1
|
Bai Y, Wu J, Jian W. Trained immunity in diabetes: emerging targets for cardiovascular complications. Front Endocrinol (Lausanne) 2025; 16:1533620. [PMID: 40438395 PMCID: PMC12116311 DOI: 10.3389/fendo.2025.1533620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/24/2025] [Indexed: 06/01/2025] Open
Abstract
Diabetes is a metabolic disorder primarily characterized by persistent hyperglycemia. Diabetes-induced inflammation significantly compromises cardiovascular health, greatly increasing the risk of atherosclerosis. The increasing prevalence of harmful lifestyle habits and overconsumption has contributed substantially to the global rise in diabetes-related cardiovascular diseases, creating a significant economic and healthcare burden. Although current therapeutic strategies focus on blood glucose control and metabolic regulation, clinical observations show that diabetic patients still face persistent residual risk of AS even after achieving metabolic stability. Recent studies suggest that this phenomenon is linked to diabetes-induced trained immunity. Diabetes can induce trained immunity in bone marrow progenitor cells and myeloid cells, thus promoting the long-term development of AS. This article first introduces the concept and molecular mechanisms of trained immunity, with particular emphasis on metabolic and epigenetic reprogramming, which plays a crucial role in sustaining chronic inflammation during trained immunity. Next, it summarizes the involvement of trained immunity in diabetes and its contribution to AS, outlining the cell types that can be trained in AS. Finally, it discusses the connection between diabetes-induced trained immunity and AS, as well as the potential of targeting trained immunity as an intervention strategy. Understanding the molecular mechanisms of trained immunity and their impact on disease progression may provide innovative strategies to address the persistent clinical challenges in managing diabetes and its complications.
Collapse
Affiliation(s)
- Yanan Bai
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Jianglan Wu
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Weixiong Jian
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
- Diagnostics of Traditional Chinese Medicine, National Key Discipline, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Ji Y, Chen H, Pang L, Chen C, Wang S, Chen J, Fang L, Liu B, Cheng Y, Liu S, Zhong Y. AGE induced macrophage-derived exosomes induce endothelial dysfunction in diabetes via miR-22-5p/FOXP1. Cardiovasc Diabetol 2025; 24:158. [PMID: 40205587 PMCID: PMC11983961 DOI: 10.1186/s12933-025-02715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Endothelial dysfunction is a pivotal contributor to cardiovascular complications in individuals with diabetes. However, the precise role of macrophages and their exosomes in the diabetic milieu remains elusive. METHODS Exosomes (Exos) were isolated from the supernatants of macrophages treated with advanced glycation end products (AGE) or bovine serum albumin (BSA) using ultracentrifugation. Following coculture with AGE-Exos or BSA-Exos, human umbilical vein endothelial cells (HUVECs) were subjected to CCK-8, EdU, cell migration, monocyte adhesion, and tube formation assays. ELISA and Western blotting were employed to assess inflammatory cytokine release and protein expression levels in HUVECs. The miRNA expression profiles of AGE-Exos and BSA-Exos were analysed using miRNA arrays. Potential targets of miR-22-5p were predicted via miRNA databases and validated through RT‒qPCR, dual-luciferase reporter assays, and rescue experiments. Furthermore, a Rab27a knockout mouse model of type 2 diabetes mellitus (T2DM) was established by intraperitoneal injection of Streptozotocin. Aortic tissues were analysed via immunofluorescence for CD63 and CD31 expression, immunohistochemistry for VCAM-1 and ICAM-1 expression, and Western blotting for FOXP1 expression. RESULTS AGE stimulation increased the secretion of exosomes from macrophages. Compared with BSA-Exos, AGE-Exos significantly impaired endothelial cell proliferation, migration, and tube formation capabilities while increasing monocyte adhesion and proinflammatory cytokine release without affecting cell viability. miR-22-5p was enriched in AGE-Exos, which were subsequently transferred to HUVECs, specifically targeting FOXP1, resulting in endothelial dysfunction. Overexpression of miR-22-5p in HUVECs using lentiviral vectors recapitulated the inflammatory effects observed with AGE-Exos, whereas anti-miR-22-5p conferred protective effects. Rab27a knockout significantly reduced exosome accumulation in T2DM model mouse aortic tissues, alleviating endothelial discontinuity, downregulating VCAM-1 and ICAM-1 expression, and upregulating FOXP1 expression. CONCLUSIONS AGE-induced release of macrophage-derived exosomes may partially depend on Rab27a transport, which delivers miR-22-5p to ECs. This miR-22-5p targets FOXP1 in ECs, leading to inflammation and resulting in endothelial dysfunction that accelerates the development of diabetic vascular lesions.
Collapse
MESH Headings
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Animals
- Exosomes/metabolism
- Exosomes/pathology
- Exosomes/drug effects
- Exosomes/transplantation
- Humans
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Human Umbilical Vein Endothelial Cells/drug effects
- Glycation End Products, Advanced/toxicity
- Macrophages/metabolism
- Macrophages/drug effects
- Macrophages/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Cell Movement
- Male
- Signal Transduction
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/physiopathology
- rab27 GTP-Binding Proteins/genetics
- rab27 GTP-Binding Proteins/metabolism
- rab27 GTP-Binding Proteins/deficiency
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/physiopathology
- Neovascularization, Physiologic
- Serum Albumin, Bovine/toxicity
- Inflammation Mediators/metabolism
- Mice
- Cell Adhesion
- Repressor Proteins
Collapse
Affiliation(s)
- Yang Ji
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Afliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
- Department of Emergency, The Second Affliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Huanzhen Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Afliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
- DongGuan SongShan Lake Tungwah Hospital, Dongguan, Guangdong, China
| | - Lihua Pang
- Department of Emergency, The Second Affliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Changnong Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Afliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Sha Wang
- Department of Emergency, The Second Affliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jing Chen
- Department of Cardiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Lei Fang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Afliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Benrong Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Afliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Yongruo Cheng
- Department of Emergency, The Second Affliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Afliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| | - Yun Zhong
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Afliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
3
|
Karakasis P, Theofilis P, Patoulias D, Vlachakis PK, Antoniadis AP, Fragakis N. Diabetes-Driven Atherosclerosis: Updated Mechanistic Insights and Novel Therapeutic Strategies. Int J Mol Sci 2025; 26:2196. [PMID: 40076813 PMCID: PMC11900163 DOI: 10.3390/ijms26052196] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The global rise in diabetes prevalence has significantly contributed to the increasing burden of atherosclerotic cardiovascular disease (ASCVD), a leading cause of morbidity and mortality in this population. Diabetes accelerates atherosclerosis through mechanisms such as hyperglycemia, oxidative stress, chronic inflammation, and epigenetic dysregulation, leading to unstable plaques and an elevated risk of cardiovascular events. Despite advancements in controlling traditional risk factors like dyslipidemia and hypertension, a considerable residual cardiovascular risk persists, highlighting the need for innovative therapeutic approaches. Emerging treatments, including sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, epigenetic modulators, and RNA-based therapies, are showing promise in addressing the unique challenges of diabetes-associated ASCVD. Precision medicine strategies, such as nanoparticle-based drug delivery and cell-specific therapies, offer further potential for mitigating cardiovascular complications. Advances in multiomics and systems biology continue to deepen our understanding of the molecular mechanisms driving diabetes-associated atherosclerosis. This review synthesizes recent advances in understanding the pathophysiology and treatment of diabetes-related atherosclerosis, offering a roadmap for future research and precision medicine approaches to mitigate cardiovascular risk in this growing population.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Panagiotis Theofilis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.T.); (P.K.V.)
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, School of Health Sciences Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panayotis K. Vlachakis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.T.); (P.K.V.)
| | - Antonios P. Antoniadis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| |
Collapse
|
4
|
Khan AW, Jandeleit-Dahm KAM. Atherosclerosis in diabetes mellitus: novel mechanisms and mechanism-based therapeutic approaches. Nat Rev Cardiol 2025:10.1038/s41569-024-01115-w. [PMID: 39805949 DOI: 10.1038/s41569-024-01115-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Atherosclerosis is a disease of large and medium arteries that can lead to life-threatening cardiovascular and cerebrovascular consequences, such as myocardial infarction and stroke. Moreover, atherosclerosis is a major contributor to cardiovascular-related mortality in individuals with diabetes mellitus. Diabetes aggravates the pathobiological mechanisms that underlie the development of atherosclerosis. Currently available anti-atherosclerotic drugs or strategies solely focus on optimal control of systemic risk factors, including hyperglycaemia and dyslipidaemia, but do not adequately target the diabetes-exacerbated mechanisms of atherosclerotic cardiovascular disease, highlighting the need for targeted, mechanism-based therapies. This Review focuses on emerging pathological mechanisms and related novel therapeutic targets in atherosclerotic cardiovascular disease in patients with diabetes.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Karin A M Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- German Diabetes Centre, Leibniz Centre for Diabetes Research at the Heinrich Heine University, Dusseldorf, Germany
| |
Collapse
|
5
|
Qi J, Dong M, Gou Q, Zhu H. Multi-omics analysis of the lipid-regulating effects of metformin in a glucose concentration-dependent manner in macrophage-derived foam cells. Cell Biochem Biophys 2024; 82:3235-3249. [PMID: 39235508 DOI: 10.1007/s12013-024-01269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 09/06/2024]
Abstract
Metformin has a long history of clinical application and has been shown to have outstanding ability in lowering glucose. Recent advances have further revealed its broad modulatory ability beyond glucose-lowering, expanding the scope of metformin applications. Metformin has now been applied as a viable lipid-lowering strategy in non-hyperglycemic obese patients. However, the benefits and underlying pharmacological mechanisms of metformin administration in non-hyperglycemic populations remain to be explained. Our study aimed to systematically investigate the differences in the lipid-lowering function and pharmacological mechanisms of metformin in high- and low-sugar conditions to facilitate the development of individualized metformin use regimens for different clinical patients. We constructed macrophage-derived foam cell models in vitro for subsequent analysis. ORO results showed that metformin significantly reduced lipid accumulation in macrophages in both high and low glucose environments, but the lipid decline was higher in the high glucose environment. By mutual validation and joint analysis of transcriptomics and metabolomics, significant differences in metformin transcriptional and metabolic patterns existed among high and normal glucose environments. The significant alterations of genes such as DGKA, LPL, DGAT2 and lipid metabolites such as LysPA and LysPC partially explained the glucose-dependent pharmacological function of metformin. In conclusion, our study confirmed that the lipid-lowering effect of metformin depends on the extracellular glucose concentration, and systematically studied the molecular mechanism of metformin in different glycemic environments, which provides a certain reference value for the subsequent in-depth study and clinical application.
Collapse
Affiliation(s)
- Jie Qi
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Mengya Dong
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qiling Gou
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Huolan Zhu
- Department of Geriatrics, Shaanxi Provincial People's Hospital, Xi'an, China.
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, China.
| |
Collapse
|
6
|
Nour Eldeen G, Aglan HA, Mahmoud NS, Abdel Rasheed M, Azmy OM, Ahmed HH. Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of diabetes mellitus. Sci Rep 2024; 14:24417. [PMID: 39424616 PMCID: PMC11489467 DOI: 10.1038/s41598-024-74527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
This study aimed to identify the suitable induction protocol to produce highly qualified insulin producing cells (IPCs) from human adipose tissue derived stem cells (ADSCs) and evaluate the efficacy of the most functionally IPCs in management of diabetes mellitus (DM) in rats. The ADSCs were isolated and characterized according to the standard guidelines. ADSCs were further induced to be IPCs in vitro using three different protocols. The success of trans-differentiation was assessed in vitro through analysis of pancreatic endocrine genes expression, and insulin release in response to glucose stimulation. Then, the functionalization of the generated IPCs was evaluated in vivo. The in vitro findings revealed that the laminin-coated plates in combination with insulin-transferrin-selenium, B27, N2, and nicotinamide could efficiently up-regulate the expression of pancreatic endocrine genes. The in vivo study indicated effectual homing of the PKH-26-labelled IPCs in the pancreas of treated animals. Moreover, IPCs infusion in diabetic rats induced significant improvement in the metabolic parameters and prompted considerable up-regulation in the expression of the pancreatic related genes. The regenerative effect of infused IPCs was determined through histological examination of pancreatic tissue. Conclusively, the utilization of laminin-coated plates in concomitant with extrinsic factors promoting proliferation and differentiation of ADSCs could efficiently generate functional IPCs.
Collapse
Affiliation(s)
- Ghada Nour Eldeen
- Stem Cell Research Group, Medical Research Center of Excellence, National Research Centre, Dokki, Giza, Egypt
- Department of Molecular Genetics and Enzymology, Human Genetic and Genome Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El- Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
- Stem Cell Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt.
| | - Nadia S Mahmoud
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El- Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
- Stem Cell Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Mazen Abdel Rasheed
- Stem Cell Research Group, Medical Research Center of Excellence, National Research Centre, Dokki, Giza, Egypt
- Department of Reproductive Health Research, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Osama M Azmy
- Stem Cell Research Group, Medical Research Center of Excellence, National Research Centre, Dokki, Giza, Egypt
- Department of Reproductive Health Research, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
- Egypt Center for Medical Research and Regenerative Medicine, El Shorouk, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El- Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
7
|
Poojari AS, Wairkar S, Kulkarni YA. Stem cells as a regenerative medicine approach in treatment of microvascular diabetic complications. Tissue Cell 2023; 85:102225. [PMID: 37801960 DOI: 10.1016/j.tice.2023.102225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood glucose and is associated with high morbidity and mortality among the diabetic population. Uncontrolled chronic hyperglycaemia causes increased formation and accumulation of different oxidative and nitrosative stress markers, resulting in microvascular and macrovascular complications, which might seriously affect the quality of a patient's life. Conventional treatment strategies are confined to controlling blood glucose by regulating the insulin level and are not involved in attenuating the life-threatening complications of diabetes mellitus. Thus, there is an unmet need to develop a viable treatment strategy that could target the multi-etiological factors involved in the pathogenesis of diabetic complications. Stem cell therapy, a regenerative medicine approach, has been investigated in diabetic complications owing to their unique characteristic features of self-renewal, multilineage differentiation and regeneration potential. The present review is focused on potential therapeutic applications of stem cells in the treatment of microvascular diabetic complications such as nephropathy, retinopathy, and polyneuropathy.
Collapse
Affiliation(s)
- Avinash S Poojari
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sarika Wairkar
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
8
|
Bindu S, Dandapat S, Manikandan R, Dinesh M, Subbaiyan A, Mani P, Dhawan M, Tiwari R, Bilal M, Emran TB, Mitra S, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory. Hum Vaccin Immunother 2022; 18:2040238. [PMID: 35240935 PMCID: PMC9009931 DOI: 10.1080/21645515.2022.2040238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Trained immunity is a renewed concept of innate immune memory that facilitates the innate immune system to have the capacity to remember and train cells via metabolic and transcriptional events to enable them to provide nonspecific defense against the subsequent encounters with a range of pathogens and acquire a quicker and more robust immune response, but different from the adaptive immune memory. Reversing the epigenetic changes or targeting the immunological pathways may be considered potential therapeutic approaches to counteract the hyper-responsive or hypo-responsive state of trained immunity. The efficient regulation of immune homeostasis and promotion or inhibition of immune responses is required for a balanced response. Trained immunity-based vaccines can serve as potent immune stimuli and help in the clearance of pathogens in the body through multiple or heterologous effects and confer protection against nonspecific and specific pathogens. This review highlights various features of trained immunity and its applications in developing novel therapeutics and vaccines, along with certain detrimental effects, challenges as well as future perspectives.
Collapse
Affiliation(s)
- Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Satyabrata Dandapat
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Anbazhagan Subbaiyan
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Pashupathi Mani
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- Indian Council of Agricultural Research, The Trafford Group of Colleges, Manchester, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangldesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
9
|
Su W, Yu S, Yin Y, Li B, Xue J, Wang J, Gu Y, Zhang H, Lyu Z, Mu Y, Cheng Y. Diabetic microenvironment preconditioning of adipose tissue-derived mesenchymal stem cells enhances their anti-diabetic, anti-long-term complications, and anti-inflammatory effects in type 2 diabetic rats. STEM CELL RESEARCH & THERAPY 2022; 13:422. [PMID: 35986406 PMCID: PMC9389728 DOI: 10.1186/s13287-022-03114-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
Background Mesenchymal stem cells (MSCs) exert anti-diabetic effects and improve long-term complications via secretory effects that regulate macrophage polarisation and attenuate inflammation. Enhancing the efficacy of MSCs needs to be explored further. The in vitro culture microenvironment influences the secretory profile of MSCs. Therefore, we hypothesised that a diabetic microenvironment would promote the secretion of cytokines responsible for macrophage polarisation, further attenuating systemic inflammation and enhancing the effects of MSCs on type 2 diabetes (T2D) and long-term diabetic complications. Methods Preconditioned adipose-derived mesenchymal stem cells (pre-ADSCs) were obtained after co-cultivating ADSCs in a diabetic metabolic environment (including high sugar, advanced glycation end-product, and lipopolysaccharides). The regulatory effects of pre-ADSCs on macrophages were observed in vitro. A T2D rat model was induced with a high-fat diet for 32 weeks combined with an intraperitoneal injection of streptozotocin. Sprague–Dawley (SD) rats were divided into four groups: normal group, diabetes without treatment group (PBS), ADSC treatment group, and pre-ADSC treatment group. ADSCs and pre-ADSCs were intravenously administered weekly to SD rats for 6 months, and then glucose homeostasis and long-term diabetic complications were evaluated in each group. Results The secretion of cytokines related to M2 macrophage polarisation (IL-6, MCP-1, etc.) was increased in the pre-ADSC group in the in vitro model. Pre-ADSC treatment significantly maintained blood glucose homeostasis, reduced insulin resistance, promoted islet regeneration, and ameliorated the complications related to diabetes in rats (chronic kidney disease, non-alcoholic steatohepatitis, lung fibrosis, and cataract) compared to the ADSC group (P < 0.05). Additionally, the number of anti-inflammatory M2 macrophage phenotypes was enhanced in tissues following pre-ADSC injections. Moreover, the expression of pro-inflammatory genes (iNOS, TNF-α, IL-1β) was reduced whereas that of anti-inflammatory genes (Arg1, CD206, and Il-10) was increased after cultivation with pre-ADSCs. Conclusion Diabetic microenvironment-preconditioned ADSCs effectively strengthen the capacity against inflammation and modulate the progress of long-term T2D complications. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03114-5.
Collapse
|
10
|
Zhang R, Niu S, Rong Z, Li F, Ni L, Di X, Liu C. A Potential Target for Diabetic Vascular Damage: High Glucose-Induced Monocyte Extracellular Vesicles Impair Endothelial Cells by Delivering miR-142-5p. Front Bioeng Biotechnol 2022; 10:913791. [PMID: 35615474 PMCID: PMC9124888 DOI: 10.3389/fbioe.2022.913791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Endothelial dysfunction is a key accessory to diabetic cardiovascular complications, and the regulatory role of the extracellular vesicles (EVs) from the innate immune system is growing. We tested whether EVs derived from high glucose-induced monocytes could shuttle microRNAs and impair endothelial cells. EVs from high glucose- and basal glucose-treated THP-1 cells (HG-THP-1 EVs and BG-THP-1 EVs) were isolated and identified. After coculture with THP-1 EVs, human umbilical vein endothelial cells (HUVECs) were tested by proliferation, migration, reactive oxygen species (ROS) detection assays, and western blot for Nrf2/NLRP3 signaling. MiR-142-5p was predicted by miRNAs databases and further verified by RT–qPCR and dual-luciferase reporter gene assays that inhibit Nrf2 expression. The regulation of miR-142-5p in HUVECs was further evaluated. A type 1 diabetes mellitus (T1DM) mouse model was developed for miR-142-5p inhibition. Aorta tissue was harvested for hematoxylin-eosin staining and immunohistochemistry of interleukin-1β (IL-1β). Compared to BG-THP-1 EVs, HG-THP-1 EVs significantly reduced migration and increased ROS production in HUVECs but did not affect proliferation. HG-THP-1 EVs induced suppression of Nrf2 signaling and NLRP3 signaling activation. RT–qPCR results showed that HG-THP-1 EVs overexpressed miR-142-5p in HUVECs. The transfection of miR-142-5p mimics into HUVECs exhibited consistent regulatory effects on HG-THP-1 EVs, whereas miR-142-5p inhibitors demonstrated protective effects. The miR-142-5p antagomir significantly reduced the IL-1β level in T1DM aortas despite morphological changes. To conclude, miR-142-5p transferred by high glucose-induced monocyte EVs participates in diabetic endothelial damage. The inhibition of miR-142-5p could be a potential adjuvant to diabetic cardiovascular protection.
Collapse
|
11
|
Keating ST, El-Osta A. Metaboloepigenetics in cancer, immunity and cardiovascular disease. Cardiovasc Res 2022; 119:357-370. [PMID: 35389425 PMCID: PMC10064843 DOI: 10.1093/cvr/cvac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/12/2022] [Accepted: 02/02/2022] [Indexed: 11/14/2022] Open
Abstract
The influence of cellular metabolism on epigenetic pathways are well documented but misunderstood. Scientists have long known of the metabolic impact on epigenetic determinants. More often than not, that title role for DNA methylation was portrayed by the metabolite SAM or S-adenosylmethionine. Technically speaking there are many other metabolites that drive epigenetic processes that instruct seemingly distant - yet highly connect pathways - and none more so than our understanding of the cancer epigenome. Recent studies have shown that available energy link the extracellular environment to influence cellular responses. This focused review examines the recent interest in epigenomics and casts cancer, metabolism and immunity in unfamiliar roles - cooperating. There are not only language lessons from cancer research, we have come round to appreciate that reaching into areas previously thought of as too distinct are also object lessons in understanding health and disease. The Warburg effect is one such signature of how glycolysis influences metabolic shift during oncogenesis. That shift in metabolism - now recognised as central to proliferation in cancer biology - influence core enzymes that not only control gene expression but are also central to replication, condensation and the repair of nucleic acid. These nuclear processes rely on metabolism and with glucose at center stage the role of respiration and oxidative metabolism are now synonymous with the mitochondria as the powerhouses of metaboloepigenetics. The emerging evidence for metaboloepigenetics in trained innate immunity has revealed recognisable signalling pathways with antecedent extracellular stimulation. With due consideration to immunometabolism we discuss the striking signalling similarities influencing these core pathways. The immunometabolic-epigenetic axis in cardiovascular disease has deeply etched connections with inflammation and we examine the chromatin template as a carrier of epigenetic indices that determine the expression of genes influencing atherosclerosis and vascular complications of diabetes.
Collapse
Affiliation(s)
- Samuel T Keating
- Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Assam El-Osta
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.,Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR.,Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR.,University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark
| |
Collapse
|
12
|
Yu D, Zhang J, Wang S. Trained immunity in the mucosal diseases. WIREs Mech Dis 2022; 14:e1543. [PMID: 35266652 DOI: 10.1002/wsbm.1543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Immune memory is well known as a signature of the adaptive immune system. Recently, enhanced responses to subsequent triggers are also observed in innate immune system, termed trained immunity (TI). Awakening of innate immune memory is required for host defense, such as anti-pathogen and anti-tumor responses. However, hyper-reactivation of trained innate immune cells also gives rise to undesirable inflammation. Mucosa immune system serves as the first defense line against pathogens. Trained immunity of mucosal immune system is tightly associated with the outcomes of mucosal diseases. In this review, we discuss the role of trained immunity in mucosal-associated diseases and the underlying mechanisms. We summarize the metabolic and epigenetic changes of trained immune cells and highlight their potential in clinical treatment. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Dou Yu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Division of Life Sciences of Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaqi Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Caslin HL, Cottam MA, Piñon JM, Boney LY, Hasty AH. Weight cycling induces innate immune memory in adipose tissue macrophages. Front Immunol 2022; 13:984859. [PMID: 36713396 PMCID: PMC9876596 DOI: 10.3389/fimmu.2022.984859] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Weight loss improves obesity-associated diabetes risk. However, most individuals regain weight, which worsens the risk of developing diabetes and cardiovascular disease. We previously reported that male mice retain obesity-associated immunological changes even after weight loss, suggesting that immune cells may remember the state of obesity. Therefore, we hypothesized that cycles of weight gain and loss, otherwise known as weight cycling, can induce innate memory in adipose macrophages. Methods Bone marrow derived macrophages were primed with palmitic acid or adipose tissue conditioned media in a culture model of innate immune memory. Mice also put on low fat or high fat diets over 14-27 weeks to induce weight gain, weight loss, and weight cycling. Results Priming cells with palmitic acid or adipose tissue conditioned media from obese mice increased maximal glycolysis and oxidative phosphorylation and increased LPS-induced TNFα and IL-6 production. Palmitic acid effects were dependent on TLR4 and impaired by methyltransferase inhibition and AMPK activation. While weight loss improved glucose tolerance in mice, adipose macrophages were primed for greater activation to subsequent stimulation by LPS ex vivo as measured by cytokine production. In the model of weight cycling, adipose macrophages had elevated metabolism and secreted higher levels of basal TNFα, suggesting that weight loss can also prime macrophages for heighted activation to weight regain. Discussion Together, these data suggest that weight loss following obesity can prime adipose macrophages for enhanced inflammation upon weight regain. This innate immune memory response may contribute to worsened glucose tolerance following weight cycling.
Collapse
Affiliation(s)
- Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
| | - Jacqueline M Piñon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Likem Y Boney
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States.,Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|
14
|
Association of TNF-α 308G/A and LEPR Gln223Arg Polymorphisms with the Risk of Type 2 Diabetes Mellitus. Genes (Basel) 2021; 13:genes13010059. [PMID: 35052401 PMCID: PMC8796026 DOI: 10.3390/genes13010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/17/2023] Open
Abstract
The objective of the present study was to identify the association of the TNF-α- 308G/A and leptin receptor (LEPR) Gln223Arg polymorphisms with the risk of development of type 2 diabetes mellitus (T2DM). Methods: A total of 160 volunteers were studied: 108 with T2DM and 52 participants as control, who served as the control group. Polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) for the genomic region of TNF-α- 308G/A and LEPR Gln223Arg were carried out. Results: The frequency of LEPR Gln223Arg genotypes in T2DM and control groups showed significant differences in the distribution of genotypes (p < 0.05). The frequency also of TNF-α- 308G/A genotypes in T2DM and control subjects showed significant differences in the distribution of genotypes (p < 0.05). Conclusion: Our results indicate that there are significant differences in the distribution of genotypes and alleles between the individuals with T2DM and control subjects (p < 0.05).
Collapse
|
15
|
New Insights on the PBMCs Phospholipidome in Obesity Demonstrate Modulations Associated with Insulin Resistance and Glycemic Status. Nutrients 2021; 13:nu13103461. [PMID: 34684461 PMCID: PMC8541295 DOI: 10.3390/nu13103461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Obesity and type 2 diabetes have been suspected to impact both intrinsic metabolism and function of circulating immune cells. (2) Methods: To further investigate this immunometabolic modulation, we profiled the phospholipidome of the peripheral blood mononuclear cells (PBMCs) in lean, normoglycemic obese (OBNG) and obese with dysglycemia (OBDysG) individuals. (3) Results: The global PBMCs phospholipidome is significantly downmodulated in OBDysG unlike OBNG patients when compared to lean ones. Multiple linear regression analyses show a strong negative relationship between the global PBMCs phospholipidome and parameters assessing insulin resistance. Even though all classes of phospholipid are affected, the relative abundance of each class is maintained with the exception of Lyso-PC/PC and Lyso-PE/PE ratios that are downmodulated in PBMCs of OBDysG compared to OBNG individuals. Interestingly, the percentage of saturated PC is positively associated with glycated hemoglobin (HbA1c). Moreover, a few lipid species are significantly downmodulated in PBMCs of OBDysG compared to OBNG individuals, making possible to distinguish the two phenotypes. (4) Conclusions: This lipidomic study highlights for the first-time modulations of the PBMCs phospholipidome in obese patients with prediabetes and type 2 diabetes. Such phospholipidome remodeling could disrupt the cell membranes and the lipid mediator's levels, driving an immune cell dysfunction.
Collapse
|
16
|
Feng X, Chen W, Ni X, Little PJ, Xu S, Tang L, Weng J. Metformin, Macrophage Dysfunction and Atherosclerosis. Front Immunol 2021; 12:682853. [PMID: 34163481 PMCID: PMC8215340 DOI: 10.3389/fimmu.2021.682853] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Metformin is one of the most widely prescribed hypoglycemic drugs and has the potential to treat many diseases. More and more evidence shows that metformin can regulate the function of macrophages in atherosclerosis, including reducing the differentiation of monocytes and inhibiting the inflammation, oxidative stress, polarization, foam cell formation and apoptosis of macrophages. The mechanisms by which metformin regulates the function of macrophages include AMPK, AMPK independent targets, NF-κB, ABCG5/8, Sirt1, FOXO1/FABP4 and HMGB1. On the basis of summarizing these studies, we further discussed the future research directions of metformin: single-cell RNA sequencing, neutrophil extracellular traps (NETs), epigenetic modification, and metformin-based combination drugs. In short, macrophages play an important role in a variety of diseases, and improving macrophage dysfunction may be an important mechanism for metformin to expand its pleiotropic pharmacological profile. In addition, the combination of metformin with other drugs that improve the function of macrophages (such as SGLT2 inhibitors, statins and IL-1β inhibitors/monoclonal antibodies) may further enhance the pleiotropic therapeutic potential of metformin in conditions such as atherosclerosis, obesity, cancer, dementia and aging.
Collapse
Affiliation(s)
- Xiaojun Feng
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Wenxu Chen
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Xiayun Ni
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Peter J. Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| | - Liqin Tang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| |
Collapse
|
17
|
Su H, Liang Z, Weng S, Sun C, Huang J, Zhang T, Wang X, Wu S, Zhang Z, Zhang Y, Gong Q, Xu Y. miR-9-5p regulates immunometabolic and epigenetic pathways in β-glucan-trained immunity via IDH3α. JCI Insight 2021; 6:144260. [PMID: 33986196 PMCID: PMC8262351 DOI: 10.1172/jci.insight.144260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/31/2021] [Indexed: 01/10/2023] Open
Abstract
Trained immunity, induced by β-glucan in monocytes, is mediated by activating metabolic pathways that result in epigenetic rewiring of cellular functional programs; however, molecular mechanisms underlying these changes remain unclear. Here, we report a key immunometabolic and epigenetic pathway mediated by the miR-9-5p-isocitrate dehydrogenase 3α (IDH3α) axis in trained immunity. We found that β-glucan-trained miR-9-5p-/- monocytes showed decreased IL-1β, IL-6, and TNF-α production after LPS stimulation. Trained miR-9-5p-/- mice produced decreased levels of proinflammatory cytokines upon rechallenge in vivo and had worse protection against Candida albicans infection. miR-9-5p targeted IDH3α and reduced α-ketoglutarate (α-KG) levels to stabilize HIF-1α, which promoted glycolysis. Accumulating succinate and fumarate via miR-9-5p action integrated immunometabolic circuits to induce histone modifications by inhibiting KDM5 demethylases. β-Glucan-trained monocytes exhibited low IDH3α levels, and IDH3α overexpression blocked the induction of trained immunity by monocytes. Monocytes with IDH3α variants from autosomal recessive retinitis pigmentosa patients showed a trained immunity phenotype at immunometabolic and epigenetic levels. These findings suggest that miR-9-5p and IDH3α act as critical metabolic and epigenetic switches in trained immunity.
Collapse
Affiliation(s)
- Haibo Su
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Zhongping Liang
- Department of General Surgery, The Sixth Affiliated Hospital, Guangzhou Medical University, Qingyuan, China
| | - ShuFeng Weng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Chaonan Sun
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Jiaxin Huang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - TianRan Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Xialian Wang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Shanshan Wu
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Zhi Zhang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Yiqi Zhang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Qing Gong
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Bekkering S, Domínguez-Andrés J, Joosten LAB, Riksen NP, Netea MG. Trained Immunity: Reprogramming Innate Immunity in Health and Disease. Annu Rev Immunol 2021; 39:667-693. [PMID: 33637018 DOI: 10.1146/annurev-immunol-102119-073855] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traditionally, the innate and adaptive immune systems are differentiated by their specificity and memory capacity. In recent years, however, this paradigm has shifted: Cells of the innate immune system appear to be able to gain memory characteristics after transient stimulation, resulting in an enhanced response upon secondary challenge. This phenomenon has been called trained immunity. Trained immunity is characterized by nonspecific increased responsiveness, mediated via extensive metabolic and epigenetic reprogramming. Trained immunity explains the heterologous effects of vaccines, which result in increased protection against secondary infections. However, in chronic inflammatory conditions, trained immunity can induce maladaptive effects and contribute to hyperinflammation and progression of cardiovascular disease, autoinflammatory syndromes, and neuroinflammation. In this review we summarize the current state of the field of trained immunity, its mechanisms, and its roles in both health and disease.
Collapse
Affiliation(s)
- Siroon Bekkering
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands; , ,
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands; , ,
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands; , , .,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands; , ,
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands; , , .,Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany;
| |
Collapse
|
19
|
Choudhury RP, Edgar L, Rydén M, Fisher EA. Diabetes and Metabolic Drivers of Trained Immunity. Arterioscler Thromb Vasc Biol 2021; 41:1284-1290. [PMID: 33657881 PMCID: PMC10069665 DOI: 10.1161/atvbaha.120.314211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Accumulating evidence shows how diverse physiological functions, such as metabolism, immunity, tissue homeostasis, and hematopoiesis, are intricately and profoundly intertwined at multiple levels. This brief review will present evidence from a rapidly expanding field of immunometabolism, highlighting how cells that are relevant to processes at play in determining vascular health and disease can be programmed by changes in their metabolic environment. It will focus on how such changes can be imprinted or trained, particularly through epigenetic modifications, such that adaptations driven by metabolic signals can cause persistent changes in cell function, even after the original stimulus has been corrected or removed. Recognition of these processes and elucidation of the mechanisms underlying them stand to have far-reaching implications for the diagnosis and treatment of diabetes and related metabolic states.
Collapse
Affiliation(s)
- Robin P. Choudhury
- Radcliffe Department of Medicine, University of Oxford, United Kingdom (R.P.C., L.E.)
| | - Laurienne Edgar
- Radcliffe Department of Medicine, University of Oxford, United Kingdom (R.P.C., L.E.)
- Novo Nordisk A/S, Gatwick, United Kingdom (L.E.)
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institute, C2-94, Karolinska University Hospital, Huddinge, Stockholm, Sweden (M.R.)
| | - Edward A. Fisher
- Department of Medicine, NYU Grossman School of Medicine, NY (E.A.F.)
| |
Collapse
|
20
|
Halvatsiotis P, Siatelis A, Koulouvaris P, Batrinou A, Vougiouklaki D, Routsi E, Papapanou M, Trapali M, Houhoula D. Comparison of Q223R leptin receptor polymorphism to the leptin gene expression in Greek young volunteers. AIMS MEDICAL SCIENCE 2021. [DOI: 10.3934/medsci.2021025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract><sec>
<title>Objective</title>
<p>The objective of the present study was to identify the leptin gene expression and the leptin receptor polymorphisms in blood samples and to correlate gene expression values with anthropometric characteristics.</p>
</sec><sec>
<title>Methods</title>
<p>Blood from 140 Greek young volunteers was subjected to polymerase chain reaction–restricted fragment length polymorphism (PCR–RFLP), for the genomic region of Q223R polymorphism at codon 223 in the leptin receptor gene (<italic>LEPR</italic>) coding region. RNA extraction, cDNA synthesis and Quantitative Real-Time PCR was performed for assessing the expression of the leptin gene (<italic>LEP</italic>).</p>
</sec><sec>
<title>Results</title>
<p>Leptin gene was identified in all tested specimens and the gene was expressed in 88.9% of all volunteers with BMI < 25. In addition, it was observed that gene expression is affected by various external factors, such as Body Mass Index (BMI), eating behavior, gender and age. It was also shown that as for the Q223R polymorphism (A to G) allele G occurs with a frequency of 100% in men with BMI > 30 and 75.9% in men and 88.9% in women with BMI 25–30. Volunteers with BMI 25–30 who were homozygous on the G allele were 50% and 77.8% in men and women respectively. All subjects with a BMI > 30 were homozygous on the G allele at 100%.</p>
</sec><sec>
<title>Conclusions</title>
<p>In this small-scale study, results have shown that the leptin gene expression correlates with BMI and that the allele G in Q223R polymorphism is linked to overweight individuals.</p>
</sec></abstract>
Collapse
|
21
|
Bonyek-Silva I, Nunes S, Santos RL, Lima FR, Lago A, Silva J, Carvalho LP, Arruda SM, Serezani HC, Carvalho EM, Brodskyn CI, Tavares NM. Unbalanced production of LTB 4/PGE 2 driven by diabetes increases susceptibility to cutaneous leishmaniasis. Emerg Microbes Infect 2020; 9:1275-1286. [PMID: 32525457 PMCID: PMC7473187 DOI: 10.1080/22221751.2020.1773744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/09/2023]
Abstract
Poorly controlled diabetes mellitus leads to several comorbidities, including susceptibility to infections. Hyperglycemia increases phagocyte responsiveness, however immune cells from people with diabetes show inadequate antimicrobial functions. We and others have shown that aberrant production of leukotriene B4 (LTB4) is detrimental to host defense in models of bacterial infection. Here, we will unveil the consequences of high glucose in the outcome of Leishmania braziliensis skin infection in people with diabetes and determine the role of LTB4 in human phagocytes. We show that diabetes leads to higher systemic levels of LTB4, IL-6 and TNF-α in cutaneous leishmaniasis. Only LTB4 correlated with blood glucose levels and healing time in diabetes comorbidity. Skin lesions of people with leishmaniasis and diabetes exhibit increased neutrophil and amastigote numbers. Monocyte-derived macrophages from these individuals showed higher L. braziliensis loads, reduced production of Reactive Oxygen Species and unbalanced LTB4/PGE2 ratio. Our data reveal a systemic inflammation driven by diabetes comorbidity in opposition to a local reduced capacity to resolve L. braziliensis infection and a worse disease outcome.
Collapse
Affiliation(s)
- Icaro Bonyek-Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Sara Nunes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Reinan L. Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Filipe R. Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | | | - Juliana Silva
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Lucas P. Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Sergio M. Arruda
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Henrique C. Serezani
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edgar M. Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- National Institute of Science and Technology (INCT) in Tropical Diseases, Salvador, Brazil
| | - Claudia I. Brodskyn
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- National Institute of Science and Technology (INCT), Institute of Investigation in Immunology (iii), São Paulo, Brazil
| | - Natalia M. Tavares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- National Institute of Science and Technology (INCT), Institute of Investigation in Immunology (iii), São Paulo, Brazil
| |
Collapse
|
22
|
Imran S, Neeland MR, Shepherd R, Messina N, Perrett KP, Netea MG, Curtis N, Saffery R, Novakovic B. A Potential Role for Epigenetically Mediated Trained Immunity in Food Allergy. iScience 2020; 23:101171. [PMID: 32480123 PMCID: PMC7262566 DOI: 10.1016/j.isci.2020.101171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/01/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of IgE-mediated food allergy is increasing at a rapid pace in many countries. The association of high food allergy rates with Westernized lifestyles suggests the role of gene-environment interactions, potentially underpinned by epigenetic variation, in mediating this process. Recent studies have implicated innate immune system dysfunction in the development and persistence of food allergy. These responses are characterized by increased circulating frequency of innate immune cells and heightened inflammatory responses to bacterial stimulation in food allergic patients. These signatures mirror those described in trained immunity, whereby innate immune cells retain a “memory” of earlier microbial encounters, thus influencing subsequent immune responses. Here, we propose that a robust multi-omics approach that integrates immunological, transcriptomic, and epigenomic datasets, combined with well-phenotyped and longitudinal food allergy cohorts, can inform the potential role of trained immunity in food allergy.
Collapse
Affiliation(s)
- Samira Imran
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Melanie R Neeland
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Rebecca Shepherd
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Nicole Messina
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Kirsten P Perrett
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Nigel Curtis
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia.
| |
Collapse
|
23
|
Zhong C, Yang X, Feng Y, Yu J. Trained Immunity: An Underlying Driver of Inflammatory Atherosclerosis. Front Immunol 2020; 11:284. [PMID: 32153588 PMCID: PMC7046758 DOI: 10.3389/fimmu.2020.00284] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/04/2020] [Indexed: 02/03/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of the arterial wall, is among the leading causes of morbidity and mortality worldwide. The persistence of low-grade vascular inflammation has been considered to fuel the development of atherosclerosis. However, fundamental mechanistic understanding of the establishment of non-resolving low-grade inflammation is lacking, and a large number of atherosclerosis-related cardiovascular complications cannot be prevented by current therapeutic regimens. Trained immunity is an emerging new concept describing a prolonged hyperactivation of the innate immune system after exposure to certain stimuli, leading to an augmented immune response to a secondary stimulus. While it exerts beneficial effects for host defense against invading pathogens, uncontrolled persistent innate immune activation causes chronic inflammatory diseases. In light of the above, the long-term over-activation of the innate immune system conferred by trained immunity has been recently hypothesized to serve as a link between non-resolving vascular inflammation and atherosclerosis. Here, we provide an overview of current knowledge on trained immunity triggered by various exogenous and endogenous inducers, with particular emphasis on its pro-atherogenic effects and the underlying intracellular mechanisms that act at both the cellular level and systems level. We also discuss how trained immunity could be mechanistically linked to atherosclerosis from both preclinical and clinical perspectives. This review details the mechanisms underlying the induction of trained immunity by different stimuli, and highlights that the intracellular training programs can be different, though partly overlapping, depending on the stimulus and the biological system. Thus, clinical investigation of risk factor specific innate immune memory is necessary for future use of trained immunity-based therapy in atherosclerosis.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Center for Translational Medicine, School of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yulin Feng
- National Pharmaceutical Engineering Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jun Yu
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
24
|
Treatment with adipose tissue-derived mesenchymal stem cells exerts anti-diabetic effects, improves long-term complications, and attenuates inflammation in type 2 diabetic rats. Stem Cell Res Ther 2019; 10:333. [PMID: 31747961 PMCID: PMC6868748 DOI: 10.1186/s13287-019-1474-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 02/08/2023] Open
Abstract
Background Long-term diabetes-associated complications are the major causes of morbidity and mortality in individuals with diabetes. These diabetic complications are closely linked to immune system activation along with chronic, non-resolving inflammation, but therapies to directly reverse these complications are still not available. Our previous study demonstrated that mesenchymal stem cells (MSCs) attenuated chronic inflammation in type 2 diabetes mellitus (T2DM), resulting in improved insulin sensitivity and islet function. Therefore, we speculated that MSCs might exert anti-inflammatory effects and promote the reversal of diabetes-induced kidney, liver, lung, heart, and lens diseases in T2DM rats. Methods We induced a long-term T2DM complication rat model by using a combination of a low dose of streptozotocin (STZ) with a high-fat diet (HFD) for 32 weeks. Adipose-derived mesenchymal stem cells (ADSCs) were systemically administered once a week for 24 weeks. Then, we investigated the role of ADSCs in modulating the progress of long-term diabetic complications. Results Multiple infusions of ADSCs attenuated chronic kidney disease (CKD), nonalcoholic steatohepatitis (NASH), lung fibrosis, and cataracts; improved cardiac function; and lowered serum lipid levels in T2DM rats. Moreover, the levels of inflammatory cytokines in the serum of each animal group revealed that ADSC infusions were able to not only inhibit pro-inflammatory cytokines IL-6, IL-1β, and TNF-α expression but also increase anti-inflammatory cytokine IL-10 systematically. Additionally, MSCs reduced the number of iNOS(+) M1 macrophages and restored the number of CD163(+) M2 macrophages. Conclusions Multiple intravenous infusions of ADSCs produced significant protective effects against long-term T2DM complications by alleviating inflammation and promoting tissue repair. The present study suggests ADSCs may be a novel, alternative cell therapy for long-term diabetic complications.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The two major challenges in cardiovascular medicine are to refine risk prediction and to improve pharmacological prevention and treatment. The concept of innate immune memory, which is called trained immunity, has the potential to improve clinical practice in these regards. RECENT FINDINGS Monocytes and macrophages have the capability to develop a long-term proinflammatory and proatherogenic phenotype after brief exposure to inflammatory stimuli, such as oxidized low-density lipoprotein particles. This innate immune memory develops because of rewiring of intracellular metabolic pathways and epigenetic reprogramming of histone modifications. The persistence of circulating hyperresponsive monocytes in vivo is explained by the fact that training occurs in myeloid progenitor cells in the bone marrow. Several recent studies reported the presence of monocytes with a trained immune phenotype in patients with established atherosclerosis, and in patients with an increased risk for atherosclerosis because of dyslipoproteinemia. SUMMARY In monocytes and their bone marrow progenitors, metabolic and epigenetic reprogramming can induce trained immunity, which might contribute to the persistent nonresolving inflammation that characterizes atherosclerosis. These pathways offer exciting novel drug targets to improve the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| |
Collapse
|
26
|
Adaptive innate immunity or innate adaptive immunity? Clin Sci (Lond) 2019; 133:1549-1565. [DOI: 10.1042/cs20180548] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
Abstract
The innate immunity is frequently accepted as a first line of relatively primitive defense interfering with the pathogen invasion until the mechanisms of ‘privileged’ adaptive immunity with the production of antibodies and activation of cytotoxic lymphocytes ‘steal the show’. Recent advancements on the molecular and cellular levels have shaken the traditional view of adaptive and innate immunity. The innate immune memory or ‘trained immunity’ based on metabolic changes and epigenetic reprogramming is a complementary process insuring adaptation of host defense to previous infections.
Innate immune cells are able to recognize large number of pathogen- or danger- associated molecular patterns (PAMPs and DAMPs) to behave in a highly specific manner and regulate adaptive immune responses. Innate lymphoid cells (ILC1, ILC2, ILC3) and NK cells express transcription factors and cytokines related to subsets of T helper cells (Th1, Th2, Th17). On the other hand, T and B lymphocytes exhibit functional properties traditionally attributed to innate immunity such as phagocytosis or production of tissue remodeling growth factors. They are also able to benefit from the information provided by pattern recognition receptors (PRRs), e.g. γδT lymphocytes use T-cell receptor (TCR) in a manner close to PRR recognition. Innate B cells represent another example of limited combinational diversity usage participating in various innate responses. In the view of current knowledge, the traditional black and white classification of immune mechanisms as either innate or an adaptive needs to be adjusted and many shades of gray need to be included.
Collapse
|
27
|
Lu Y, Sun Y, Drummer C, Nanayakkara GK, Shao Y, Saaoud F, Johnson C, Zhang R, Yu D, Li X, Yang WY, Yu J, Jiang X, Choi ET, Wang H, Yang X. Increased acetylation of H3K14 in the genomic regions that encode trained immunity enzymes in lysophosphatidylcholine-activated human aortic endothelial cells - Novel qualification markers for chronic disease risk factors and conditional DAMPs. Redox Biol 2019; 24:101221. [PMID: 31153039 PMCID: PMC6543097 DOI: 10.1016/j.redox.2019.101221] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
To test our hypothesis that proatherogenic lysophosphatidylcholine (LPC) upregulates trained immunity pathways (TIPs) in human aortic endothelial cells (HAECs), we conducted an intensive analyses on our RNA-Seq data and histone 3 lysine 14 acetylation (H3K14ac)-CHIP-Seq data, both performed on HAEC treated with LPC. Our analysis revealed that: 1) LPC induces upregulation of three TIPs including glycolysis enzymes (GE), mevalonate enzymes (ME), and acetyl-CoA generating enzymes (ACE); 2) LPC induces upregulation of 29% of 31 histone acetyltransferases, three of which acetylate H3K14; 3) LPC induces H3K14 acetylation (H3K14ac) in the genomic DNA that encodes LPC-induced TIP genes (79%) in comparison to that of in LPC-induced effector genes (43%) including ICAM-1; 4) TIP pathways are significantly different from that of EC activation effectors including adhesion molecule ICAM-1; 5) reactive oxygen species generating enzyme NOX2 deficiency decreases, but antioxidant transcription factor Nrf2 deficiency increases, the expressions of a few TIP genes and EC activation effector genes; and 6) LPC induced TIP genes(81%) favor inter-chromosomal long-range interactions (CLRI, trans-chromatin interaction) while LPC induced effector genes (65%) favor intra-chromosomal CLRIs (cis-chromatin interaction). Our findings demonstrated that proatherogenic lipids upregulate TIPs in HAECs, which are a new category of qualification markers for chronic disease risk factors and conditional DAMPs and potential mechanisms for acute inflammation transition to chronic ones. These novel insights may lead to identifications of new cardiovascular risk factors in upregulating TIPs in cardiovascular cells and novel therapeutic targets for the treatment of metabolic cardiovascular diseases, inflammation, and cancers. (total words: 245).
Collapse
Affiliation(s)
- Yifan Lu
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yu Sun
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Charles Drummer
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Gayani K Nanayakkara
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fatma Saaoud
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ruijing Zhang
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xinyuan Li
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Jun Yu
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaohua Jiang
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Division of Vascular & Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|