin receptors regulate proliferation and generation of neuroblasts in the rodent V-SVZ. However, possible interactions between dopamine receptors and RAS in the V-SVZ and their role in alterations of neurogenesis in animal models of PD have not been investigated. In V-SVZ cultures, activation of dopamine receptors induced changes in the expression of angiotensin receptors. Moreover, dopamine, via D2-like receptors and particularly D3 receptors, increased generation of neurospheres derived from the V-SVZ and this effect was mediated by angiotensin type-2 (AT2) receptors. In rats, we observed a marked reduction in proliferation and generation of neuroblasts in the V-SVZ of dopamine-depleted animals, and inhibition of AT1 receptors or activation of AT2 receptors restored proliferation and generation of neuroblasts to control levels. Moreover, intrastriatal mesencephalic grafts partially restored proliferation and generation of neuroblasts observed in the V-SVZ of dopamine-depleted rats. Our data revealed that dopamine and angiotensin receptor interactions play a major role in the regulation of V-SVZ and suggest potential beneficial effects of RAS modulators on the regulation of adult V-SVZ neurogenesis.
Collapse
Affiliation(s)
- Maria Garcia-Garrote
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Juan A Parga
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo J Labandeira
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Luis Labandeira-Garcia
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
17
|
Li N, Gu W, Lu C, Sun X, Tong P, Han Y, Wang W, Dai J. Characteristics of Angiotensin I-converting enzyme 2, type II transmembrane serine protease 2 and 4 in tree shrew indicate it as a potential animal model for SARS-CoV-2 infection. Bioengineered 2021; 12:2836-2850. [PMID: 34227905 PMCID: PMC8806782 DOI: 10.1080/21655979.2021.1940072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Angiotensin I-converting enzyme 2 (ACE2), type II transmembrane serine protease 2 and 4 (TMPRSS2 and TMPRSS4) are important receptors for SARS-CoV-2 infection. In this study, the full-length tree shrewACE2 gene was cloned and sequenced, and its biological information was analyzed. The expression levels of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs of the tree shrew were detected. The results showed that the full-length ACE2 gene in tree shrews was 2,786 bp, and its CDS was 2,418 bp, encoding 805 amino acids. Phylogenetic analysis based on the CDS of ACE2 revealed that tree shrews were more similar to rabbits (85.93%) and humans (85.47%) but far from mice (82.81%) and rats (82.58%). In silico analysis according to the binding site of SARS-CoV-2 with the ACE2 receptor of different species predicted that tree shrews had potential SARS-CoV-2 infection possibility, which was similar to that of rabbits, cats and dogs but significantly higher than that of mice and rats. In addition, various tissues or organs of tree shrews expressed ACE2, TMPRSS2 and TMPRSS4. Among them, the kidney most highly expressed ACE2, followed by the lung and liver. The esophagus, lung, liver, intestine and kidney had relatively high expression levels of TMPRSS2 and TMPRSS4. In general, we reported for the first time the expression of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs in tree shrews. Our results revealed that tree shrews could be used as a potential animal model to study the mechanism underlying SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Na Li
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Wenpeng Gu
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Caixia Lu
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Xiaomei Sun
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Pinfen Tong
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Yuanyuan Han
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Wenguang Wang
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Jiejie Dai
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| |
Collapse
|
18
|
Rukavina Mikusic NL, Pineda AM, Gironacci MM. Angiotensin-(1-7) and Mas receptor in the brain. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key regulator of blood pressure and electrolyte homeostasis. Besides its importance as regulator of the cardiovascular function, the RAS has also been associated to the modulation of higher brain functions, including cognition, memory, depression and anxiety. For many years, angiotensin II (Ang II) has been considered the major bioactive component of the RAS. However, the existence of many other biologically active RAS components has currently been recognized, with similar, opposite, or distinct effects to those exerted by Ang II. Today, it is considered that the RAS is primarily constituted by two opposite arms. The pressor arm is composed by Ang II and the Ang II type 1 (AT1) receptor (AT1R), which mediates the vasoconstrictor, proliferative, hypertensive, oxidative and pro-inflammatory effects of the RAS. The depressor arm is mainly composed by Ang-(1-7), its Mas receptor (MasR) which mediates the depressor, vasodilatory, antiproliferative, antioxidant and anti-inflammatory effects of Ang-(1-7) and the AT2 receptor (AT2R), which opposes to the effects mediated by AT1R activation. Central Ang-(1-7) is implicated in the control of the cardiovascular function, thus participating in the regulation of blood pressure. Ang-(1-7) also exerts neuroprotective actions through MasR activation by opposing to the harmful effects of the Ang II/AT1R axis. This review is focused on the expression and regulation of the Ang-(1-7)/MasR axis in the brain, its main neuroprotective effects and the evidence regarding its involvement in the pathophysiology of several diseases at cardiovascular and neurological level.
Collapse
Affiliation(s)
- Natalia L. Rukavina Mikusic
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Angélica M. Pineda
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Mariela M. Gironacci
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| |
Collapse
|
19
|
Delaitre C, Boisbrun M, Lecat S, Dupuis F. Targeting the Angiotensin II Type 1 Receptor in Cerebrovascular Diseases: Biased Signaling Raises New Hopes. Int J Mol Sci 2021; 22:ijms22136738. [PMID: 34201646 PMCID: PMC8269339 DOI: 10.3390/ijms22136738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022] Open
Abstract
The physiological and pathophysiological relevance of the angiotensin II type 1 (AT1) G protein-coupled receptor no longer needs to be proven in the cardiovascular system. The renin–angiotensin system and the AT1 receptor are the targets of several classes of therapeutics (such as angiotensin converting enzyme inhibitors or angiotensin receptor blockers, ARBs) used as first-line treatments in cardiovascular diseases. The importance of AT1 in the regulation of the cerebrovascular system is also acknowledged. However, despite numerous beneficial effects in preclinical experiments, ARBs do not induce satisfactory curative results in clinical stroke studies. A better understanding of AT1 signaling and the development of biased AT1 agonists, able to selectively activate the β-arrestin transduction pathway rather than the Gq pathway, have led to new therapeutic strategies to target detrimental effects of AT1 activation. In this paper, we review the involvement of AT1 in cerebrovascular diseases as well as recent advances in the understanding of its molecular dynamics and biased or non-biased signaling. We also describe why these alternative signaling pathways induced by β-arrestin biased AT1 agonists could be considered as new therapeutic avenues for cerebrovascular diseases.
Collapse
Affiliation(s)
- Céline Delaitre
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France;
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS/Université de Strasbourg, 300 Boulevard Sébastien Brant, CS 10413, CEDEX, 67412 Illkirch-Graffenstaden, France;
| | | | - Sandra Lecat
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS/Université de Strasbourg, 300 Boulevard Sébastien Brant, CS 10413, CEDEX, 67412 Illkirch-Graffenstaden, France;
| | - François Dupuis
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France;
- Correspondence: ; Tel.: +33-372747272
| |
Collapse
|
20
|
Lecarpentier Y, Vallée A. The key role of the level of ACE2 gene expression in SARS-CoV-2 infection. Aging (Albany NY) 2021; 13:14552-14556. [PMID: 34115612 PMCID: PMC8221359 DOI: 10.18632/aging.203181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/05/2021] [Indexed: 12/18/2022]
Abstract
SARS-CoV-2 more readily affects the elderly, especially as they present co-morbidities. In the COVID-19 pathogeny, ACE2 appears to be the key cell receptor for SARS-CoV-2 to infect humans. The level of ACE2 gene expression influences the susceptibility of contracting SARS-CoV-2. In circumstances in which the ACE2 level is low, the incidence of Covid-19 seems to be fewer. Two clinical patterns illustrate this observation, i. e., in infants and in Alzheimer's disease (AD). Very young children and AD patients get little COVID-19, in part probably due to decreased expression of ACE2. The determination of the nasal level of ACE2 gene expression could provide a useful scale to predict the susceptibility to contract the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, Suresnes, France
| |
Collapse
|
21
|
Marchi-Coelho C, Costa-Ferreira W, Reis-Silva LL, Crestani CC. Angiotensinergic Neurotransmissions in the Medial Amygdala Nucleus Modulate Behavioral Changes in the Forced Swimming Test Evoked by Acute Restraint Stress in Rats. Cells 2021; 10:1217. [PMID: 34067508 PMCID: PMC8156471 DOI: 10.3390/cells10051217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the role of angiotensin II type 1 (AT1 receptor) and type 2 (AT2 receptor) and MAS receptors present in the medial amygdaloid nucleus (MeA) in behavioral changes in the forced swimming test (FST) evoked by acute restraint stress in male rats. For this, rats received bilateral microinjection of either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319, the selective MAS receptor antagonist A-779, or vehicle 10 min before a 60 min restraint session. Then, behavior in the FST was evaluated immediately after the restraint (15 min session) and 24 h later (5 min session). The behavior in the FST of a non-stressed group was also evaluated. We observed that acute restraint stress decreased immobility during both sessions of the FST in animals treated with vehicle in the MeA. The decreased immobility during the first session was inhibited by intra-MeA administration of PD123319, whereas the effect during the second session was not identified in animals treated with A-779 into the MeA. Microinjection of PD123319 into the MeA also affected the pattern of active behaviors (i.e., swimming and climbing) during the second session of the FST. Taken together, these results indicate an involvement of angiotensinergic neurotransmissions within the MeA in behavioral changes in the FST evoked by stress.
Collapse
MESH Headings
- Angiotensin Receptor Antagonists/pharmacology
- Angiotensins/metabolism
- Animals
- Behavior, Animal/drug effects
- Corticomedial Nuclear Complex/drug effects
- Corticomedial Nuclear Complex/metabolism
- Corticomedial Nuclear Complex/physiopathology
- Disease Models, Animal
- Male
- Motor Activity/drug effects
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Rats, Wistar
- Reaction Time
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Renin-Angiotensin System/drug effects
- Restraint, Physical
- Signal Transduction
- Stress, Psychological/etiology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- Swimming
- Time Factors
- Rats
Collapse
Affiliation(s)
- Camila Marchi-Coelho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
| | - Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| | - Lilian L. Reis-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| | - Carlos C. Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
22
|
Stoyell-Conti FF, Itty S, Abraham C, Rigatto K, West CA, Speth RC. 125I-Angiotensin 1-7 binds to a different site than angiotensin 1-7 in tissue membrane preparations. Endocrine 2021; 72:529-538. [PMID: 33415576 DOI: 10.1007/s12020-020-02572-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To study the receptor for Angiotensin (Ang) 1-7 using a radioligand (125I-Ang 1-7)-binding assay. For more than a decade, Mas has been viewed as the receptor for Ang 1-7; however, Ang 1-7 binding has not been pharmacologically characterized in tissue membrane preparations. METHODS Radioligand-binding assays were carried out using tissue membrane preparations using radioiodinated Angiotensin 1-7 (125I-Ang 1-7) to characterize its binding site. Non-radioactive 127I-Ang 1-7 was used to test if the addition of an iodine to the tyrosine4 moiety of Ang 1-7 changes the ability of Ang 1-7 to competitively inhibit 125I-Ang 1-7 binding. RESULTS 125I-Ang 1-7 binds saturably, with moderately high affinity (10-20 nM) to a binding site in rat liver membranes that is displaceable by 127I-Ang 1-7 at nanomolar concentrations (IC50 = 62 nM) while Ang 1-7 displaces at micromolar concentrations (IC50 = 80 µM) at ~22 °C. This binding was also displaceable by inhibitors of metalloproteases at room temperature. This suggests that 125I-Ang 1-7 binds to MMPs and/or ADAMs as well as other liver membrane elements at ~ 22 °C. However, when 125I-Ang 1-7-binding assays were run at 0-4 °C, the same MMP inhibitors did not effectively compete for 125I-Ang 1-7. CONCLUSIONS The addition of an iodine molecule to the tyrosine in position 4 of Ang 1-7 drastically changes the binding characteristics of this peptide making it unsuitable for characterization of Ang 1-7 receptors.
Collapse
Affiliation(s)
- Filipe F Stoyell-Conti
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Sarin Itty
- Halmos College of Natural Science & Oceanography, Nova Southeastern University, Fort Lauderdale, FL, USA
- Kiran P. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christy Abraham
- Halmos College of Natural Science & Oceanography, Nova Southeastern University, Fort Lauderdale, FL, USA
- Kiran P. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Katya Rigatto
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Laboratório de Fisiologia Translacional, Universidade Federal de Ciências da Saúde de Porto, Alegre, RS, Brazil
| | - Crystal A West
- Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
- Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, DC, USA.
| |
Collapse
|
23
|
Stoyell-Conti FF, Chabbra A, Puthentharayil J, Rigatto K, Speth RC. Chronic administration of pharmacological doses of angiotensin 1-7 and iodoangiotensin 1-7 has minimal effects on blood pressure, heart rate, and cognitive function of spontaneously hypertensive rats. Physiol Rep 2021; 9:e14812. [PMID: 33904655 PMCID: PMC8077095 DOI: 10.14814/phy2.14812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases are the principal cause of death worldwide, with hypertension being the most common cardiovascular disease risk factor. High blood pressure (BP) is also associated with an increased risk of poor cognitive performance and dementia including Alzheimer's disease. Angiotensin 1–7 (Ang 1‐7), a product of the renin‐angiotensin system (RAS), exhibits central and peripheral actions to reduce BP. Recent data from our lab reveals that the addition of a non‐radioactive iodine molecule to the tyrosine in position 4 of Ang 1‐7 (iodoAng 1‐7) makes it ~1000‐fold more potent than Ang 1‐7 in competing for the 125I‐Ang 1‐7 binding site (Stoyell‐Conti et al., 2020). Moreover, the addition of the non‐radioactive iodine molecule increases (~4‐fold) iodoAng 1‐7’s ability to bind to the AT1 receptor (AT1R), the primary receptor for Ang II. Preliminary data indicates that iodoAng 1‐7 can also compete for the 125I‐Ang IV binding site with a low micromolar IC50. Thus, our aims were to compare the effects of chronic treatment of the Spontaneously Hypertensive Rat (SHR) with iodoAng 1‐7 (non‐radioactive iodine isotope) and Ang 1‐7 on arterial pressure, heart rate, and cognitive function. For this study, male SHRs were divided into three groups and treated with Saline, Ang 1‐7, or iodoAng 1‐7 administrated subcutaneously using a 28‐day osmotic mini pump. Systolic BP was measured non‐invasively by the tail‐cuff technique. Cognitive function was assessed by Y‐Maze test and novel object recognition (NOR) test. We have demonstrated in SHRs that subcutaneous administration of high doses of iodoAng 1‐7 prevented the increase in heart rate with age, while Ang 1‐7 showed a trend toward preventing the increase in heart rate, possibly by improving baroreflex control of the heart. Conversely, neither Ang 1‐7 nor iodoAng 1‐7 administered subcutaneously affected BP nor cognitive function.
Collapse
Affiliation(s)
- Filipe F Stoyell-Conti
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.,Surgery Department, University of Miami, Miami, FL, USA
| | - Alesa Chabbra
- Halmos College of Natural Science & Oceanography, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Joseph Puthentharayil
- Halmos College of Natural Science & Oceanography, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Katya Rigatto
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Laboratório de Fisiologia Translacional, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|
24
|
Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021; 136:111193. [PMID: 33461019 PMCID: PMC7836742 DOI: 10.1016/j.biopha.2020.111193] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a pandemic affecting millions of individuals has raised great concern throughout the world, and the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was identified as the causative agent for COVID-19. The multifunctional protein angiotensin converting enzyme 2 (ACE2) is accepted as its primary target for entry into host cells. In its enzymatic function, ACE2, like its homologue ACE, regulates the renin-angiotensin system (RAS) critical for cardiovascular and renal homeostasis in mammals. Unlike ACE, however, ACE2 drives an alternative RAS pathway by degrading Ang-II and thus operates to balance RAS homeostasis in the context of hypertension, heart failure, and cardiovascular as well as renal complications of diabetes. Outside the RAS, ACE2 hydrolyzes key peptides, such as amyloid-β, apelin, and [des-Arg9]-bradykinin. In addition to its enzymatic functions, ACE2 is found to regulate intestinal amino acid homeostasis and the gut microbiome. Although the non-enzymatic function of ACE2 as the entry receptor for SARS-CoV-2 has been well established, the contribution of enzymatic functions of ACE2 to the pathogenesis of COVID-19-related lung injury has been a matter of debate. A complete understanding of this central enzyme may begin to explain the various symptoms and pathologies seen in SARS-CoV-2 infected individuals, and may aid in the development of novel treatments for COVID-19.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
25
|
Rivas-Santisteban R, Lillo J, Muñoz A, Rodríguez-Pérez AI, Labandeira-García JL, Navarro G, Franco R. Novel Interactions Involving the Mas Receptor Show Potential of the Renin-Angiotensin system in the Regulation of Microglia Activation: Altered Expression in Parkinsonism and Dyskinesia. Neurotherapeutics 2021; 18:998-1016. [PMID: 33474655 PMCID: PMC7817140 DOI: 10.1007/s13311-020-00986-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/30/2022] Open
Abstract
The renin-angiotensin system (RAS) not only plays an important role in controlling blood pressure but also participates in almost every process to maintain homeostasis in mammals. Interest has recently increased because SARS viruses use one RAS component (ACE2) as a target-cell receptor. The occurrence of RAS in the basal ganglia suggests that the system may be targeted to improve the therapy of neurodegenerative diseases. RAS-related data led to the hypothesis that RAS receptors may interact with each other. The aim of this paper was to find heteromers formed by Mas and angiotensin receptors and to address their functionality in neurons and microglia. Novel interactions were discovered by using resonance energy transfer techniques. The functionality of individual and interacting receptors was assayed by measuring levels of the second messengers cAMP and Ca2+ in transfected human embryonic kidney cells (HEK-293T) and primary cultures of striatal cells. Receptor complex expression was assayed by in situ proximity ligation assay. Functionality and expression were assayed in parallel in primary cultures of microglia treated or not with lipopolysaccharide and interferon-γ (IFN-γ). The proximity ligation assay was used to assess heteromer expression in parkinsonian and dyskinetic conditions. Complexes formed by Mas and the angiotensin AT1 or AT2 receptors were identified in both a heterologous expression system and in neural primary cultures. In the heterologous system, we showed that the three receptors-MasR, AT1R, and AT2R-can interact to form heterotrimers. The expression of receptor dimers (AT1R-MasR or AT2R-MasR) was higher in microglia than in neurons and was differentially affected upon microglial activation with lipopolysaccharide and IFN-γ. In all cases, agonist-induced signaling was reduced upon coactivation, and in some cases just by coexpression. Also, the blockade of signaling of two receptors in a complex by the action of a given (selective) receptor antagonist (cross-antagonism) was often observed. Differential expression of the complexes was observed in the striatum under parkinsonian conditions and especially in animals rendered dyskinetic by levodopa treatment. The negative modulation of calcium mobilization (mediated by AT1R activation), the multiplicity of possibilities on RAS affecting the MAPK pathway, and the disbalanced expression of heteromers in dyskinesia yield new insight into the operation of the RAS system, how it becomes unbalanced, and how a disbalanced RAS can be rebalanced. Furthermore, RAS components in activated microglia warrant attention in drug-development approaches to address neurodegeneration.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Dyskinesia, Drug-Induced/metabolism
- HEK293 Cells
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/metabolism
- Oxidopamine/toxicity
- Parkinsonian Disorders/chemically induced
- Parkinsonian Disorders/metabolism
- Proto-Oncogene Mas/agonists
- Proto-Oncogene Mas/metabolism
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1/agonists
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Barcelona, Catalonia, 08028, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
| | - Jaume Lillo
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Barcelona, Catalonia, 08028, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
| | - Ana Muñoz
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Ana I Rodríguez-Pérez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - José Luís Labandeira-García
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Catalonia, 08028, Spain
| | - Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Barcelona, Catalonia, 08028, Spain.
| |
Collapse
|
26
|
Wijeratne T, Gillard Crewther S, Sales C, Karimi L. COVID-19 Pathophysiology Predicts That Ischemic Stroke Occurrence Is an Expectation, Not an Exception-A Systematic Review. Front Neurol 2021; 11:607221. [PMID: 33584506 PMCID: PMC7876298 DOI: 10.3389/fneur.2020.607221] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Clinical reports of neurological manifestations associated with severe coronavirus disease 2019 (COVID-19), such as acute ischemic stroke (AIS), encephalopathy, seizures, headaches, acute necrotizing encephalitis, cerebral microbleeds, posterior reversible leukoencephalopathy syndrome, hemophagocytic lymphohistiocytosis, peripheral neuropathy, cranial nerve palsies, transverse myelitis, and demyelinating disorders, are increasing rapidly. However, there are comparatively few studies investigating the potential impact of immunological responses secondary to hypoxia, oxidative stress, and excessive platelet-induced aggregation on the brain. This scoping review has focused on the pathophysiological mechanisms associated with peripheral and consequential neural (central) inflammation leading to COVID-19-related ischemic strokes. It also highlights the common biological processes shared between AIS and COVID-19 infection and the importance of the recognition that severe respiratory dysfunction and neurological impairments associated with COVID and chronic inflammation [post-COVID-19 neurological syndrome (PCNS)] may significantly impact recovery and ability to benefit from neurorehabilitation. This study provides a comprehensive review of the pathobiology of COVID-19 and ischemic stroke. It also affirms that the immunological contribution to the pathophysiology of COVID-19 is predictive of the neurological sequelae particularly ischemic stroke, which makes it the expectation rather than the exception. This work is of fundamental significance to the neurorehabilitation community given the increasing number of COVID-related ischemic strokes, the current limited knowledge regarding the risk of reinfection, and recent reports of a PCNS. It further highlights the need for global collaboration and research into new pathobiology-based neurorehabilitation treatment strategies and more integrated evidence-based care.
Collapse
Affiliation(s)
- Tissa Wijeratne
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Department of Neurology, Western Health and University Melbourne, Australian Institute of Muscular Skeletal Sciences (AIMSS), Level Three, Western Health Centre for Research and Education (WHCRE), Sunshine Hospital, Melbourne, VIC, Australia
- Department of Medicine, Faculty of Medicine, University of Rajarata, Anuradhapura, Sri Lanka
| | - Sheila Gillard Crewther
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Department of Neurology, Western Health and University Melbourne, Australian Institute of Muscular Skeletal Sciences (AIMSS), Level Three, Western Health Centre for Research and Education (WHCRE), Sunshine Hospital, Melbourne, VIC, Australia
| | - Carmela Sales
- Department of Neurology, Western Health and University Melbourne, Australian Institute of Muscular Skeletal Sciences (AIMSS), Level Three, Western Health Centre for Research and Education (WHCRE), Sunshine Hospital, Melbourne, VIC, Australia
- Department of Medicine, Faculty of Medicine, University of Rajarata, Anuradhapura, Sri Lanka
| | - Leila Karimi
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Department of Neurology, Western Health and University Melbourne, Australian Institute of Muscular Skeletal Sciences (AIMSS), Level Three, Western Health Centre for Research and Education (WHCRE), Sunshine Hospital, Melbourne, VIC, Australia
- Faculty of Social and Political Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| |
Collapse
|
27
|
Contaldi E, Magistrelli L, Milner AV, Cosentino M, Marino F, Comi C. Potential protective role of ACE-inhibitors and AT1 receptor blockers against levodopa-induced dyskinesias: a retrospective case-control study. Neural Regen Res 2021; 16:2475-2478. [PMID: 33907036 PMCID: PMC8374578 DOI: 10.4103/1673-5374.313061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Growing evidence has highlighted that angiotensin-converting enzyme (ACE)-inhibitors (ACEi)/AT1 receptor blockers (ARBs) may influence the complex interplay between dopamine and the renin-angiotensin system in the nigrostriatal pathway, thus affecting the development of levodopa-induced dyskinesia in Parkinson's disease (PD). In the present study, we analyzed whether the use of this class of medication was associated with a reduced occurrence of levodopa-induced dyskinesia, using electronically-stored information of idiopathic PD patients enrolled at Novara University Hospital “Maggiore della Carità". We conducted a retrospective case-control study identifying PD patients with dyskinesias (PwD; n = 47) as cases. For each PwD we selected a non-dyskinetic control (NoD), nearly perfectly matched according to sex, Unified Parkinson's Disease Rating Scale (UPDRS) part III score, and duration of antiparkinsonian treatment. Binary logistic regression was used to evaluate whether dyskinesias were associated with ACEi/ARBs use. Ninety-four PD patients were included, aged 72.18 ± 9 years, with an average disease duration of 10.20 ± 4.8 years and 9.04 ± 4.9 years of antiparkinsonian treatment. The mean UPDRS part III score was 18.87 ± 7.6 and the median HY stage was 2. In the NoD group, 25 (53.2%) were users and 22 (46.8%) non-users of ACEi/ARBs. Conversely, in the PwD group, 11 (23.4%) were users and 36 non-users (76.6%) of this drug class (Pearson chi-square = 8.824, P = 0.003). Concerning general medication, there were no other statistically significant differences between groups. After controlling for tremor dominant phenotype, levodopa equivalent daily dose, HY 3-4, and disease duration, ACEi/ARBs use was a significant predictor of a lower occurrence of dyskinesia (OR = 0.226, 95% CI: 0.080–0.636, P = 0.005). Therefore, our study suggests that ACEi/ARBs may reduce levodopa-induced dyskinesia occurrence and, thanks to good tolerability and easy management, represent a feasible choice when dealing with the treatment of hypertension in PD patients. The study was approved by the Ethics Committee of Novara University Hospital “Maggiore della Carità” (CE 65/16) on July 27, 2016.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine; PhD Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara; PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, Varese, Italy
| | - Anna V Milner
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology; Center for Research in Neuroscience, University of Insubria, Varese, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology; Center for Research in Neuroscience, University of Insubria, Varese, Italy
| | - Cristoforo Comi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara; Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| |
Collapse
|
28
|
Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry 2021; 26:1044-1059. [PMID: 33328588 PMCID: PMC7738776 DOI: 10.1038/s41380-020-00965-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Scientists and health professionals are exhaustively trying to contain the coronavirus disease 2019 (COVID-19) pandemic by elucidating viral invasion mechanisms, possible drugs to prevent viral infection/replication, and health cares to minimize individual exposure. Although neurological symptoms are being reported worldwide, neural acute and long-term consequences of SARS-CoV-2 are still unknown. COVID-19 complications are associated with exacerbated immunoinflammatory responses to SARS-CoV-2 invasion. In this scenario, pro-inflammatory factors are intensely released into the bloodstream, causing the so-called "cytokine storm". Both pro-inflammatory factors and viruses may cross the blood-brain barrier and enter the central nervous system, activating neuroinflammatory responses accompanied by hemorrhagic lesions and neuronal impairment, which are largely described processes in psychiatric disorders and neurodegenerative diseases. Therefore, SARS-CoV-2 infection could trigger and/or worse brain diseases. Moreover, patients with central nervous system disorders associated to neuroimmune activation (e.g. depression, Parkinson's and Alzheimer's disease) may present increased susceptibility to SARS-CoV-2 infection and/or achieve severe conditions. Elevated levels of extracellular ATP induced by SARS-CoV-2 infection may trigger hyperactivation of P2X7 receptors leading to NLRP3 inflammasome stimulation as a key mediator of neuroinvasion and consequent neuroinflammatory processes, as observed in psychiatric disorders and neurodegenerative diseases. In this context, P2X7 receptor antagonism could be a promising strategy to prevent or treat neurological complications in COVID-19 patients.
Collapse
|
29
|
Machado TCG, Guatimosim C, Kangussu LM. The Renin-Angiotensin System in Huntington's Disease: Villain or Hero? Protein Pept Lett 2020; 27:456-462. [PMID: 31933441 PMCID: PMC7403685 DOI: 10.2174/0929866527666200110154523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/22/2019] [Accepted: 11/15/2019] [Indexed: 11/22/2022]
Abstract
Huntington’s Disease (HD) is an autosomal dominant, progressive neurodegenerative disorder characterized by severe symptoms, including motor impairment, cognitive decline, and psychiatric alterations. Several systems, molecules, and mediators have been associated with the pathophysiology of HD. Among these, there is the Renin-Angiotensin System (RAS), a peptide hormone system that has been associated with the pathology of neuropsychiatric and neurodegenerative disorders. Important alterations in this system have been demonstrated in HD. However, the role of RAS components in HD is still unclear and needs further investigation. Nonetheless, modulation of the RAS components may represent a potential therapeutic strategy for the treatment of HD.
Collapse
Affiliation(s)
- Thatiane C G Machado
- Departamento de Morfologia - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristina Guatimosim
- Departamento de Morfologia - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas M Kangussu
- Departamento de Morfologia - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
30
|
de Melo LA, Almeida-Santos AF. Neuropsychiatric Properties of the ACE2/Ang-(1-7)/Mas Pathway: A Brief Review. Protein Pept Lett 2020; 27:476-483. [PMID: 31868143 DOI: 10.2174/0929866527666191223143230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
The current pharmacological strategies for the management of anxiety disorders and depression, serious conditions which are gaining greater prevalence worldwide, depend on only two therapeutic classes of mood-stabilizing drugs: Serotonin Reuptake Inhibitors (SSRIs) and Serotonin-Norepinephrine Reuptake Inhibitors (SNRIs). Although first line agents with proven efficacy, their clinical success in the management of anxiety disorders and depression is still considered highly complex due to the multifaceted nature of such conditions. Several studies have shown a possible therapeutic target could be found in the form of the Angiotensin-Converting Enzyme [ACE] type 2 (ACE2), Angiotensin [Ang]-(1-7) and Mas receptor pathway of the Renin- Angiotensin System (RAS), which as will be discussed, has been described to exhibit promising therapeutic properties for the management of anxiety disorders and depression. In this article, the literature to describe recent findings related to the role of the RAS in anxiety and depression disorders was briefly revised. The literature used covers a time range from 1988 to 2019 and were acquired from the National Center for Biotechnology Information's (NCBI) PubMed search engine. The results demonstrated in this review are promising and encourage the development of new research for the treatment of anxiety and depression disorders focusing on the RAS. In conclusion, the ACE2/Ang-(1-7)/Mas pathway may exhibit anxiolytic and anti-depressive effects through many possible biochemical mechanisms both centrally and peripherally, and result in highly promising mental health benefits which justifies further investigation into this system as a possible new therapeutic target in the management of neuropsychiatric disorders, including any as of yet undescribed risk-benefit analysis compared to currently-implemented pharmacological strategies.
Collapse
Affiliation(s)
- Leonardo Augusto de Melo
- Nucleo de Neurociencias, Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Flávia Almeida-Santos
- Nucleo de Neurociencias, Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
31
|
Kumar A, Pareek V, Prasoon P, Faiq MA, Kumar P, Kumari C, Narayan RK. Possible routes of SARS-CoV-2 invasion in brain: In context of neurological symptoms in COVID-19 patients. J Neurosci Res 2020; 98:2376-2383. [PMID: 32869376 DOI: 10.1002/jnr.24717] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/21/2020] [Accepted: 08/09/2020] [Indexed: 01/08/2023]
Abstract
Manifestation of neurological symptoms in certain patients of coronavirus disease-2019 (COVID-19) has warranted for their virus-induced etiogenesis. SARS-CoV-2, the causative agent of COVID-19, belongs to the genus of betacoronaviruses which also includes SARS-CoV-1 and MERS-CoV; causative agents for severe acute respiratory syndrome (SARS) in 2002 and Middle East respiratory syndrome (MERS) in 2012, respectively. Studies demonstrating the neural invasion of SARS-CoV-2 in vivo are still scarce, although such characteristics of certain other betacoronaviruses are well demonstrated in the literature. Based on the recent evidence for the presence of SARS-CoV-2 host cell entry receptors in specific components of the human nervous and vascular tissue, a neural (olfactory and/or vagal), and a hematogenous-crossing the blood-brain barrier, routes have been proposed. The neurological symptoms in COVID-19 may also arise as a consequence of the "cytokine storm" (characteristically present in severe disease) induced neuroinflammation, or co-morbidities. There is also a possibility that, there may be multiple routes of SARS-CoV-2 entry into the brain, or multiple mechanisms can be involved in the pathogenesis of the neurological symptoms. In this review article, we have discussed the possible routes of SARS-CoV-2 brain entry based on the emerging evidence for this virus, and that available for other betacoronaviruses in literature.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Vikas Pareek
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- National Brain Research Center, Manesar, India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Muneeb A Faiq
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- New York University (NYU) Langone Health Center, NYU Robert I Grossman School of Medicine, New York, NY, USA
| | - Pavan Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Chiman Kumari
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ravi K Narayan
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| |
Collapse
|
32
|
Moreno-Santos B, Marchi-Coelho C, Costa-Ferreira W, Crestani CC. Angiotensinergic receptors in the medial amygdaloid nucleus differently modulate behavioral responses in the elevated plus-maze and forced swimming test in rats. Behav Brain Res 2020; 397:112947. [PMID: 33011187 DOI: 10.1016/j.bbr.2020.112947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/01/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022]
Abstract
The brain renin-angiotensin system (RAS) has been implicated in anxiety and depression disorders, but the specific brain sites involved are poorly understood. The medial amygdaloid nucleus (MeA) is involved in expression of behavioral responses. However, despite evidence of the presence of all angiotensinergic receptors in this amygdaloid nucleus, regulation of anxiety- and depressive-like behaviors by angiotensinergic neurotransmissions within the MeA has never been reported. Thus, the present study aimed to investigate the role angiotensin II (AT1 and AT2 receptors) and angiotensin-(1-7) (Mas receptor) receptors present within the MeA in behavioral responses in the elevated plus-maze (EPM) and forced swimming test (FST). For this, male Wistar rats had cannula-guide bilaterally implanted into the MeA, and independent sets of animals received bilateral microinjections of either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319, the selective Mas receptor antagonist A-779 or vehicle into the MeA before the EPM and FST. Treatment of the MeA with either PD123319 or A-779 decreased the EPM open arms exploration, while losartan did not affect behavioral responses in this apparatus. However, intra-MeA microinjection of losartan decreased immobility in the FST. Administration of either PD123319 or A-779 into the MeA did not affect the immobility during the FST, but changed the pattern of the active behaviors swimming and climbing. Altogether, these results indicate the presence of different angiotensinergic mechanisms within the MeA controlling behavioral responses in the FST and EPM.
Collapse
Affiliation(s)
- Beatriz Moreno-Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Camila Marchi-Coelho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
33
|
Costa R, Carvalho MSM, Brandão JDP, Moreira RP, Cunha TS, Casarini DE, Marcondes FK. Modulatory action of environmental enrichment on hormonal and behavioral responses induced by chronic stress in rats: Hypothalamic renin-angiotensin system components. Behav Brain Res 2020; 397:112928. [PMID: 32987059 DOI: 10.1016/j.bbr.2020.112928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Environmental enrichment (EE) has been studied as a protocol that can improve brain plasticity and may protect against negative insults such as chronic stress. The aim of this study was to evaluate the effects of EE on the hormonal and behavioral responses induced by chronic mild unpredictable stress (CMS) in rats, considering the involvement of the renin-angiotensin system. Male adult rats were divided into 4 groups: control, CMS, EE, and CMS + EE, and the experimental protocol lasted for 7 weeks. EE was performed during 7 weeks, 5 days per week, 2 h per day. CMS was applied during weeks 3, 4, and 5. After the CMS (week 6), depression-like behavior was evaluated by forced swimming and sucrose consumption tests, anxiety level was evaluated using the elevated plus-maze test, and memory was evaluated using the Y-maze test. On week 7, the animals were euthanized and basal plasma levels of corticosterone and catecholamines were determined. The hypothalamus was isolated and tissue levels of angiotensin peptides were evaluated. CMS increased plasma corticosterone, norepinephrine, and epinephrine basal concentrations, induced depression-like behaviors, impaired memory, and increased hypothalamic angiotensin I, II, and IV concentrations. EE decreased stress hormones secretion, depression-like behaviors, memory impairment, and hypothalamic angiotensin II induced by stress. Reductions of anxiety-like behavior and norepinephrine secretion were observed in both stressed and unstressed groups. The results indicated that EE seemed to protect adult rats against hormonal and behavioral CMS effects, and that the reduction of angiotensin II could contribute to these effects.
Collapse
Affiliation(s)
- Rafaela Costa
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Maeline Santos Morais Carvalho
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Roseli Peres Moreira
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São José Dos Campos, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
34
|
Pillat MM, Krüger A, Guimarães LMF, Lameu C, de Souza EE, Wrenger C, Ulrich H. Insights in Chloroquine Action: Perspectives and Implications in Malaria and COVID-19. Cytometry A 2020; 97:872-881. [PMID: 32686260 PMCID: PMC7404934 DOI: 10.1002/cyto.a.24190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
Malaria is a threat to human mankind and kills about half a million people every year. On the other hand, COVID-19 resulted in several hundred thousand deaths since December 2019 and remains without an efficient and safe treatment. The antimalarials chloroquine (CQ) and its analog, hydroxychloroquine (HCQ), have been tested for COVID-19 treatment, and several conflicting evidence has been obtained. Therefore, the aim of this review was to summarize the evidence regarding action mechanisms of these compounds against Plasmodium and SARS-CoV-2 infection, together with cytometry applications. CQ and HCQ act on the renin angiotensin system, with possible implications on the cardiorespiratory system. In this context, flow and image cytometry emerge as powerful technologies to investigate the mechanism of therapeutic candidates, as well as for the identification of the immune response and prognostics of disease severity. Data from the large randomized trials support the conclusion that CQ and HCQ do not provide any clinical improvements in disease severity and progression of SARS-CoV-2 patients, as well as they do not present any solid evidence of increased serious side effects. These drugs are safe and effective antimalarials agents, but in SARS-CoV-2 patients, they need further studies in the context of clinical trials. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Micheli Mainardi Pillat
- Department of Microbiology and ParasitologyHealth Sciences Center, Federal University of Santa MariaSanta MariaRio Grande do SulBrazil
| | - Arne Krüger
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | | | - Claudiana Lameu
- Department of BiochemistryInstitute of Chemistry, University of São PauloSão PauloBrazil
| | - Edmarcia Elisa de Souza
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Henning Ulrich
- Department of BiochemistryInstitute of Chemistry, University of São PauloSão PauloBrazil
| |
Collapse
|
35
|
Han W, Wei Z, Dang R, Guo Y, Zhang H, Geng C, Wang C, Feng Q, Jiang P. Angiotensin-Ⅱ and angiotensin-(1-7) imbalance affects comorbidity of depression and coronary heart disease. Peptides 2020; 131:170353. [PMID: 32599080 DOI: 10.1016/j.peptides.2020.170353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/03/2023]
Abstract
A large body of evidence suggests a relationship between depression and coronary heart disease (CHD). Angiotensin-Ⅱ (Ang-Ⅱ) and angiotensin-(1-7) [Ang-(1-7)] are considered to exert biological effects in both conditions. Here, we aimed to determine the role of Ang-Ⅱ and Ang-(1-7) in the occurrence of comorbid depression in patients with CHD. Our study included 214 CHD patients and 100 matched healthy controls. Serum Ang-Ⅱ and Ang-(1-7) levels were assessed by ELISA, and the depression symptoms were evaluated by the nine-item Patient Health Questionnaire (PHQ-9). Linear regression and correlation analyses were used to estimate the associations between PHQ-9 scores and Ang-Ⅱ and Ang-(1-7) serum levels. Six single-nucleotide polymorphisms (SNPs) spanning the angiotensin converting enzyme 2 (ACE2) and MAS1 genes were genotyped. The associations between SNPs and depression risk in CHD patients were examined using logistic regression analysis with adjustment for age and gender. Decreased Ang-(1-7) (P < 0.05) and an elevated Ang-Ⅱ/Ang-(1-7) ratio (P < 0.01) were observed in CHD patients with depression compared to CHD patients without depression. PHQ-9 scores were negatively correlated with Ang-(1-7) level (r=-0.44, P < 0.01) and positively correlated with the Ang-Ⅱ/Ang-(1-7) ratio (r = 0.33, P < 0.05). Furthermore, carriers of risk allele T for CHD with depression had significantly higher PHQ-9 scores (P < 0.05), lower Ang-(1-7) level (P < 0.01), and higher Ang-Ⅱ/Ang-(1-7) ratio (P < 0.05) than those CC carriers. Collectively, our results firstly showed that Ang-(1-7) serum level in CHD patients may protect against comorbid depression. Moreover, the imbalance between Ang-Ⅱ and Ang-(1-7) may contribute to depression in CHD patients.
Collapse
Affiliation(s)
- Wenxiu Han
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Zhijie Wei
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Ruili Dang
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Yujin Guo
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Hailiang Zhang
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Chunmei Geng
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Changshui Wang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining 272000, China
| | - Qingyan Feng
- Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| |
Collapse
|
36
|
Alshahrani S. Aliskiren – A promising antioxidant agent beyond hypertension reduction. Chem Biol Interact 2020; 326:109145. [DOI: 10.1016/j.cbi.2020.109145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
|
37
|
Kangussu LM, Marzano LAS, Souza CF, Dantas CC, Miranda AS, Simões e Silva AC. The Renin-Angiotensin System and the Cerebrovascular Diseases: Experimental and Clinical Evidence. Protein Pept Lett 2020; 27:463-475. [DOI: 10.2174/0929866527666191218091823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/07/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022]
Abstract
Cerebrovascular Diseases (CVD) comprise a wide spectrum of disorders, all sharing an
acquired or inherited alteration of the cerebral vasculature. CVD have been associated with
important changes in systemic and tissue Renin-Angiotensin System (RAS). The aim of this review
was to summarize and to discuss recent findings related to the modulation of RAS components in
CVD. The role of RAS axes is more extensively studied in experimentally induced stroke. By
means of AT1 receptors in the brain, Ang II hampers cerebral blood flow and causes tissue
ischemia, inflammation, oxidative stress, cell damage and apoptosis. On the other hand, Ang-(1-7)
by stimulating Mas receptor promotes angiogenesis in brain tissue, decreases oxidative stress,
neuroinflammation, and improves cognition, cerebral blood flow, neuronal survival, learning and
memory. In regard to clinical studies, treatment with Angiotensin Converting Enzyme (ACE)
inhibitors and AT1 receptor antagonists exerts preventive and therapeutic effects on stroke. Besides
stroke, studies support a similar role of RAS molecules also in traumatic brain injury and cerebral
aneurysm. The literature supports a beneficial role for the alternative RAS axis in CVD. Further
studies are necessary to investigate the therapeutic potential of ACE2 activators and/or Mas
receptor agonists in patients with CVD.
Collapse
Affiliation(s)
- Lucas M. Kangussu
- Department of Morphology – Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Alexandre Santos Marzano
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cássio Ferraz Souza
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina Couy Dantas
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Silva Miranda
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões e Silva
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
38
|
Mogi M. Effect of renin-angiotensin system on senescence. Geriatr Gerontol Int 2020; 20:520-525. [PMID: 32346971 DOI: 10.1111/ggi.13927] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) plays crucial roles in the control of blood pressure and sodium homeostasis. Moreover, RAS also acts as a key player in cell and organ senescence, mainly by activation of the classical axis of angiotensin (Ang) converting enzyme (ACE)/Ang II/Ang II type 1 receptor via overproduction of reactive oxygen species. Overactivation of the classical RAS axis induces organ dysfunction in the vasculature, brain, kidney and skeletal muscle, resulting in atherosclerosis, stroke, chronic kidney disease and sarcopenia. Moreover, RAS has been shown to regulate lifespan, using gene-modification models. Recently, mice lacking the Ang II type 1 receptor were shown to exhibit an increase in lifespan compared with control mice. Here, the effect of RAS on age-related tissue dysfunction in several organs is reviewed, including not only the classical axis but also protective functions of RAS such as the ACE2/Ang (1-7)/Mas axis. Geriatr Gerontol Int 2020; ••: ••-••.
Collapse
Affiliation(s)
- Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
39
|
Bakhle YS. How ACE inhibitors transformed the renin-angiotensin system. Br J Pharmacol 2020; 177:2657-2665. [PMID: 32144755 DOI: 10.1111/bph.15045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The renin-angiotensin system (RAS) now underlies the successful treatment of almost 50% of the patients in cardiovascular medicine, with serious possibilities of extension to diabetes, Alzheimer's disease and cancer. This clinical transformation started just over 50 years ago, with the unexpected identification of a bradykinin-potentiating peptide from snake venom, as a potent inhibitor of ACE which led to the development of the first synthetic inhibitor, captopril, followed by the angiotensin receptor blockers. This article analyses the transformation of the RAS into its different stages, from academic experiments to clinical use and back to the laboratory, identifying the critical events involved, both clinical and scientific. The analysis also assesses the contributions of chance, coincidence, and conviction that were crucial in this transformation. Although questions remain, the transformation of the RAS over the past five decades provides a success story for medicine, for pharmacology, and, most significantly, for patients.
Collapse
|
40
|
Assersen KB, Sumners C, Steckelings UM. The Renin-Angiotensin System in Hypertension, a Constantly Renewing Classic: Focus on the Angiotensin AT 2-Receptor. Can J Cardiol 2020; 36:683-693. [PMID: 32389341 DOI: 10.1016/j.cjca.2020.02.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
It is common knowledge that the renin-angiotensin system (RAS), in particular angiotensin II acting through the angiotensin AT1-receptor (AT1R), is pivotal for the regulation of blood pressure (BP) and extracellular volume. More recent findings have revealed that the RAS is far more complex than initially thought and that it harbours additional mediators and receptors, which are able to counteract and thereby fine-tune AT1R-mediated actions. This review will focus on the angiotensin AT2-receptor (AT2R), which is one of the "counter-regulatory" receptors within the RAS. It will review and discuss data related to the role of the AT2R in regulation of BP and focus on the following 3 questions: Do peripheral AT2R have an impact on BP regulation, and, if so, does this effect become apparent only under certain conditions? Are central nervous system AT2R involved in regulation of BP, and, if so, which brain areas are involved and what are the mechanisms? Does dysfunction of AT2R contribute to the pathogenesis of hypertension in preeclampsia?
Collapse
Affiliation(s)
- Kasper B Assersen
- Institute for Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - U Muscha Steckelings
- Institute for Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
41
|
Wright JW, Harding JW. Contributions by the Brain Renin-Angiotensin System to Memory, Cognition, and Alzheimer's Disease. J Alzheimers Dis 2020; 67:469-480. [PMID: 30664507 DOI: 10.3233/jad-181035] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive neuron losses in memory-associated brain structures that rob patients of their dignity and quality of life. Five drugs have been approved by the FDA to treat AD but none modify or significantly slow disease progression. New therapies are needed to delay the course of this disease with the ultimate goal of preventing neuron losses and preserving memory functioning. In this review we describe the renin-angiotensin II (AngII) system (RAS) with specific regard to its deleterious contributions to hypertension, facilitation of neuroinflammation and oxidative stress, reduced cerebral blood flow, tissue remodeling, and disruption of memory consolidation and retrieval. There is evidence that components of the RAS, AngIV and Ang(1-7), are positioned to counter such damaging influences and these systems are detailed with the goal of drawing attention to their importance as drug development targets. Ang(1-7) binds at the Mas receptor, while AngIV binds at the AT4 receptor subtype, and these receptor numbers are significantly decreased in AD patients, accompanied by declines in brain aminopeptidases A and N, enzymes essential for the synthesis of AngIV. Potent analogs may be useful to counter these changes and facilitate neuronal functioning and reduce apoptosis in memory associated brain structures of AD patients.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, Pullman, WA, USA.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, USA.,M3 Biotechnology, Inc., Seattle, WA, USA
| | - Joseph W Harding
- Department of Psychology, Washington State University, Pullman, WA, USA.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, USA.,M3 Biotechnology, Inc., Seattle, WA, USA
| |
Collapse
|
42
|
Costa R, Tamascia ML, Sanches A, Moreira RP, Cunha TS, Nogueira MD, Casarini DE, Marcondes FK. Tactile stimulation of adult rats modulates hormonal responses, depression-like behaviors, and memory impairment induced by chronic mild stress: Role of angiotensin II. Behav Brain Res 2020; 379:112250. [DOI: 10.1016/j.bbr.2019.112250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022]
|
43
|
Knight MJ, Mills NT, Baune BT. Contemporary methods of improving cognitive dysfunction in clinical depression. Expert Rev Neurother 2019; 19:431-443. [DOI: 10.1080/14737175.2019.1610395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Matthew J. Knight
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Natalie T. Mills
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Bernhard T. Baune
- Department of Psychiatry and Psychotherapy, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
44
|
Askari H, Abazari MF, Ghoraeian P, Torabinejad S, Nouri Aleagha M, Mirfallah Nassiri R, Tahmasebi F, Abedi N, Rajani SF, Salarian A, Belaran M, Elshiekh M, Sanadgol N. Ameliorative effects of hydrogen sulfide (NaHS) on chronic kidney disease-induced brain dysfunction in rats: implication on role of nitric oxide (NO) signaling. Metab Brain Dis 2018; 33:1945-1954. [PMID: 30090953 DOI: 10.1007/s11011-018-0301-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Chronic kidney disease (CKD) is a major public health problem worldwide and is associated with spatial learning deficits. The aim of the present study was to evaluate the protective effects of hydrogen sulfide (H2S) on CKD-mediated behavioral deficits with emphasis to the role of nitric oxide (NO) in these effects. Fifty rats were randomly allocated to five experimental groups including: sham, Five-sixth (5/6) nephrectomy (Nx), 5/6Nx + NaHS, 5/6Nx + NaHS+L-nitroarginine methyl ester (L-NAME), and 5/6Nx + NaHS+aminoguanidine (AMG). Twelve weeks after 5/6Nx, we evaluated proteinuria, creatinine clearance (CrCl), oxidative/antioxidant status, and hippocampus neuro-inflammation and NO synthase genes in all groups. Furthermore, training trials of all animals were conducted in the Morris water maze (MWM) task one day before animal euthanizing. As predicted, 5/6Nx induced several injuries, including enhancement of proteinuria and reduction of CCr, oxidant/antioxidant imbalance and up-regulation of TNF-α and IL-1β gene expressions in the hippocampus tissues. As predicted, 5/6Nx resulted in learning and memory impairments, and increased escape latency during acquisition trials in the MWM task. Interestingly, NaHS (H2S donor) improved behavioral deficits, renal dysfunction, accelerated anti-oxidant/anti-inflammatory responses and increased eNOS and decreased iNOS. Moreover, these effects of NaHS were prevented by L-NAME but not AMG co-administration. In conclusion, H2S ameliorates CKD-mediated brain dysfunctions, through interaction with NO signaling in the hippocampus.
Collapse
Affiliation(s)
- Hassan Askari
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Foad Abazari
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Ghoraeian
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Sepehr Torabinejad
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Nouri Aleagha
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | - Farshid Tahmasebi
- Faculty of Sports Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Nairi Abedi
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Sulail Fatima Rajani
- Department of Physiology, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Salarian
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Belaran
- Department of Physiology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammed Elshiekh
- Department of Physiology, Faculty of Medicine, University of Dongola, Dongola, Sudan
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.
| |
Collapse
|