1
|
Farias HR, Costa-Beber LC, Costa Rodrigues Guma FT, de Oliveira J. Hypercholesterolemia, oxidative stress, and low-grade inflammation: a potentially dangerous scenario to blood-brain barrier. Metab Brain Dis 2025; 40:205. [PMID: 40380979 DOI: 10.1007/s11011-025-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2025] [Indexed: 05/19/2025]
Abstract
For more than a century, hypercholesterolemia has been linked to atherosclerotic cardiovascular disease. Notably, this metabolic condition has also been pointed out as a risk factor for neurodegenerative diseases, such as Alzheimer's disease (AD). Oxidative stress seems to be the connective factor between hypercholesterolemia and cardio and neurological disorders. By disturbing redox homeostasis, hypercholesterolemia impairs nitric oxide (NO) availability, an essential vasoprotective element, and jeopardizes endothelial function and selective permeability. The central nervous system (CNS) is partially protected from peripheral insults due to an arrangement between endothelial cells, astrocytes, microglia, and pericytes that form the blood-brain barrier (BBB). The endothelial dysfunction related to hypercholesterolemia increases the risk of developing cardiovascular diseases and also initiates BBB breakdown, which is a cause of brain damage characterized by neuroinflammation, oxidative stress, mitochondrial dysfunction, and, ultimately, neuronal and synaptic impairment. In this regard, we reviewed the mechanisms by which hypercholesterolemia-induced oxidative stress affects peripheral vessels, BBB, and leads to memory deficits. Finally, we suggest oxidative stress as the missing link between hypercholesterolemia and dementia.
Collapse
Affiliation(s)
- Hémelin Resende Farias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Lílian Corrêa Costa-Beber
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Fátima Theresinha Costa Rodrigues Guma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
2
|
Yang K, Zhang P, Ding X, Yu G, Liu J, Yang Y, Fang J, Liu Q, Zhang L, Li J, Wu F. Integrating bioinformatics and metabolomics to identify potential biomarkers of hypertensive nephropathy. Sci Rep 2025; 15:7437. [PMID: 40032896 PMCID: PMC11876634 DOI: 10.1038/s41598-025-89601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Hypertensive nephropathy (HN), caused by long-term poorly controlled hypertension, is the second common cause of end-stage renal disease after diabetes mellitus, but the pathogenesis of HN is unclear. The purpose of this study was to identify the biological pathways involved in the progression of HN and bile acid (BA)-related biomarkers, and to analyze the role of bile acids in HN. Download gene microarray data from Gene Expression Omnibus. Differentially expressed genes (DEGs) associated with HN were identified, and then DEGs were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. A protein-protein interaction (PPI) network was established using DEGs to identify BA-related hub genes in combination with bile acid identical targets. An animal model of early hypertensive nephropathy was established using SHR and the concentrations of 39 bile acids were measured quantitatively in the renal cortex to screen for significantly different concentrations and to analyze the correlation between bile acid concentrations and blood pressure. A total of 398 DEGs were screened. The results of enrichment analysis identified multiple biological pathways associated with hypertension, nephropathy and bile acids. Combining PPI network and bile acid-related targets, three BA-related hub genes (APOE, ALB, SERPINA1) were identified. Quantitative analysis of bile acids revealed significant differences in the concentrations of seven bile acids (DCA, CDCA, UDCA, UCA, CA, TDCA, TCDCA). The concentrations of these bile acids showed a positive correlation with blood pressure values in SHR, with CA, DCA and TDCA showing a stronger correlation and specificity with blood pressure in SHR. Three BA-related hub genes (APOE, ALB, SERPINA1) may be involved in the early stages of HN. The concentrations of multiple bile acids were significantly elevated in the early stages of HN, with CA, DCA and TDCA being more correlated and specific with blood pressure and having higher diagnostic value. These BA-related hub genes and BAs may be involved in disease progression in the early stages of HN.
Collapse
Affiliation(s)
- Kezhen Yang
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Pingna Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiaofeng Ding
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gong Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jipeng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qingguo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lu Zhang
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Jianhua Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Fangchao Wu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
3
|
Nkhumeleni Z, Phoswa WN, Mokgalaboni K. Purslane Ameliorates Inflammation and Oxidative Stress in Diabetes Mellitus: A Systematic Review. Int J Mol Sci 2024; 25:12276. [PMID: 39596339 PMCID: PMC11595026 DOI: 10.3390/ijms252212276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes (T2D) is characterised by insulin resistance and leads to hyperglycaemia. Its prevalence and associated complications continue to rise exponentially, despite the existence of pharmaceutical drugs, and this has prompted research into exploring safer herbal remedies. Portulaca oleracea (purslane) has been investigated in animal and clinical trials to explore its effects on diabetes, yielding conflicting results. This study aimed to evaluate the effects of purslane on inflammation and oxidative stress in diabetes mellitus. We conducted a comprehensive literature search on Scopus PubMed, and through a manual bibliographical search to find relevant studies from inception to 13 September 2024. The search terms included purslane, portulaca oleracea, and type 2 diabetes mellitus. Of the 38 retrieved studies, 12 were considered relevant and underwent critical review. Evidence from rodent studies showed decreased inflammatory markers such as interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), nuclear factor kappa-beta (NF-κβ), and C-reactive (CRP), while interleukin-10 (IL-10) was increased after intervention with purslane. The markers of oxidative stress such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) levels increased, thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS) and malondialdehyde (MDA) decreased. Notably, the evidence from clinical trials showed a significant reduction in NF-κβ and CRP after purslane treatment; however, no effect was observed on MDA and TAC. The evidence gathered in this study suggests that purslane exerts anti-inflammatory properties by downregulating NF-κβ, thus suppressing the production of associated pro-inflammatory cytokines. Therefore, purslane may be used as an antioxidant and inflammatory agent for diabetes. However, further clinical evidence with a broader population is required to validate the therapeutic properties of purslane in diabetes.
Collapse
Affiliation(s)
| | - Wendy N. Phoswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (Z.N.); (K.M.)
| | | |
Collapse
|
4
|
Chen S, Xie JD, Xie MT, Yang LN, Lin YF, Chen JB, Chen TF, Zeng KF, Tan ZB, Lu SM, Wang HJ, Yang B, Jiang WH, Zhang SW, Deng B, Liu B, Zhang J. Przewaquinone A inhibits Angiotensin II-induced endothelial diastolic dysfunction activation of AMPK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155885. [PMID: 39096544 DOI: 10.1016/j.phymed.2024.155885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/02/2024] [Accepted: 07/14/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Endothelial dysfunction (ED), characterized by markedly reduced nitric oxide (NO) bioavailability, vasoconstriction, and a shift toward a proinflammatory and prothrombotic state, is an important contributor to hypertension, atherosclerosis, and other cardiovascular diseases. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is widely involved in cardiovascular development. Przewaquinone A (PA), a lipophilic diterpene quinone extracted from Salvia przewalskii Maxim, inhibits vascular contraction. PURPOSE Herein, the goal was to explore the protective effect of PA on ED in vivo and in vitro, as well as the underlying mechanisms. METHODS A human umbilical vein endothelial cell (HUVEC) model of ED induced by angiotensin II (AngII) was used for in vitro observations. Levels of AMPK, endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), nitric oxide (NO), and endothelin-1 (ET-1) were detected by western blotting and ELISA. A mouse model of hypertension was established by continuous infusion of AngII (1000 ng/kg/min) for 4 weeks using osmotic pumps. Following PA and/or valsartan administration, NO and ET-1 levels were measured. The levels of AMPK signaling-related proteins in the thoracic aorta were evaluated by immunohistochemistry. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were measured using the tail cuff method. Isolated aortic vascular tone measurements were used to evaluate the vasodilatory function in mice. Molecular docking, molecular dynamics, and surface plasmon resonance imaging (SPRi) were used to confirm AMPK and PA interactions. RESULTS PA inhibited AngII-induced vasoconstriction and vascular adhesion as well as activated AMPK signaling in a dose-dependent manner. Moreover, PA markedly suppressed blood pressure, activated vasodilation in mice following AngII stimulation, and promoted the activation of AMPK signaling. Furthermore, molecular simulations and SPRi revealed that PA directly targeted AMPK. AMPK inhibition partly abolished the protective effects of PA against endothelial dysfunction. CONCLUSION PA activates AMPK and ameliorates endothelial dysfunction during hypertension.
Collapse
Affiliation(s)
- Si Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China; School of Chinese medicine, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, PR China
| | - Jun-di Xie
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Meng-Ting Xie
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Li-Ning Yang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Yu-Fang Lin
- The Second Clinical School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Jun-Bang Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Ting-Fang Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Ke-Feng Zeng
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Zhang-Bin Tan
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Si-Min Lu
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Hui-Juan Wang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Bo Yang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Wei-Hao Jiang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Shuang-Wei Zhang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Bo Deng
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China.
| | - Bin Liu
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China.
| | - Jingzhi Zhang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China.
| |
Collapse
|
5
|
Ding Z, Wei Y, Peng J, Wang S, Chen G, Sun J. The Potential Role of C-Reactive Protein in Metabolic-Dysfunction-Associated Fatty Liver Disease and Aging. Biomedicines 2023; 11:2711. [PMID: 37893085 PMCID: PMC10603830 DOI: 10.3390/biomedicines11102711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently redefined as metabolic-dysfunction-associated fatty liver disease (MASLD), is liver-metabolism-associated steatohepatitis caused by nonalcoholic factors. NAFLD/MASLD is currently the most prevalent liver disease in the world, affecting one-fourth of the global population, and its prevalence increases with age. Current treatments are limited; one important reason hindering drug development is the insufficient understanding of the onset and pathogenesis of NAFLD/MASLD. C-reactive protein (CRP), a marker of inflammation, has been linked to NAFLD and aging in recent studies. As a conserved acute-phase protein, CRP is widely characterized for its host defense functions, but the link between CRP and NAFLD/MASLD remains unclear. Herein, we discuss the currently available evidence for the involvement of CRP in MASLD to identify areas where further research is needed. We hope this review can provide new insights into the development of aging-associated NAFLD biomarkers and suggest that modulation of CRP signaling is a potential therapeutic target.
Collapse
Affiliation(s)
- Zheng Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yuqiu Wei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jing Peng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Siyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Guixi Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
6
|
Hypertension and renal disease programming: focus on the early postnatal period. Clin Sci (Lond) 2022; 136:1303-1339. [PMID: 36073779 DOI: 10.1042/cs20220293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
The developmental origin of hypertension and renal disease is a concept highly supported by strong evidence coming from both human and animal studies. During development there are periods in which the organs are more vulnerable to stressors. Such periods of susceptibility are also called 'sensitive windows of exposure'. It was shown that as earlier an adverse event occurs; the greater are the consequences for health impairment. However, evidence show that the postnatal period is also quite important for hypertension and renal disease programming, especially in rodents because they complete nephrogenesis postnatally, and it is also important during preterm human birth. Considering that the developing kidney is vulnerable to early-life stressors, renal programming is a key element in the developmental programming of hypertension and renal disease. The purpose of this review is to highlight the great number of studies, most of them performed in animal models, showing the broad range of stressors involved in hypertension and renal disease programming, with a particular focus on the stressors that occur during the early postnatal period. These stressors mainly include undernutrition or specific nutritional deficits, chronic behavioral stress, exposure to environmental chemicals, and pharmacological treatments that affect some important factors involved in renal physiology. We also discuss the common molecular mechanisms that are activated by the mentioned stressors and that promote the appearance of these adult diseases, with a brief description on some reprogramming strategies, which is a relatively new and promising field to treat or to prevent these diseases.
Collapse
|
7
|
Endothelial PDGF-BB/PDGFR-β signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation. Bone Res 2022; 10:58. [PMID: 36031625 PMCID: PMC9420732 DOI: 10.1038/s41413-022-00229-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/14/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
The mechanisms that coordinate the shift from joint homeostasis to osteoarthritis (OA) remain unknown. No pharmacological intervention can currently prevent the progression of osteoarthritis. Accumulating evidence has shown that subchondral bone deterioration is a primary trigger for overlying cartilage degeneration. We previously found that H-type vessels modulate aberrant subchondral bone formation during the pathogenesis of OA. However, the mechanism responsible for the elevation of H-type vessels in OA is still unclear. Here, we found that PDGFR-β expression, predominantly in the CD31hiEmcnhi endothelium, was substantially elevated in subchondral bones from OA patients and rodent OA models. A mouse model of OA with deletion of PDGFR-β in endothelial cells (ECs) exhibited fewer H-type vessels, ameliorated subchondral bone deterioration and alleviated overlying cartilage degeneration. Endothelial PDGFR-β promotes angiogenesis through the formation of the PDGFR-β/talin1/FAK complex. Notably, endothelium-specific inhibition of PDGFR-β by local injection of AAV9 in subchondral bone effectively attenuated the pathogenesis of OA compared with that of the vehicle-treated controls. Based on the results from this study, targeting PDGFR-β is a novel and promising approach for the prevention or early treatment of OA.
Collapse
|
8
|
SIRT3-AMPK signaling pathway as a protective target in endothelial dysfunction of early sepsis. Int Immunopharmacol 2022; 106:108600. [PMID: 35217431 DOI: 10.1016/j.intimp.2022.108600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Extensive vascular endothelial dysfunction usually occurs in sepsis, resulting in high mortality. The purpose of this study was therefore to investigate the role of AMP-dependent protein kinase (AMPK) in the aortic endothelial dysfunction of early sepsis in mice, and the relationship between AMPK and Sirtuin3 (SIRT3). Cecal ligation and puncture (CLP) surgery was performed to establish a mouse sepsis model, and human umbilical vein endothelial cells (HUVECs) were treated with lipopolysaccharide (LPS) to mimic a sepsis model in vitro. We suppressed and increased the activities of AMPK with Dorsomorphin (CC) and Acadesine (AICAR), respectively. 3-TYP (SIRT3 inhibitor) and Honokiol (SIRT3 agonist) were used to alter SIRT3 activity. Then, the inflammatory and endothelial function parameters of the vascular tissue and survival rate were determined. In vivo, the expression of Ser1177 phosphorylation of endothelial nitric oxide synthase (p-eNOS), endothelium-dependent relaxation function, and survival decreased (P < 0.05), while NF-κB and NLRP3 pathways were activated in CLP-induced early sepsis (P < 0.05). Moreover, activation of AMPK significantly reversed the reduction of p-eNOS expression (P < 0.05), prevented endothelial dysfunction (P < 0.05), deactivated NF-κB and NLRP3 pathways (P < 0.05), and improved survival (P < 0.05) in septic mice. However, AMPK inhibition led to opposite effects (P < 0.05). In addition, changing the activity of AMPK had little effect on SIRT3 expression (P > 0.05), while the expression of p-AMPK varied with the inhibition or activation of SIRT3 (P < 0.05), which was further demonstrated using in vitro experiments. Together, the results showed that the SIRT3-AMPK signaling pathway played an important role in inhibiting vascular inflammation and endothelial dysfunction during early sepsis.
Collapse
|
9
|
Zhang M, Wei L, Xie S, Xing Y, Shi W, Zeng X, Chen S, Wang S, Deng W, Tang Q. Activation of Nrf2 by Lithospermic Acid Ameliorates Myocardial Ischemia and Reperfusion Injury by Promoting Phosphorylation of AMP-Activated Protein Kinase α (AMPK α). Front Pharmacol 2021; 12:794982. [PMID: 34899356 PMCID: PMC8661697 DOI: 10.3389/fphar.2021.794982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: As a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, lithospermic acid (LA) has been identified as the pharmacological management for neuroprotection and hepatoprotection. However, the role and mechanism of lithospermic acid in the pathological process of myocardial ischemia-reperfusion injury are not fully revealed. Methods: C57BL/6 mice were subjected to myocardial ischemia and reperfusion (MI/R) surgery and pretreated by LA (50 mg/kg, oral gavage) for six consecutive days before operation. The in vitro model of hypoxia reoxygenation (HR) was induced by hypoxia for 24 h and reoxygenation for 6 h in H9C2 cells, which were subsequently administrated with lithospermic acid (100 μM). Nrf2 siRNA and dorsomorphin (DM), an inhibitor of AMPKα, were used to explore the function of AMPKα/Nrf2 in LA-mediated effects. Results: LA pretreatment attenuates infarct area and decreases levels of TnT and CK-MB in plasm following MI/R surgery in mice. Echocardiography and hemodynamics indicate that LA suppresses MI/R-induced cardiac dysfunction. Moreover, LA ameliorates oxidative stress and cardiomyocytes apoptosis following MI/R operation or HR in vivo and in vitro. In terms of mechanism, LA selectively activates eNOS, simultaneously increases nuclear translocation and phosphorylation of Nrf2 and promotes Nrf2/HO-1 pathway in vivo and in vitro, while cardioprotection of LA is abolished by pharmacological inhibitor of AMPK or Nrf2 siRNA in H9C2 cells. Conclusion: LA protects against MI/R-induced cardiac injury by promoting eNOS and Nrf2/HO-1 signaling via phosphorylation of AMPKα.
Collapse
Affiliation(s)
- Min Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Li Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wenke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Xiaofeng Zeng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Si Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Shasha Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
10
|
Ding Y, Zhou Y, Ling P, Feng X, Luo S, Zheng X, Little PJ, Xu S, Weng J. Metformin in cardiovascular diabetology: a focused review of its impact on endothelial function. Am J Cancer Res 2021; 11:9376-9396. [PMID: 34646376 PMCID: PMC8490502 DOI: 10.7150/thno.64706] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
As a first-line treatment for diabetes, the insulin-sensitizing biguanide, metformin, regulates glucose levels and positively affects cardiovascular function in patients with diabetes and cardiovascular complications. Endothelial dysfunction (ED) represents the primary pathological change of multiple vascular diseases, because it causes decreased arterial plasticity, increased vascular resistance, reduced tissue perfusion and atherosclerosis. Caused by “biochemical injury”, ED is also an independent predictor of cardiovascular events. Accumulating evidence shows that metformin improves ED through liver kinase B1 (LKB1)/5'-adenosine monophosphat-activated protein kinase (AMPK) and AMPK-independent targets, including nuclear factor-kappa B (NF-κB), phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), forkhead box O1 (FOXO1), krüppel-like factor 4 (KLF4) and krüppel-like factor 2 (KLF2). Evaluating the effects of metformin on endothelial cell functions would facilitate our understanding of the therapeutic potential of metformin in cardiovascular diabetology (including diabetes and its cardiovascular complications). This article reviews the physiological and pathological functions of endothelial cells and the intact endothelium, reviews the latest research of metformin in the treatment of diabetes and related cardiovascular complications, and focuses on the mechanism of action of metformin in regulating endothelial cell functions.
Collapse
|
11
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|